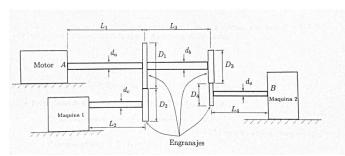
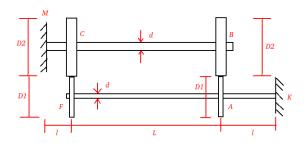

Auxiliar N°2 26 de Septiembre de 2016

<u>Profesor Cátedra</u>: Roger Bustamante P. Profesor Auxiliar: Rodrigo Bahamondes S.

Consultas a: rbahamondes@ing.uchile.cl


P1.- En la figura se tiene un cilindro cónico de diámetros D, d que está pegado a un cilindro recto de diámetro d. ambos están empotrados a paredes rígidas. Los cilindros están hechos de materiales distintos con módulos de corte G_1 y G_2 respectivamente. Determine las reacciones en las paredes y el máximo esfuerzo de corte por torsión



P2.- Un tubo circular hueco A se ajusta sobre el extremo de una barra circular sólida B como se muestra en la figura en la parte superior. En un inicio, un agujero a través de la barra B forma un ángulo β con una línea que pasa por dos agujeros en la barra A tal como se muestra en la parte inferior de la figura. Se hace girar la barra B hasta alinear los agujeros y se pasa un pasador por ellos. Cuando la barra B se libera y el sistema retoma el equilibrio, ¿Cuál es el máximo esfuerzo de corte en A y B?

- **P3.-** En la figura se tiene un motor que entrega su potencia a dos máquinas 1 y 2 por medio de acoples con engranajes. El motor entrega una potencia P_{mot} y la máquina 1 usa P_{maq1} de dicha potencia. El motor gira a una velocidad ω_{mot} .
 - a) ¿Cuáles son los diámetros d_a , d_b , d_c , y d_e para que los distintos ejes no fallen por corte en torsión y no superen el valor τ_{adm} ?
 - b) ¿Cuál es el ángulo de torsión relativo entre los puntos A y B?

Datos: $P_{mot} = 800$ HP, $\omega_{mot} = 500$ rpm, $P_{maq1} = 350$ HP, $D_1 = 20$ cm, $D_2 = 15$ cm, $D_3 = 10$ cm, $D_4 = 8$ cm, $L_1 = 50$ cm, $L_2 = 30$ cm, $L_4 = 40$ cm, G = 79.3 GPa, $\tau_{adm} = 125$ MPa.

P4.- En la figura se tiene una vista lateral de dos ejes, MCB y FAK, que están conectados por medio de engranajes C, B, F y A, y que se encuentran empotrados en M y K respectivamente. El sistema de ensambla de la siguiente forma: primero se colocan los engranajes A, B y C, y luego, en relación al engranaje F, antes de colocarlo se da una torsión en un ángulo de θ . Después se ensambla el engranaje F y se deja al sistema en equilibrio. Determine el máximo esfuerzo de corte en los ejes MCB y FAK. Los dos ejes están hechos del mismo material, con módulo de corte G y diámetro d.

Datos: L = 1 m, l = 30 cm, d = 5 cm, $D_1 = 15 \text{ cm}$, $D_2 = 40 \text{ cm}$, $\theta = 30^\circ$, G = 90 GPa.