MA1101-2 Introducción al Álgebra

Profesor: José Soto

Auxiliares: Arturo Merino, Nicolás Zalduen-

do

Auxiliar 13: Anillos, Cuerpos y Complejos

28 de Noviembre del 2016

Recordemos:

- Sea $(A, +, \cdot)$ un anillo. Si $x, y \in A \setminus \{0\}$ son tales que $x \cdot y = 0$, diremos que $x \cdot y$ son divisores del 0.
- Sea $(A, +, \cdot)$ un anillo y $a \in A \setminus \{0\}$, luego: a es divisor del $0 \iff a$ no es cancelable
- Sea $(\mathbb{K}, +, \cdot)$ un anillo conmutativo con unidad tal que todo $x \in \mathbb{K} \setminus \{0\}$ es invertible, diremos que $(\mathbb{K}, +, \cdot)$ es un cuerpo.
- \blacksquare De manera equivalente $(\mathbb{K}+,\cdot)$ es un cuerpo si y sólo si:
 - 1. $(\mathbb{K}, +)$ es un grupo abeliano.
 - 2. $(\mathbb{K} \setminus \{0\}, \cdot)$ es un grupo abeliano.
 - 3. · distribuye con respecto a +.
- $(\mathbb{R}, +, \cdot)$ y $(\mathbb{Q}, +, \cdot)$ son cuerpos.
- Un cuerpo no tiene divisores del 0.
- Sea $(A, +, \cdot)$ un anillo conmutativo con unidad tal que |A| es finito. Entonces $(A, +, \cdot)$ no tiene divisores del cero si y sólo si $(A, +, \cdot)$ es un cuerpo.
- $(\mathbf{Z}_n, +, \cdot)$ es un cuerpo $\iff n$ es un primo.
- Sea $\mathbb{C} = \mathbb{R}^2$ dotado de las siguientes operaciones:

$$z + w = (z_1 + w_1, z_2 + w_2)$$

$$z \cdot w = (z_1 w_1 - z_2 w_2, z_1 w_2 + w_1 z_2)$$

- \blacksquare ($\mathbb{C}, +, \cdot$) es un cuerpo.
- Sea $R = \{(z_1, 0) \in \mathbb{C} : z_1 \in \mathbb{R}\} \subseteq \mathbb{C}$, entonces $(R, +, \cdot) \cong (\mathbb{R}, +, \cdot)$.
- Usualmente anotaremos los $(a, b) \in \mathbb{C}$ como a + bi. Donde además $i^2 = -1$.
- Sea $z = a + bi \in \mathbb{C}$. Definimos la parte real y la parte imaginaria respectivamente como:

$$\mathbb{R}e(z) = a$$
 $\mathbb{I}m(z) = b$

- Sean $z, z_1, z_2 \in \mathbb{C}$ y $\lambda \in \mathbb{R}$, entonces:
 - 1. $\mathbb{R}e(z_1 + z_2) = \mathbb{R}e(z_1) + \mathbb{R}e(z_2)$.
 - 2. $\mathbb{I}m(z_1 + z_2) = \mathbb{I}m(z_1) + \mathbb{I}m(z_2)$.
 - 3. $\mathbb{R}e(\lambda z) = \lambda \mathbb{R}e(z)$.
 - 4. $\mathbb{I}m(\lambda z) = \lambda \mathbb{I}m(z)$.
 - 5. $z_1 = z_2 \Leftrightarrow [\mathbb{R}e(z_1) = \mathbb{R}e(z_2) \wedge \mathbb{I}m(z_1) = \mathbb{I}m(z_2)]$
- Sea $z = a + bi \in \mathbb{C}$. Definimos el conjugado de z como:

