MA1101-2 Introducción al Álgebra

Profesor: José Soto

Auxiliar: Arturo Merino, Nicolás Zalduendo

Pauta 6: Relaciones

28 de octubre del 2016

P1. [Relación inversa]

Dado E un conjunto no vacío y \mathcal{R} una relación sobre él. Definimos la relación $\tilde{\mathcal{R}}$ de la siguiente forma:

$$\forall (a, b) \in E \times E, \quad a\tilde{\mathcal{R}}b \Leftrightarrow b\mathcal{R}a.$$

- a) Muestre que si \mathcal{R} es relación de orden, entonces $\tilde{\mathcal{R}}$ también lo es.
- b) Muestre que si \mathcal{R} es relación de equivalencia, entonces $\tilde{\mathcal{R}}$ también lo es.

Solución 1.

- a) Recordemos que una relación es de orden si y sólo si es refleja, transitiva y antisimétrica. Luego, lo que haremos es demostrar estas tres propiedades por separado para concluir.
 - $\tilde{\mathcal{R}}$ refleja: Sea $a \in E$, como \mathcal{R} es refleja, sabemos entonces que

$$a\mathcal{R}a \iff a\tilde{\mathcal{R}}a.$$

de donde deducimos que $\tilde{\mathcal{R}}$ es refleja cuando \mathcal{R} lo es.

• $\tilde{\mathcal{R}}$ transitiva: Sean $a, b, c \in E$ tales que $a\tilde{\mathcal{R}}b \wedge b\tilde{\mathcal{R}}c$. Entonces,

$$a\tilde{\mathcal{R}}b \wedge b\tilde{\mathcal{R}}c \iff b\mathcal{R}a \wedge c\mathcal{R}b \implies c\mathcal{R}a \iff a\tilde{\mathcal{R}}c,$$

de donde concluimos que $\tilde{\mathcal{R}}$ es transitiva cuando \mathcal{R} lo es.

• $\tilde{\mathcal{R}}$ antisimétrica: Sean $a, b \in E$ tales que $a\tilde{\mathcal{R}}b \wedge b\tilde{\mathcal{R}}a$, queremos demostrar que. a = b. En efecto:

$$a\tilde{\mathcal{R}}b \wedge b\tilde{\mathcal{R}}a \iff b\mathcal{R}a \wedge a\mathcal{R}b \implies a=b,$$

donde la última implicancia sale de que \mathcal{R} es antisimétrica. Luego, se deduce que en este caso, $\tilde{\mathcal{R}}$ también es antisimétrica.

De todo lo demostrado anteriormente, se deduce que $\tilde{\mathcal{R}}$ es relación de orden cuando \mathcal{R} también lo es.

- b) Ahora debemos chequear que la relación sea refleja, transitiva y simétrica. Las dos primeras propiedades ya fueron demostradas y no dependían de la antisimetría de la relación previa. Luego, probemos sólo la que falta:
 - \bullet $\tilde{\mathcal{R}}$ simétrica: Sean x, y tales que $x\tilde{\mathcal{R}}y$. Luego,

$$x\tilde{\mathcal{R}}y \iff y\mathcal{R}x \implies x\mathcal{R}y \iff y\tilde{\mathcal{R}}x,$$

de donde se deduce la simetría de la relación cuando \mathcal{R} es simétrica.

P2. [Relaciones de equivalencia y orden]

- a) Se define la relación \mathcal{R} en $\mathbb{R} \setminus \{0\}$ por $x\mathcal{R}y \Leftrightarrow xy > 0$.
 - (i) Determine si \mathcal{R} es una relación de equivalencia o de orden (podría no ser ninguna de las dos)
 - (ii) Si la relación es de equivalencia, calcule todas las clases de equivalencia. Si es de orden determine si el orden es parcial o total.
- b) Sea E un conjunto no vacío y considere $K \in \mathcal{P}(E)$ fijo, con $K \neq \emptyset$. Se define en $\mathcal{P}(E)$ la relación \mathcal{R}_K por:

$$A\mathcal{R}_K B \Leftrightarrow B \cap K \subseteq A$$
.

- (i) Demuestre que \mathcal{R}_K es refleja y transitiva.
- (ii) Proponga un conjunto $K \in \mathcal{P}(E)$ tal que \mathcal{R}_K sea una relación de orden. Justifique su elección.

Solución 2.

