
Logistic Regression

Spring 2016 IN5526 - Web Intelligence - Chapter 2 1

Logistic Regression

 An extension of Linear Regression for environments

where the dependent variable is categorical (1 or 0), for

classification purporses.

 Predicts the probability of the outcome variable of being

TRUE.

 Use of the logistic function, which produces a number

between 0 and 1 (thus, interpretable as a probability).

Spring 2016 IN5526 - Web Intelligence - Chapter 2 2

Logistic Regression (2)

 Prediction of the probability of variable Y being

TRUE:

 P (y = 1) and P (y = 0) = 1 – P(y = 1)

 Let us see t as a linear combination of independent

variables xk.

 Then, the logistic function would be:

Spring 2016 IN5526 - Web Intelligence - Chapter 2 3

Logistic Regression (3)

 Positive values are

predictive for class 1

 Negative values are

predictive of class 0

Spring 2016 IN5526 - Web Intelligence - Chapter 2 4

Logistic Regression (4)

 Another representation: Odds ratio

 Replacing probabilities by logistic functions and

taking log:

 Log(Odds) = Logit. The bigger Logit is, the bigger

P(y = 1)

Spring 2016 IN5526 - Web Intelligence - Chapter 2 5

Logistic Regression (5)

 The outcome of a logistic regression model is a

probability.

 In order to make a binay classification, we set a

threshold value t.

 We convert probabilities to predictions:

 If P(Y=1) >= t, then predict 1.

 If P(Y=1) < t, then predict 0.

 T chosen depending on the type of error we want.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 6

Logistic Regression (6)

 Confusion matrix to see the predictive ability of the

model.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 7

Predicted = 0 Predicted = 1

Actual = 0 True Negative

(TN)

False Positive

(FP)

Actual = 1 False Negative

(FN)

True Positive (TP)

Decision Trees

Spring 2016 IN5526 - Web Intelligence - Chapter 2 8

 Example:

 How to go to different places.

 By walk?

 By car?

 By bus?

 Parameters:

 Wheather

 Travel distance, …

 The data:

 A survey over different persons.

Spring 2016 9 IN5526 - Web Intelligence - Chapter 2

Spring 2016 IN5526 - Web Intelligence - Chapter 2 10

Distance

Rain

Car

Location

Walk

Walk

Bus Drive

< 100 m >= 100 m

yes no

Don‟t know Driveway

Going places

Spring 2016 IN5526 - Web Intelligence - Chapter 2 11

Yes 45 … … Walk

No 125 … … Walk

Yes 190 … … Drive

Yes … … … …

Yes … … … …

No … … … …

Distance

Rain

Car

Location

Walk

Walk

Bus Drive

< 100 m >= 100 m

yes no

Don‟t know Driveway

Going places

Classification Trees: : Assign the non-numeric (or

discrete) target value to each record. For example,

tomorrow's weather can be classified (predicted) as one of

"sunny“

"cloudy“

or "rain".

Regression Trees: Estimate the numeric target value

for each record. For example, tomorrow's maximum

temperature would be 27º C.

Spring 2016 12 IN5526 - Web Intelligence - Chapter 2

 All of these trees have the same basic structure

 However, there are a variety of algorithms for building
tree-based models

 Some of the most popular decision tree algorithms are:
 ID3 (Quinlan, 1986)

 CHAID

 CART

 C4.5

 See5/C5.0, etc.

 CART and See5/C5.0 are widely accepted as some of
the best algorithms for constructing tree-based models
for data

Spring 2016 13 IN5526 - Web Intelligence - Chapter 2

 Trees are constructed by repeatedly
partitioning the training data set into many
subsets

 The aim is to identify subsets each of which
contains cases with one target value

 In other words, we want to find subsets such that
they are purer (have less diversity) than the
original data set

Tree

“Training” Data Set

Spring 2016 14 IN5526 - Web Intelligence - Chapter 2

 Measuring Purity: The term entropy (used in

information theory) indicates the impurity of an arbitrary

collection of cases (examples)

 For a Boolean function (target is up or down), where, S is

a sample of training cases, (ppos) is a proportion of positive

cases (say up values), (pneg) is a proportion of negative

cases (say down values)

Example:

Entropy([15 up, 4 down]) = - (15/19) log2 (15/19) - (4/19) log2 (4/19)

