IN5526 - Web Intelligence Lecture 2

Juan Domingo Velasquez Silva Cristobal Gaspar Ignacio Pizarro Venegas

Departamento de Ingeniería Industrial Universidad de Chile

October 15, 2016

Contents

1 Introduction to Data Mining and Machine Learning

Beer and diapers

Case large US supermarket

- Customer purchase behaviour:
- Product linked with another
 - Bread \rightarrow butter,
 - ▶ Beer → diapers

Beer and diapers

Case large US supermarket

- Customer purchase behaviour:
- Product linked with another
 - Bread \rightarrow butter,
 - ▶ Beer → diapers wait, what?
- Market segment
 - > Young men married in the last three years with small children.

Based on this information, we deduce:

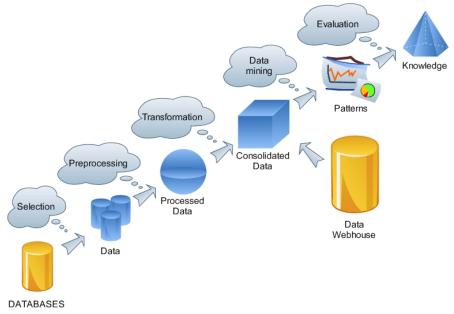
• Place diaper and beer on the same place on Friday afternoons.

A definition

Data Mining

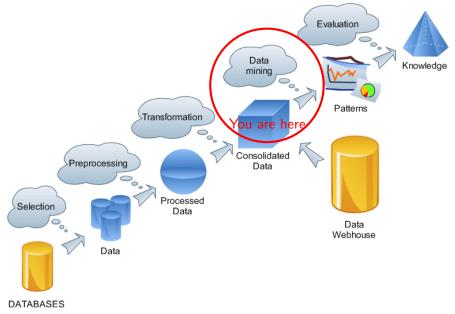
The non-trivial extraction of implicit, previously unknown and potentially useful information from data.

Data Mining in the KDD process



Velásquez, Pizarro (DII)

Data Mining in the KDD process



Velásquez, Pizarro (DII)

Common Data Mining tasks

Predictive mining

Predict attributes of unknown data based on attributes of known data.

Descriptive mining

Find human-readable structure in data.

Common Data Mining tasks

Classification

Generalizing known structure to apply to new data.

Regression

Attempts to find a function which models the data with the least error.

Clustering

The task of discovering groups and structures in the data.

Association rules

Searches for relationships between variables

- One of the tools used in Data Mining
- Build models from data

Common Machine Learning tasks

Supervised learning

Build models to predict a variable/class using data for other variables/features. There is a "teacher" who tells what is the right class of any given example in the training set (direct feedback).

Unsupervised learning

Build models to describe a set of variables (or relations). Given a population of unclassified examples, invent reasonable concepts (clusters), and find definitions/meanings of those concepts. No teacher exists during training (no feedback).

Reinforcement learning

Indirect feedback after many examples, an agent that evolve according to its environment (Robotic Movement).

Example data

Can we play golf?

Day	Outlook	Temperature	Humidity	Wind	PlayGolf
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Sunny	Mild	Normal	Weak	Yes
6	Rain	Mild	High	Strong	No
7	Overcast	Hot	Normal	Weak	Yes

Example data

Can we play golf?

Day	Outlook	Temperature	Humidity	Wind	PlayGolf
1	Sunny	Hot	High	Weak	No
2	Sunny	Hot	High	Strong	No
3	Overcast	Hot	High	Weak	Yes
4	Rain	Cool	Normal	Weak	Yes
5	Sunny	Mild	Normal	Weak	Yes
6	Rain	Mild	High	Strong	No
7	Overcast	Hot	Normal	Weak	Yes

Day	Outlook	Temperature	Humidity	Wind	PlayGolf
8	Rain	Hot	Normal	Strong	?

Example data

What class of Iris flower is this?

Sepal-length	Sepal-width	Petal-length	Petal-width	Class
6.8	3	6.3	2.3	Versicolour
7	3.9	2.4	1.1	Setosa
2	3	2.3	1.7	Verginica
3	3.4	1.5	1.5	Verginica
5.5	3.6	6.8	2.4	Versicolour
7.7	4.1	1.2	1.4	Setosa
6.3	4.3	1.6	1.2	Setosa
1	3.7	2.2	2	Verginica

Example data

What class of Iris flower is this?