- a) 1) Veamos que cosas se verifican:
 - \mathcal{R} refleja: Sea $x \in \mathbb{R} \setminus \{0\}$. Luego, por propiedades de reales sabemos que $x^2 > 0 \iff x\mathcal{R}x$.
 - \mathbb{R} simétrica: Sean $x, y \in \mathbb{R} \setminus \{0\}$ tales que $x \mathcal{R} y$. Luego:

$$x\mathcal{R}y \iff xy > 0 \iff yx > 0 \iff y\mathcal{R}x.$$

■ \mathcal{R} transitiva: Sean $x, y, z \in \mathbb{R} \setminus \{0\}$ tales que

$$x\mathcal{R}y \wedge y\mathcal{R}z \iff xy > 0 \wedge yz > 0 \implies xy^2z > 0 \implies xz > 0 \iff x\mathcal{R}z.$$

Luego, concluimos que \mathcal{R} es una relación de equivalencia. Para ver que no es de orden, basta con notar que no es antisimétrica, en particular:

$$1\mathcal{R}3 \wedge 3\mathcal{R}1$$

Pero $1 \neq 3$.

- 2) Calculemos las clases de equivalencia, notemos que sólo tenemos dos casos posibles dependiendo del signo de x:
 - Si x > 0, esto implica que $x\mathcal{R}y \iff xy > 0 \iff y > 0$. Por ende, en este caso:

$$[x]_{\mathcal{R}} = \{ y \in \mathbb{R} \setminus \{0\} : y > 0 \} = \mathbb{R}_+.$$

■ Por otro lado, si x < 0, tendremos que $x\mathcal{R}y \iff xy > 0 \iff y < 0$, y luego:

$$[x]_{\mathcal{R}} = \{ y \in \mathbb{R} \setminus \{0\} : y < 0 \} = \mathbb{R}_{-}.$$

Como hemos cubierto todos los casos posibles con el estudio anterior, no hay más clases de equivalencia que se puedan calcular diferentes a las ya obtenidas, y por lo tanto:

$$(\mathbb{R}\setminus\{0\})/\mathcal{R}=\{\mathbb{R}_+,\mathbb{R}_-\}.$$

- b) 1) Veamos lo pedido directamente:
 - \mathcal{R}_K refleja: Es claro que, para todo $A \in \mathcal{P}(E)$,

$$A \cap K \subseteq A \implies A\mathcal{R}_K A.$$

■ \mathcal{R}_K transitiva: Sean $A, B, C \in \mathcal{P}(E)$ tales que $A\mathcal{R}_K B \wedge B\mathcal{R}_K C$, luego:

$$A\mathcal{R}_K B \wedge B\mathcal{R}_K C \iff B \cap K \subseteq A \wedge C \cap K \subseteq B$$

de donde vemos que

$$C \cap K \subseteq B \implies (C \cap K) \cap K \subseteq B \cap K \iff C \cap K \subseteq B \cap K \subseteq A$$

de donde deducimos que $C \cap K \subseteq A \iff A\mathcal{R}_K C$.

2) Si elegimos por ejemplo K = E, notamos que la relación $A\mathcal{R}_E B$ toma la forma:

$$A\mathcal{R}_E B \iff A \cap E \subseteq B \iff A \subseteq B.$$

Luego, como ahora la relación queda determinada por la inclusión de conjuntos, veamos que es antisimétrica. En efecto, sean $A, B \in \mathcal{P}(E)$ tales que $A\mathcal{R}_E B \wedge B\mathcal{R}_E A$; por definición esto nos dice que

$$A \subseteq B \land B \subseteq A \implies A = B$$
,

por lo que nuestra relación queda antisimétrica para K=E, y por lo demostrado anteriormente resulta ser una relación de orden en $\mathcal{P}(E)$.

P3. [Relaciones de proposiciones lógicas]

Sobre un conjunto de proposiciones lógicas \mathcal{P} , se define la relación \mathcal{R} por:

$$p\mathcal{R}q \Leftrightarrow ((p \land q) \Leftrightarrow q).$$

Además, para $p, q \in \mathcal{P}$ se dice que p = q si y sólo si $p \Leftrightarrow q$.

- a) Demuestre que \mathcal{R} es una relación de orden sobre \mathcal{P} .
- b) Pruebe que \mathcal{R} es una relación de orden total.

Solución 3.

- a) Probemos cada propiedad por separado:
 - \mathcal{R} refleja: Sea $p \in \mathcal{P}$, es claro entonces que

$$p \wedge p \iff p$$
,

lo que nos dice directamente que $p\mathcal{R}p$.

■ \mathcal{R} transitiva: Sean $p,q,r \in \mathcal{P}$ tal que $p\mathcal{R}q \wedge q\mathcal{R}r$, por definición esto nos dice que

$$(p \wedge q) \iff q \wedge (q \wedge r) \iff r,$$

de donde podemos ver que

$$r \iff (q \land r) \iff ((p \land q) \land r) \iff (p \land (q \land r)) \iff (p \land r),$$

vale decir, hemos probado que pRr.