 = 0.742

Spring 2016 15 IN5526 - Web Intelligence - Chapter 2

 The entropy (impurity) is 0 if all members of S

belong to the same class (up or down)

or

– The entropy (impurity) is 1 if S contains an
equal number of positive (up) and negative
(down) cases

– If S contains unequal numbers of positive

and negative cases, the entropy is between

0 and 1

Spring 2016 16 IN5526 - Web Intelligence - Chapter 2

 Information Gain measures the expected reduction in

entropy (impurity) when we partition S using an attribute

A

 Gain(S, A) = Entropy(S) - weighted average of entropies

(impurities) of Subsets

Spring 2016 IN5526 - Web Intelligence - Chapter 2 17

AllOrd

AllOrds-up AllOrds-down

E(S) = 0.97

E(SAllOrds-up) = 0.59 E(SAllOrds-down) = 0

(6 SPI-up, 4 SPI-down)

Gain(S, AllOrd) = E(S) - (7/10)*E(SAllOrds-up)

 - (3/10)*E(SAllOrds-down)

 = 0.97 - (0.7)*(0.59)

 - (0.3)*(0)

 = 0.557
(6 SPI-up, 1 SPI-down) (0 SPI-up, 3 SPI-down)

 Calculate the information gain for every attribute

 Select the attribute that produces maximum

information gain and partition the data using

that attribute

 Terminate if a “pure” node is reached or no

attribute increases information gain

Spring 2016 IN5526 - Web Intelligence - Chapter 2 18

 We can visualize the following simple data set using

a 2-dimensional graph on the right hand side

Spring 2016 IN5526 - Web Intelligence - Chapter 2 19

 Calculate the information gain for every possible split

position of the attribute X

 possible split positions for the attribute X

 Similarly, calculate the information gain for every possible

split position of the attribute Y

 The attribute with maximum information gain (the split

position with max information gain) is selected and the

data set S is partitioned accordingly

X-value 10 20 25 34 40 45 49 50 55 62 65 66 70 80 90 92

Target U U U U D U D D D U U U U U U U

 X>37 X>42.5 X>47 X>58.5

Spring 2016 20 IN5526 - Web Intelligence - Chapter 2

Spring 2016 IN5526 - Web Intelligence - Chapter 2 21

Spring 2016 IN5526 - Web Intelligence - Chapter 2 22

 Each leaf node stores either

 Mean value of cases in the leaf, or

 A multivariate linear model for the cases at that leaf,

and this model is used to predict the value

 Example:

Spring 2016 IN5526 - Web Intelligence - Chapter 2 23

Models at the leaves:

 LM1: A = 2.74 - 0.026Y

 LM2: A = 30.7 - 0.362Y

 LM3: A = -884 + 0.318Z -
0.253Y

 LM4: A = 15.8 - 1.22Y

IF (X <= 38.5) THEN LM1

IF (X > 38.5) AND (Y <= -14)
THEN LM2

IF (X > 38.5) AND (Y > -14)
AND (Y <= 1.5) THEN LM3

IF (X > 38.5) AND (Y > -14)
AND (Y > 1.5) THEN LM4

 Splitting criterion used is standard deviation of the

target values of cases in the node (as a measure of the

error)

 The expected error reduction (standard deviation

reduction) can be calculated using:

 The attribute which maximizes the expected error

reduction is selected

where Si are sets that result from splitting

Spring 2016 24 IN5526 - Web Intelligence - Chapter 2

 Selecting a splitting criterion. Few different criteria are

available:

 Information Gain, Gini Index, Gain Ratio, etc.

 Number of splits allowed at each level of the tree (2 or 3

or ….)

 Depth / height of the tree

 Avoid over-fitting the training data

 Handle missing values for attributes

 Estimate error on new (unseen) data

Spring 2016 IN5526 - Web Intelligence - Chapter 2 25

 Selecting the “best” tree:

 Occam‟s razor: Prefer the simplest hypothesis (i.e.,

model) that fits the data

Spring 2016 IN5526 - Web Intelligence - Chapter 2 26

 “Forward” pruning:

 Stop when the number of cases in a node reach some

pre-defined value (or use some statistical test like 2)

Spring 2016 IN5526 - Web Intelligence - Chapter 2 27

10+, 10-

2+, 1- 8+, 9-

6+, 0-

2+, 9-

 “Backward” pruning:

 Replace nodes by leaves

 Sub tree lifting:

Spring 2016 IN5526 - Web Intelligence - Chapter 2 28

A

B

C

C

A

Re-Classify Re-Classify

 Assume: N instances each with M attributes and tree depth O(log N)

 At each tree depth, we have to consider, for each attribute, the

classification of all N instances. The overall cost for building the tree

is thus: O(MN log N)

 When pruning, each node has to be considered for replacement by a

leaf. The tree can have at most N leaves. For binary trees this would

mean at most 2N-1 nodes i.e. O(N). For sub tree lifting, each node is

considered for replacement: this is O(N). For each replacement an

instance may have to be re-classified at each level of the tree. This is

O(N log N) reclassifications. A reclassification requires at most O(log

N) operations.

 Total cost: O(MN log N) + O(N (log N)2)

Spring 2016 29 IN5526 - Web Intelligence - Chapter 2

Support Vector Machines

Spring 2016 IN5526 - Web Intelligence - Chapter 2 30

 An effective machine learning technique; one the

most important recent discovery in machine learning

 SVMs are based on Vapnik‟s work and were introduced

in early ‟90s.

 Decision surface for classification is a hyperplane in

the feature space (a line in 2D case).

 Convert problems into linearly separable problems

by transforming the input space into a higher

dimensional feature space.

Spring 2016 31 IN5526 - Web Intelligence - Chapter 2

 Map data onto a high dimensional space via a
kernel function where data can be classified with
linear decision surfaces

 Find the “optimal” hyperplane that maximizes the
degree of separation between the two classes
(maximizes the margin between the two classes)

 If data are not linearly separable in a given space
find the hyperplane that maximizes the margin and
also minimizes the number of misclassifications

Spring 2016 IN5526 - Web Intelligence - Chapter 2 32

 Input1

Input2

Intuitively, the red

line is better than

the others.

Spring 2016 33 IN5526 - Web Intelligence - Chapter 2

Spring 2016 IN5526 - Web Intelligence - Chapter 2 34

 Input1

Input2

Margin

Width

Margin

Width

Select the

separating

hyperplane that

maximizes the

margin!

This is best, and this

is the separating

surface returned by

an SVM

Picture from C.F. Aliferis & I. Tsamardinos talk at MEDINFO2004

Spring 2016 IN5526 - Web Intelligence - Chapter 2 35

 Input1

Input2

Margin

Width

Support

Vectors

Those vectors situated

on the margin

Picture from C.F. Aliferis & I. Tsamardinos talk at MEDINFO2004

The decision boundary is

determined only by the

support vectors

Spring 2016 36 IN5526 - Web Intelligence - Chapter 2

 If class 1 is “1” and class 2 is “-1” we have:

 So the problem becomes:

or

Spring 2016 37 IN5526 - Web Intelligence - Chapter 2

 Find w,b that solves

 Problem is convex so, there is a unique global
minimum value (when feasible)

 There is also a unique minimizer, i.e. weight and b
value that provides the minimum

 What if the data is not linearly separable?

 Answer: We may allow some examples to fall within the
margin but penalize them (using a so called soft margin);
or see next slide.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 38

 Basic idea: the original input space is mapped to some

higher-dimensional feature space (using a kernel

function) where the training set is linearly separable

Φ: x → φ(x)

How to solve non-linearly separable

problems?

Spring 2016 IN5526 - Web Intelligence - Chapter 2 39

 The feature space is often very high dimensional .

Why don‟t we have the curse of dimensionality?

 A classifier in a high-dimensional space has many

parameters and is hard to estimate.

 Vapnik argues that the fundamental problem is not the

number of parameters to be estimated. Rather, the

problem is about the flexibility of a classifier

From C.F. Aliferis & I. Tsamardinos talk at MEDINFO2004

Spring 2016 40 IN5526 - Web Intelligence - Chapter 2

 The flexibility of a classifier should not be

characterized by the number of parameters, but by

the flexibility (capacity) of a classifier, formalized by

the “VC-dimension” of a classifier.

 The higher the VC-dimension, the more flexible

a classifier is

 In practice, the VC-dimension may be difficult to

be computed exactly

Spring 2016 41 IN5526 - Web Intelligence - Chapter 2

 SRM means we should find a classifier that

minimizes the sum of training error

◦ Called empirical risk

 As well as a term that is a function of the

flexibility of the classifier

◦ Called model complexity

Spring 2016 42 IN5526 - Web Intelligence - Chapter 2

 It is the most tricky part of using SVM. It is

equivalent to choosing the number of hidden

nodes for a neural network.