Sepal-length	Sepal-width	Petal-length	Petal-width	Class
6.8	3	6.3	2.3	Versicolour
7	3.9	2.4	1.1	Setosa
2	3	2.3	1.7	Verginica
3	3.4	1.5	1.5	Verginica
5.5	3.6	6.8	2.4	Versicolour
7.7	4.1	1.2	1.4	Setosa
6.3	4.3	1.6	1.2	Setosa
1	3.7	2.2	2	Verginica

Sepal-length	Sepal-width	Petal-length	Petal-width	Class
4.5	3.0	6.3	1.5	?

Some applications

- Medical diagnosis
- Industrial fault diagnosis
- Text categorization
- Speech Recognition
- Natural Language Processing
- Signal and Image Processing
- Industrial control/automation
- Data Mining

Contents

Association rules

People at a supermarket

Transaction	Items
t_1	Beef, Chicken, Milk
t ₂	Beef, Cheese
t3	Cheese, Boots
t4	Beef, Chicken, Cheese
t ₅	Beef, Chicken, Clothes, Cheese, Milk
t ₆	Chicken, Clothes, Milk
t ₇	Chicken, Milk, Clothes

Association rules

- Item set *I* = {Beer, Chicken, Clothes, Chesse, Milk, Boots}
- Transaction set $T = \{t_1, t_2, \cdots\}$

An association rule is of the form

$$X \Rightarrow Y$$

Where $X \subset I$, $Y \subset I$, $X \cap Y = \emptyset$. X and Y are called *itemsets*. Example: {Beer, Chicken} \Rightarrow {Cheese}

Association rule strength

Support

It can be interpreted as the probability of occurrence of X and Y together in a transaction.

 $\frac{|X \cup Y|}{|T|}$

Confidence

$$\frac{|X \cup Y|}{|X|}$$

It can be interpreted as the conditional probability of Y given X.

The objective is to find rules with some minimum support and confidence.

Two steps

- Generate all frequent itemsets, with support greater than some minimum
- Generate all association rules, with confidence greater than some minimum

Two steps

- Generate all frequent itemsets, with support greater than some minimum
- Generate all association rules, with confidence greater than some minimum

Downward closure property

If an itemset has minimum support, every non-empty subset of it has minimum support

Generate frequent itemsets

Algorithm: Frequent itemset generation

Data: $T = \{t_1, t_2, \dots, t_n\}, tx$ $I = \{i_1, i_2, \cdots, i_m\}$, items S^* , minimum support **Result**: $F \subset 2^{\prime}$, itemsets with support $> S^*$ $F_1 = \{i | support(\{i\}) \ge S^*\};$ $k \leftarrow 2$: while $F_{k-1} \neq \emptyset$ do $C_k \leftarrow candidate_gen(F_{k-1});$ $F_k \leftarrow \{c \in C_k | support(c) > S^*\}$ $k \leftarrow k + 1$ end return $\bigcup_{k} F_{k}$

Algorithm: Candidate generation

```
Data: F_k = \{\{i_1, i_2, \cdots, i_k\}, \cdots\}.
         k-sized itemsets
Result: C_{k+1} =
           \{\{i_1, i_2, \cdots, i_{k+1}\}, \cdots\},\
           k+1-sized itemsets
C_{k+1} \leftarrow \emptyset:
forall the f_1, f_2 | f_1 differs from f_2 only in
the last element do
     if every k-subset of f_1 \cup f_2 is in F_k
     then
      | C_{k+1} \leftarrow C_{k+1} \cup \{f_1 \cup f_2\};
     end
end
return C_{k+1}
```

A little example

Transaction	Items
t ₁	1, 2, 3
t ₂	1, 4
t ₃	4, 5
t4	1, 2, 4
t ₅	1, 2, 3, 4, 6
t ₆	2, 3, 6
t ₇	2, 3, 6

 $S^* = 30\%$ (At least 3 examples (because 3/7 > 0.3?))