■ $\underline{\mathcal{R}}$ antisimétrica: Sean $p, q \in \mathcal{P}$ tales que $p\mathcal{R}q \wedge q\mathcal{R}p$; vale decir

$$(p \wedge q) \iff q \wedge (q \wedge p) \iff p$$
,

de donde obtenemos que

$$[p \iff (p \land q) \iff q] \implies p \iff q.$$

- b) Sean $p,q\in\mathcal{P}$ un par cualquiera. Notemos entonces que:
 - $\blacksquare p \iff V \land q \iff V \iff (p \land q) \iff V.$
 - $\bullet p \iff V \land q \iff F \iff (p \land q) \iff F.$
 - $\bullet p \iff F \land q \iff V \iff (p \land q) \iff F.$
 - $\bullet p \iff F \land q \iff F \iff (p \land q) \iff F.$

De lo anterior, podemos ver que en cualquiera de los cuatro casos, la conjunción $p \wedge q$ posee el mismo valor de verdad que alguna de las proposiciones p o q. Luego, siempre tendremos que $p\mathcal{R}q$, o en caso contrario tendremos que $q\mathcal{R}p$. Así, se concluye que el orden estudiado es total.

P4. [Módulo]

Sea \mathcal{R} la siguiente relación en \mathbb{Z}^2 definida por:

$$(a,b)\mathcal{R}(c,d) \iff a+b \equiv_2 c+3d$$

- a) Demuestre que \mathcal{R} es una relación de equivalencia.
- b) Demuestre que $[(0,0)]_{\mathcal{R}} \cup [(1,0)]_{\mathcal{R}} = \mathbb{Z}^2$, pero que $[(0,0)]_{\mathcal{R}} \cap [(1,0)]_{\mathcal{R}} = \emptyset$.
- c) ¿Cuántos elementos tiene \mathbb{Z}^2/\mathcal{R} ?

Solución 4. Recordemos que la relación \equiv_2 en \mathbb{Z} :

$$x \equiv_2 y \iff [\exists k \in \mathbb{Z} \text{ tal que } (x - y) = 2k]$$

Esto puede ser visto como que x e y tienen la misma paridad. En el caso de $\mathcal R$ notemos que:

$$(a,b)\mathcal{R}(c,d) \iff a+b \equiv_2 c+3d$$

$$\iff [\exists k \in \mathbb{Z} \text{ tal que } c+3d-a-b=2k]$$

$$\iff [\exists k \in \mathbb{Z} \text{ tal que } c+d-a-b=2(\underbrace{k-d})]$$

$$\iff [\exists \lambda \in \mathbb{Z} \text{ tal que } c+d-a-b=2\lambda]$$

$$\iff a+b \equiv_2 c+d$$

Es decir $(a,b)\mathcal{R}(c,d)$ si y sólo si a+b y c+d tienen la misma paridad.

- a) Refleja: a+b tiene la misma paridad que a+b, por ende $(a,b)\mathcal{R}(a,b)$
 - Simétrica: Supongamos $(a,b)\mathcal{R}(c,d)$, Es decir a+b tiene la misma paridad que c+d, esto es lo mismo que c+d tenga la misma paridad que a+b, luego $(c,d)\mathcal{R}(a,b)$.
 - Transitiva: Supongamos $(a, b)\mathcal{R}(c, d)$ y que $(c, d)\mathcal{R}(e, f)$. Es decir a + b tiene la misma paridad que c + d y c + d tiene la misma paridad que e + f. Es evidente de esto que a + b tiene la misma paridad que e + f, por lo tanto:

$$(a,b)\mathcal{R}(e,f)$$

b) Sea $(a,b) \in \mathbb{Z}^2$, luego a+b es par o impar. Si a+b es par, entonces $a+b \in [(0,0)]_{\mathcal{R}}$, mientras que si a+b es impar tenemos que $a+b \in [(1,0)]_{\mathcal{R}}$. De esto concluimos que:

$$[(0,0)]_{\mathcal{R}} \cup [(1,0)]_{\mathcal{R}} = \mathbb{Z}^2$$

Además es claro que no existe ningún $(a,b) \in \mathbb{Z}^2$ tal que a+b sera par e impar a la vez, por tanto:

$$[(0,0)]_{\mathcal{R}} \cap [(1,0)]_{\mathcal{R}} = \emptyset$$

c) Por la parte b) vemos que $[(0,0)]_{\mathcal{R}}$ y $[(1,0)]_{\mathcal{R}}$ son una partición por clases de \mathcal{R} de \mathbb{Z}^2 por tanto son todas las clases de equivalencia de \mathcal{R} . De esto concluimos que \mathbb{Z}^2/\mathcal{R} tiene 2 elementos.