 In practice, start with a low degree

polynomial kernel function or RBF kernel

function with a reasonable width

 Note that SVM with RBF kernel is closely

related to RBF neural networks, where the

centers of the radial basis functions are

automatically chosen for SVM

Spring 2016 43 IN5526 - Web Intelligence - Chapter 2

 Training is relatively easy - No local optima

 (very good compared to neural networks)

 It scales relatively well to high dimensional data

 The tradeoff between classifier complexity and

error

 (empirical risk) can be controlled explicitly

 But we need to choose a “good” kernel function!!!

 This may not be so easy.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 44

Section 2.6

Artificial Neural Networks
Inspired on a biological model ...

Spring 2016 IN5526 - Web Intelligence - Chapter 2 45

 A simplified model of how natural neural systems
work. Neural Networks (NNs) simulate natural
information processing tasks from human brain.

 A NN model consists of neurons and connections
between neurons (synapses).

 Characteristics of Human Brain:

 It contains 1011 neurons and 1015 connections

 Each neuron may connect to other 10,000 neurons.

 Human can perform a task of picture naming in about 500
miliseconds

Spring 2016 IN5526 - Web Intelligence - Chapter 2 46

(Picture from G. Kendall, lect. notes Univ. of

Nottingham)

f

.

.
.

.
. outputs

1

2

m

1

2

n

inputs

Spring 2016 48 IN5526 - Web Intelligence - Chapter 2

Spring 2016 IN5526 - Web Intelligence - Chapter 2 49

 An Artificial Neural Network is an

interconnected assembly of simple processing

elements, units or nodes (neurons), whose

functionality is inspired by the functioning of

the natural neuron from brain.

 The processing ability of the neural network is

stored in the inter-unit connection strengths,

or weights, obtained by a process of learning

from a set of training patterns.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 50

 The units (individual neurons) operate only locally on

the inputs they receive via connections.

 ANNs undergo some sort of "training" whereby the

connection weights are adjusted on the basis of

presented data. In other words, ANNs "learn" from

examples (as children learn to recognize dogs from

examples of dogs) and exhibit some generalization

capability beyond the training data (for other data than

those included in the training set).

f

McCulloch & Pitts (1943) recognised as the designers of the first neuron

(and neural network) model.

A single neuron has 6 components:

1.Input “x”

2.Weights “w”

3.Bias “b” (Threshold = -b)

4.Activation function “f”
5.Input function σ

6.Output “y”

Spring 2016 51 IN5526 - Web Intelligence - Chapter 2

Spring 2016 IN5526 - Web Intelligence - Chapter 2 52

Spring 2016 IN5526 - Web Intelligence - Chapter 2 53

OR

X1 X2 Y

1 1 1

1 0 1

0 1 1

0 0 0

Threshold = 1

Bias = -1 (Threshold = - Bias)

1.5

1.5

Y

X1

X2

 Backpropagation Neural Networks
 Supervised learning

 Kohonen Self Organizing Maps
 Unsupervised learning

 Hopfield Neural Networks
 Recurrent neural networks

 Radial Basis Function Neural Networks (RBF)

 Neuro-Fuzzy Networks (NF)

 Others: various architectures of recurrent neural

networks,
 Networks with dynamic neurons,

 Networks with competitive learning, etc.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 54

 McCulloch & Pitts (1943)

 Neural networks and artificial intelligence were born, first well-known model for a

biological neuron

 Hebb (1949)

 Hebb learning rule

 Minsky (1954)

 Neural Networks (PhD Thesis)

 Rosenblatt (1957)

 Perceptron networks (Perceptron learning rule)

 Widrow and Hoff (1959)

 Delta rule for ADALINE networks

 Minsky & Papert (1969)

 Criticism on Perceptron networks (problem of linear separability)

 Kohonen (1982)

 Self-Organizing Maps

Spring 2016 IN5526 - Web Intelligence - Chapter 2 55

 Hopfield(1982)

 Hopfield Networks

 Rumelhart, Hinton & Williams (1986)

 Back-Propagation algorithm

 Broomhead & Lowe (1988)

 Radial Basis Functions networks (RBF)

 Vapnik (1990)

 Support Vector Machine approach

 In the ‟90s

 Massive interest in neural networks, many NN applications were

developed

 Neuro-Fuzzy networks emerged

Spring 2016 IN5526 - Web Intelligence - Chapter 2 56

 Synonym for Single-

Layer, Feed-Forward

Network.

