MA3701 Optimización, 2016-2.

17 de octubre de 2016

Profesor: Vicente Acuña. Auxiliar: Raúl Pezoa.

Clase Auxiliar #4

P1) Considere el problema

mín
$$(x_1 - 3)^2 + (x_2 - 5)^2$$

s.a. $x_1 + x_2 \le 6$
 $x_1, x_2 \ge 0$

- a) Establezca las condiciones de Karush-Kuhn-Tucker para el problema. ¿Son condiciones necesarias y suficientes para determinar una solución?
- b) Determine la(s) solución(es) resolviendo las condiciones anteriores.
- **P2)** a) Sea $C \subseteq \mathbb{R}^n$. Demuestre que

$$(\alpha + \beta)C = \alpha C + \beta C \ \forall \alpha, \beta \ge 0 \iff C \text{ es convexo}$$

- b) Sea (P): mín f(x), donde $f: \Omega \to \mathbb{R}$ es convexa. Demostrar que si $\{x_1, \ldots, x_k\}$ son soluciones de (P), entonces cualquier punto de $\operatorname{co}\{x_1, \ldots, x_k\}$ es solución de (P), donde $\operatorname{co}\{\cdot, \ldots, \cdot\}$ es la envoltura convexa.
- **P3)** Considere el problema de minimización $\{\min c^T x, x \in \mathcal{P}\}$. Pruebe que un punto factible x es óptimo si y solo si $c^T d \geq 0$, para todo d dirección factible en x. Muestre además que si la desigualdad anterior es siempre estricta, entonces x es el único punto que alcanza el óptimo.

Introducción Teórica

Sea el problema (P) (donde todas las funciones son \mathcal{C}^1):

mín
$$f(x)$$

s.a. $g_i(x) \le 0$ $i \in I$
 $h_j(x) = 0$ $j \in J$
 $x \in \mathbb{R}^n$

1.1 Teorema de Karush-Kuhn-Tucker (KKT)

Condición Necesaria

Para el problema (P), sea \overline{x} un mínimo local que satisface alguna de las calificaciones de restricciones. Luego, existe un vector $\lambda \in \mathbb{R}^{|J|}$ y un vector $\mu \in \mathbb{R}^{|I|}$, con $\mu \geq 0$ tales que:

$$\nabla_x \mathcal{L}(x, \lambda, \mu) = \nabla f(\overline{x}) + \sum_{j \in J} \lambda_j \nabla h_j(\overline{x}) + \sum_{i \in I} \mu_i \nabla g_i(\overline{x}) = 0$$
$$\mu_i g_i(\overline{x}) = 0, \ \forall i \in I$$

Si además el problema (P) es convexo, es decir h_j son funciones lineales afines, g_i son funciones convexas y f es convexa, entonces la condición anterior es también suficiente para que \overline{x} sea un mínimo global (si f es estrictamente convexa, entonces el mínimo es único).

1.2 Calificación de Restricciones

Definamos $I(\overline{x}) := \{i \in I : q_i(\overline{x}) = 0\}$ el conjunto de restricciones activas para \overline{x} .

1.2.1 Independencia Lineal de Gradientes Activos (ILGA)

Un punto \overline{x} factible satisface ILGA si $\{\nabla h_j(\overline{x})\}_{j\in J}$ y $\{\nabla g_i(\overline{x})\}_{i\in I(\overline{x})}$ son vectores linealmente independientes, algunas condiciones que nos aseguran regularidad son las siguientes:

1.2.2 Condición de Slater

Supongamos que el conjunto de restricciones es convexo, es decir h_j son funciones lineales afines, g_i son funciones convexas. Si se satisface la condición de Slater:

$$\exists \hat{x} \in \mathbb{R}^n : g_i(\hat{x}) < 0 \ \forall i \in I, \ h_j(\hat{x}) = 0 \ \forall j \in J$$

entonces todo punto factible es calificado.