$$\overline{z} = a - bi$$

- Sean $z, w \in \mathbb{C}$. Entonces:
 - 1. $\overline{z+w} = \overline{z} + \overline{w}$ y $\overline{z-w} = \overline{z} \overline{w}$.
 - 2. $\overline{zw} = \overline{z} \cdot \overline{w}$. Si $w \neq 0$ $\overline{\left(\frac{z}{w}\right)} = \frac{\overline{z}}{\overline{w}}$.
 - 3. Si $\lambda \in \mathbb{R}$, entonces $\overline{\lambda z} = \lambda \overline{z}$.
 - 4. $\overline{\overline{z}} = z$.
 - 5. $\mathbb{R}e(z) = \mathbb{R}e(\overline{z}) \text{ y } \mathbb{I}m(z) = -\mathbb{I}m(\overline{z}).$
 - 6. $\mathbb{R}e(z) = \frac{1}{2}(z+\overline{z})$ y $\mathbb{I}m(z) = \frac{1}{2i}(z-\overline{z})$
 - 7. $z \in \mathbb{R} \iff z = \overline{z}$.
- Sea z = a + bi. Definimos el módulo como:

$$|z| = \sqrt{z \cdot \overline{z}} = \sqrt{a^2 + b^2}$$

- Sean $z, w \in \mathbb{C}$. Entonces:
 - 1. $|z| = |\overline{z}| \text{ y } z = 0 \iff |z| = 0.$
 - 2. $|\mathbb{R}e(z)| < |z| \text{ y } |\mathbb{I}m(z)| < |z|$.
 - 3. |zw| = |z||w| y $|z + w| \le |z| + |w|$.
 - 4. Si $z \neq 0$, entonces $z^{-1} = \frac{\overline{z}}{|z|^2}$.
 - 5. Si $w \neq 0$, entonces $\left| \frac{z}{w} \right| = \frac{|z|}{|w|}$.

P1. [Divisores del Cero]

Sea $(A, +, \cdot)$ un anillo conmutativo.

- a) Si $a \in A$ es un divisor del cero y $b \in A$ cualquiera, demuestre que si $a \cdot b \neq 0$, entonces $a \cdot b$ es un divisor del cero.
- b) Demuestre que si el producto de dos elementos de A es un divisor de cero, entonces al menos uno de ellos es un divisor de cero.

P2. [Producto de Cuerpos]

Sea $(\mathbb{K}, +, \cdot)$ un cuerpo. Definimos las siguientes operaciones sobre $\mathbb{K} \times \mathbb{K}$:

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
 $(a,b) \oplus (c,d) = (a \cdot c,b \cdot d)$

Se sabe (no lo demuestre) que $(\mathbb{K} \times \mathbb{K}, \oplus, \odot)$ es un anillo conmutativo con unidad.

- a) Encuentre el neutro para \oplus y el neutro para \odot .
- b) Demuestre que $\forall (a,b) \in (\mathbb{K} \times \mathbb{K}) \setminus \{0_{\mathbb{K} \times \mathbb{K}}\}:$

$$(a,b)$$
 es divisor del $0 \iff (a,b)$ no es invertible

c) ¿Es ($\mathbb{K} \times \mathbb{K}, \oplus, \odot$) un cuerpo? Argumente.

P3. [Casquete unitario]

a) Demuestre que:

$$S = \{ z \in \mathbb{C} : |z| = 1 \}$$

Es un subgrupo de $(\mathbb{C} \setminus \{0\}, \cdot)$

b) Para $z \in S$ y $z \neq 1$ definimos:

$$w = \frac{1+z}{1-z}$$

Demuestre que w es un imaginario puro, es decir que $\mathbb{R}e(w) = 0$.

c) Sea $z \in S$ y $z \neq -1$. Demuestre que:

$$\frac{1+z}{1+\overline{z}} = z$$

d) Sea $z \in S$, y $z \neq -1$. Calcule:

$$\operatorname{Im}\left(\frac{z}{(1+z)^2}\right)$$

P4. [Forma Cartesiana]

a) Exprese de la forma a + bi los siguientes complejos:

b) Pruebe que $\forall n \in \mathbb{N}$:

$$(1+i)^n + (1-i)^n \in \mathbb{R}$$

c) Sean $M, N \in \mathbb{N}$ tal que existen $a, b, c, d \in \mathbb{N}$ que verifican $M = a^2 + b^2$ y $N = c^2 + d^2$. Demuestre que existen $p, q \in \mathbb{N}$ tal que $MN = p^2 + q^2$. En otras palabras, piden probar que si dos enteros se pueden escribir como la suma de dos cuadrados, entonces su producto también.

Hint: Le puede ser útil trabajar la siguiente expresión $|(a+ib)(c+id)|^2$.