 First Studied in the 50‟s

(Rosenblatt) .

 Other networks were

known about but the

Perceptron was the only

one capable of learning

and thus all research

was concentrated in this

area.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 57

(from G. Kendall, lect. notes Univ. of

Nottingham)

 Functions that can be separated in this way are called

Linearly Separable (XOR is not Linearly Separable).

 A PERCEPTRON can learn (represent) only Linearly

Separable functions.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 58

0,0

0,1

1,0

1,1

0,0

0,1

1,0

1,1

AND XOR

Spring 2016 IN5526 - Web Intelligence - Chapter 2 59

Linear Separability is also possible in more than 3 dimensions – but it

is harder to visualize

(from G. Kendall, lect. notes Univ. of Nottingham)

 XOR

X1 X2 Y

1 1 0

1 0 1

0 1 1

0 0 0

 One neuron layer is not enough, we should introduce an

intermediate (hidden) layer.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 60

Y = X1 XOR X2 = (X2 AND NOT X1) OR (X1 AND NOT X2)

Threshold for all nodes = 1.5

X1

X2

Y

2

-1

-1

2

2

2

Spring 2016 IN5526 - Web Intelligence - Chapter 2 61

Training Dataset { (x(i), d(i)), i=1,…,p}

 p = 4

Training set = { ((1,1),1), ((1,0),0), ((0,1),0), ((0,0),0) }

The training technique is called Perceptron Learning Rule.

AND

X1 X2 D

1 1 1

1 0 0

0 1 0

0 0 0

0,0

0,1

1,0

1,1

I1

I2

After weight initialization

(First Epoch)

0,0

0,1

1,0

1,1

I1

I2

At Convergence

Separation line

w1X1 + w2X2 + b = 0

w1X1 + w2X2 + b > 0

w1X1 + w2X2 + b < 0

X2

X1

X2

X1

Spring 2016 IN5526 - Web Intelligence - Chapter 2 63

 Vectors from the training set are presented to the Perceptron

network one after another (cyclic or randomly):

 (x(1), d(1)), (x(2), d(2)),…, (x(p), d(p)),

 (x(p+1), d(p+1)),…

 If the network's output is correct, no change is made.

 Otherwise, the weights and biases are updated using the

Perceptron Learning Rule.

 An entire pass through all of the input training vectors is called an

Epoch.

 When such an entire pass of the training set has occurred without

error, training is complete.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 64

1. Initialize the weights and threshold to small random numbers.

2. At time step t present a vector to the neuron inputs and calculate the

perceptron output y(t).

3. Update the weights and biases as follows:

 d(t) is the desired output

 y(t) is the computed output

 t is the step/iteration number

 η is the gain or step size (Learning Rate), where 0.0 < η <= 1.0

4. Repeat steps 2 and 3 until:
 The iteration error is less than a user-specified error threshold

 Or a predetermined number of iterations have been completed.

 The perceptron learning algorithm developed originally by F. Rosenblatt in the late

1950s.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 65

t = 0

t = 9

…

t
INPUTS

d(t) y(t) E
WEIGHTS

x1 x2 x3 x4 b(t) w1(t) w2(t) w3(t) w4(t)

0 0 0 0 0 0

1 0 0 0 1 -1 0 1 -1 0 0 0 -1

2 1 1 1 0 1 1 2 0 1 1 1 -1

3 1 1 1 1 1 2 0 0 1 1 1 -1

4 0 0 1 1 -1 0 1 -1 1 1 0 -2

5 0 0 0 0 1 -1 2 0 1 1 0 -2

6 0 1 0 1 -1 -1 0 0 1 1 0 -2

7 1 0 0 0 1 1 0 0 1 1 0 -2

8 1 0 1 1 1 -1 2 1 2 1 1 -1

9 0 1 0 0 -1 2 3 0 2 0 1 -1

η = 1
Y = f(σ) = Id(σ)

Spring 2016 IN5526 - Web Intelligence - Chapter 2 66

 Learning only occurs when an error is made, otherwise the weights are

left unchanged!!.

 During training, it is useful to measure the performance of the network

as it attempts to find the optimal weight set.

