Clase Auxiliar #2: Cálculo Avanzado y Aplicaciones

Profesor: Emilio Vilches Auxiliar: Felipe Salas 20 de septiembre de 2016

Resumen

Teorema 1 (Gauss) Sea $\Omega \subseteq \mathbb{R}^3$ un abierto acotado cuya frontera $\partial\Omega$ es una superficie regular por pedazos, orientada según la normal exterior. Sea $\vec{F}: \mathcal{U} \subseteq \mathbb{R}^3 \to \mathbb{R}^3$ un campo vectorial clase C^1 sobre un abierto \mathcal{U} que contiene a $\bar{\Omega} = \Omega \cup \partial\Omega$. Entonces

$$\iint_{\partial \Omega} \vec{F} \cdot d\vec{A} = \iiint_{\Omega} \operatorname{div}(\vec{F}) dV$$

- **P1.** Considere la superficie S que se obtiene al intersectar la superficie $z=\sqrt{x^2+y^2}$ con el volumen definido por $x^2+y^2-2ay\leq 0$, donde a>0.
 - a) Encuentre una parametrización para S.
 - b) Calcule el área de S.
- **P2.** Considere la superficie $S \subset \mathbb{R}^3$ formada por los puntos del casquete esférico unitario que están por encima de los planos z=2y y y=0. Es decir, $S=\{(x,y,z)\in\mathbb{R}^3\mid x^2+y^2+z^2=1,z\geq 2y,y\geq 0\}$.
 - (a) Bosqueje S y encuentre una parametrización regular de esta superficie.
 - (b) Calcule el flujo del campo

$$\vec{F}(r,\theta,\phi) = \frac{r\sin^2\theta}{(\sin\phi)\cos^2\varphi}\,\hat{r} + re^r\,\hat{\theta},$$

sobre la superficie S orientada con la normal exterior a la esfera.

P3. Calcular la integral de flujo $\iint_S \nabla \Phi \cdot d\vec{A}$, siendo S el hemisferio superior del elipsoide Ω : $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$, orientado según la normal exterior y Φ es el campo escalar

$$\Phi(x, y, z) = (x - 1)^2 + 2(y - 1)^2 + z^2.$$