MA3701 Optimización, 2016-2.

22 de septiembre de 2016

Profesor: Vicente Acuña. Auxiliar: Raúl Pezoa.

Clase Auxiliar #1

- P1) a) Una empresa distribuidora de bebidas debe resolver el problema de ubicar sus sucursales de modo de poder atender las demandas de sus N clientes. Para esto, disponen de M posibles localizaciones, donde el costo de ubicar una sucursal en la localización j es F_j . Además, el costo de proveer una unidad al cliente i en la localización j es C_{ij} . Suponiendo que la demanda por bebidas del cliente i es D_i y el máximo número de bebidas que puede proveer una sucursal en la localización j es U_j , modele el problema de escoger dónde se ubicarán las sucursales y la forma de asignar los clientes a éstas de manera de minimizar el costo total.
 - b) Una empresa de transporte aéreo de carga posee una flota de N aviones, donde el avión $k \in \{1, ..., N\}$ tiene una capacidad máxima de carga de L_k kilos. Actualmente esta empresa opera transportando un único tipo de carga desde M orígenes hacia P destinos (con $M \cap P = \emptyset$), donde la carga por transportar en el origen $i \in \{1, ..., M\}$ es S_i kilos, mientras que la demanda del destino $j \in \{1, ..., P\}$ es D_j kilos. El costo de transportar un kilo desde el origen i hasta el destino j usando el avión k es C_{ijk} , y adicionalmente, debido a restricciones técnicas, durante el período estudiado la máxima carga total permitida a ser transportada desde el origen i utilizando el avión k es U_{ik} . Modele el problema de satisfacer la demanda a mínimo costo.
- **P2)** Sea $f: \Omega \to \mathbb{R}$ con Ω convexo, decimos que f es convexa si $\forall x, y \in \Omega, \ \forall \lambda \in (0,1)$ se tiene

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

- a) Sea $C \subseteq \mathbb{R}^n$. Mostrar que C es convexo ssi su intersección con cualquier recta $\{x + tv | t \in \mathbb{R}\}$ es convexa.
- b) Sea $\Omega \subseteq \mathbb{R}^n$ un conjunto convexo y $g_i : \Omega \to \mathbb{R}$ con $i \in \{1, ..., k\}$ una colección de funciones convexas. Considere el conjunto $C = \{x \in \Omega | g_i(x) \leq 0 \ \forall i \in \{1, ..., k\}\}$. Demuestre que C es un conjunto convexo.
- c) Sea C el conjunto solución de la inecuación cuadrática en \mathbb{R}^n :

$$C = \{x \in \mathbb{R}^n | x^T A x + b^T x + c < 0\}$$

con $A \in S^n$, $b \in \mathbb{R}^n$ y $c \in \mathbb{R}$. Muestre que si $A \succeq 0$ entonces C es convexo.

d) Sea C un conjunto convexo y $x \in C$. Muestre que x es un punto extremo de C si y solo si $C \setminus \{x\}$ es convexo.