 A common error measure used is sum-squared errors (computed over
all of the input vector / output vector pairs in the training set):

 where “p” is the number of input/output vector pairs in the training set.

 η - Learning rate - Dictates how quickly the network converges.

 It is set by a matter of experimentation (usually small – e.g. 0.1)

Spring 2016 IN5526 - Web Intelligence - Chapter 2 67

 Sequential mode

◦ on-line or per-pattern

◦ Weights updated after each pattern is presented
(Perceptron is in this class)

 Batch mode

◦ off-line or per-epoch

◦ Weights updated after all patterns are presented

Spring 2016 IN5526 - Web Intelligence - Chapter 2 68

 Training from data set, adaptation

◦ Extracts principles from training data set in order to generalize

to other data

 The purpose of learning is to minimize error:

◦ On the training data set

◦ On the testing set (prediction errors)!!!

 Two main types of Neural Network LEARNING:

◦ Supervised learning

 Have a teacher, telling you what is the output (target) for a

given input pattern.

◦ Unsupervised learning

 No teacher, learn by itself.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 69

 From it we can better understand the Perceptron

learning rule, and the more general BackPropagation

learning

 Adaline learning was developed by Widrow and Hoff

(1960).

 ADALINE is an acronym for ADAptive LInear Neuron

◦ Neurons in the network have linear activation functions

 The Adaline learning rule

◦ Also known as the Delta rule or the Widrow-Hoff rule

◦ It is a training rule that minimizes the output error using

(approximate) gradient descent method

Spring 2016 IN5526 - Web Intelligence - Chapter 2 70

 After all training pattern vectors xi (i=1,...,p) are presented, the

correction to apply to the weights is proportional to the error E(t):

 Our purpose is to find the vector w which minimizes E(t). At each

step:

 In gradient descent techniques:

 η >0 learning rate

Spring 2016 IN5526 - Web Intelligence - Chapter 2 71

 By analogy, gradient method can be compared with a ball rolling down

from a hill:

 the ball will roll down and finally stop at the valley.

 Gradient direction is the direction of uphill (in the Figure – E(w) one dimensional case)

 In a gradient descent algorithm, the ball goes in the opposite direction to

the gradient, i.e., we have

 therefore the ball goes downhill since – E‟(w(t)).

Gradient direction

E(w)

Gradient direction

w(t+k) w(t+k)

E(w)

Spring 2016 IN5526 - Web Intelligence - Chapter 2 72

 Gradually the ball will stop at a (local or global) minima

where the gradient is zero

Spring 2016 IN5526 - Web Intelligence - Chapter 2 73

 The Perceptron training rule converges after a finite

number of iterations to a solution that perfectly classifies

the training data, provided the training examples are linearly

separable.

 The Delta rule converges only asimptotically toward the

minimum error solution, possibly requiring unbounded

time, but converges regardless of whether the training data

are linearly separable or not.

 The Perceptron rule updates weights based on the error in

the thresholded Perceptron output, whereas the Delta rule

updates weights based on the error considering a linear

activation function for neurons.

 Training algorithm for multilayer neural networks (or

MLP – Multi-Layer Perceptron)

 Supervised learning algorithm based on gradient

descent

 Also named Generalized Delta Rule Introduced by

Rumelhart, Hinton & Williams (1986) Parker (1982),
Werbos (1974)

 Require differentiable “activation functions” for

neurons, such as sigmoid function

 BP neural networks are the most widely used neural

networks

 BP networks can learn any non-linear function.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 74

xn

x1

x2

Input

Output

Hidden layers

3 proper neuron layers the first (input layer) is dummy, only transmit the inputs

to the next layer

Spring 2016 75 IN5526 - Web Intelligence - Chapter 2

Set learning rate

Set initial weight values (including biases): W, b

Loop until stopping criteria satisfied:

 For each of the patterns in the training set

 present an input pattern to input units

 compute output signal for hidden units

 compute output signal for output units

 present Target response to output units

 compute error signal for this pattern

 Compute an overall error for all the patterns

(e.g. mean squared err)‏
 Update weights at output layer

 Update weights at hidden layer

 Increment t to t+1 (t –epoch number)‏
end loop

Spring 2016 76 IN5526 - Web Intelligence - Chapter 2

Spring 2016 IN5526 - Web Intelligence - Chapter 2 77

 Forward pass phase

 feed-forward propagation of input pattern signals through

the network, from inputs towards the network outputs

 Backward pass phase

 computes „error signal‟ - propagation of error (difference

between actual and desired output values) backwards

through network, starting from output units towards

the input units

 Each full presentation of all patterns = „epoch‟

 Usually better to randomize order of training patterns

presented for each epoch in order to avoid correlation

between consecutive training pairs being learnt (order

effects).

 Training set shown repeatedly until stopping criteria are

met.

 Selecting initial weight values:
 Choice of initial weight values is important as this decides starting position

in weight space. That is, how far away from global minimum

Spring 2016 IN5526 - Web Intelligence - Chapter 2 78

Spring 2016 IN5526 - Web Intelligence - Chapter 2 79

 Aim is to minimise an error function over all training

patterns by adapting weights in MLP.

 Mean squared error is typically used:

 p : number of training patterns

 In single layer Perceptron with linear activation functions

(ADALINE), the error function is simple and described

by a smooth parabolic surface with a single

minimum.

MLP with nonlinear activation functions have complex error

surfaces (e.g. plateaus, long valleys etc.) with no single

minimum

valleys

Picture from Jianfeng Feng, lect. notes Univ. of Sussex.

Error function of BP training

Spring 2016 IN5526 - Web Intelligence - Chapter 2 80

 The values o, h are the gradients at output and

respectively hidden layers. For more details on how to

calculate these values please see “Machine Learning” -

Tom Mitchell (1997)

 The big problem of BP algorithm:
 Difficulty to cope with local minima and find a global minimum.

 Few improvements were reported:
 Variable learning rate, momentum, weight decay, use of modified error

functions, etc.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 81

for output layer

for hidden layer

Spring 2016 IN5526 - Web Intelligence - Chapter 2 82

 Method of reducing problems of instability while

increasing the rate of convergence

 Modified weight update equation is:

α - Momentum coefficient, 0 <= α < 1

 If weight changes tend to have the same sign,

momentum term increases (gradient decreases)

– speed up convergence on shallow gradient

 If weight changes tend have opposing signs,

momentum term decreases and gradient descent

slows to reduce oscillations (stabilizes)

 Can help escape when being trapped in local

minima

 Increases the convergence speed with a factor

of */(1-*)‏

Spring 2016 IN5526 - Web Intelligence - Chapter 2 83

Universal Approximation Theorem

 For any given constant and continuous function h (x1,...,xm)

with m inputs and n outputs, there exists a three layer MLP (which

computes the function H) with m inputs and n outputs with the

property | h (x1,...,xm) - H(x1,...,xm) |< 

Spring 2016 IN5526 - Web Intelligence - Chapter 2 84

xm

Input

x1

x2

Output

Three-layer network (or more)

Hidden layer

f wij

ai

 ≡ Universal Function

 Approximation

 Low accuracy of training or test data indicates that a new

hidden layer or more hidden nodes are needed.

 If the number of hidden nodes exceeds number of inputs and

outputs, then add another hidden layer

 Decrease the total hidden nodes by 50% in each successive

hidden layer (e.g., if 10 nodes in first layer, then use 5 in the

second layer and 2 in the third layer)

 If NN performs well on the Training set but poorly on

Testing set,

 Then it is treating each record as a special case and has

“memorized” the data (lost generalization ability - over fitting).

 Then use fewer hidden nodes or remove a hidden layer.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 85

 Divide available data into 2 sets:
◦ Training data set

 Used to train the weights and biases of NN

◦ Testing data set
 Used to test the performance of the trained neural network

 If the network contains more hidden units
(learning parameters) than necessary to learn
the training set
◦ Then the network will memorize the training patterns

◦ and will exhibit poor classification abilities for data not
contained in the training set (testing set).

◦ That means the network lost generalization ability - over
fitting.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 86

the appropriate
number

of hidden nodes

Spring 2016 IN5526 - Web Intelligence - Chapter 2 87

Number of hidden

nodes

Error

Error on testing set

Error on training set

Right Number of hidden nodes

the appropriate
number

of hidden nodes

Spring 2016 IN5526 - Web Intelligence - Chapter 2 88

 Can learn directly from data.
 They exhibit good learning ability – better than other AI approaches

 Can learn from noisy or corrupted data

 Parallel information processing

 Computationally fast once trained

 Robustness to partial failure of the network

 Useful where data are available and difficult to acquire
symbolic knowledge

 Drawback of NN
 Knowledge captured by a NN through learning (in weights – real

numbers) is not in a familiar form for human beings, e.g. if-then rules
(NNs are black box structures).

 Over fitting issues.

Self-Organizing Feature Maps (SOFMs)

 Based on Competitive learning

 Neurons compete among themselves to be

activated.

 While in “Hebbian learning”, several output

neurons can be activated simultaneously, in

competitive learning, only a single output neuron

is active at any time.

 The output neuron that wins the “competition” is

called the winner-takes-all neuron.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 89

Spring 2016 IN5526 - Web Intelligence - Chapter 2 90

 The basic idea of competitive learning was

introduced in the early 1970s.

 In the late 1980s, Teuvo Kohonen introduced a

special class of artificial neural networks called

Self-Organizing feature Maps.

 These maps are based on competitive

learning.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 91

 Our brain is dominated by the cerebral cortex

◦ A very complex structure of billions of neurons and

hundreds of billions of synapses.

◦ The cortex includes areas that are responsible for

different human activities (motor, visual, auditory,

somatosensory, etc.), and associated with different

sensory inputs.

◦ We can say that each sensory input is mapped into

a corresponding area of the cerebral cortex.

◦ The cortex is a self-organising computational map

in the human brain.

Input layer

Kohonen layer

(a)

Input layer

Kohonen layer

1 0

(b)

0 1

Spring 2016 IN5526 - Web Intelligence - Chapter 2 92

 The Kohonen model provides a topological

mapping. It places a fixed number of input

patterns from the input layer into a higher-

dimensional output or Kohonen layer.

 Training in the Kohonen network begins with the

winner‟s neighbourhood of a fairly large size.

Then, as training proceeds, the neighbourhood

size gradually decreases.

The Kohonen Network

Spring 2016 IN5526 - Web Intelligence - Chapter 2 93

Architecture of the Kohonen Network

Spring 2016 IN5526 - Web Intelligence - Chapter 2 94

Spring 2016 IN5526 - Web Intelligence - Chapter 2 95

 The lateral connections are used to create a competition

between neurons. The neuron with the largest activation

level among all neurons in the output layer becomes the

winner. This neuron is the only neuron that produces an

output signal. The activity of all other neurons is

suppressed in the competition.

 The lateral feedback connections produce excitatory or

inhibitory effects, depending on the distance from the

winning neuron. This is achieved by the use of a

Mexican hat function which describes synaptic weights

between neurons in the Kohonen layer.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 96

 In the Kohonen network, a neuron learns by shifting its

weights from inactive connections to active ones. Only

the winning neuron and its neighbourhood are allowed to

learn. If a neuron does not respond to a given input

pattern, then learning cannot occur in that particular

neuron.

 The competitive learning rule defines the change wij

applied to synaptic weight wij as

 where xi is the input signal and  is the learning rate

parameter.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 97

If neuron j wins the competition

If neuron j loses the competition

Architecture of the Kohonen Network (4)

 The overall effect of the competitive learning rule resides

in moving the synaptic weight vector Wj of the

winning neuron j towards the input pattern X. The

matching criterion is equivalent to the minimum

Euclidean distance between vectors.

 The Euclidean distance between a pair of n-by-1

vectors X and Wj is defined by

 Where xi and wij are the ith elements of the vectors X

and Wj, respectively.

Primavera 2012 IN4522 - Web Mining http://wi.dii.uchile.cl

Spring 2016 98 IN5526 - Web Intelligence - Chapter 2

Architecture of the Kohonen Network (5)

 To identify the winning neuron, jX, that best matches
the input vector X, we should apply the following

condition:

 Where m is the number of neurons in the Kohonen

layer.

Spring 2016 99 IN5526 - Web Intelligence - Chapter 2

Example

 Suppose, for instance, that the 2-dimensional input
vector X is presented to the three-neuron Kohonen

network,

 The initial weight vectors, Wj, are given by

Spring 2016 100 IN5526 - Web Intelligence - Chapter 2

Example (2)

 We find the winning (best-matching) neuron jX using the minimum-

distance Euclidean criterion:

 Neuron 3 is the winner and its weight vector W 3 is updated according

to the competitive learning rule.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 101

Example (3)

 The updated weight vector W3 at iteration (p + 1) is
determined as:

 The weight vector W3 of the wining neuron 3
becomes closer to the input vector X with each

iteration.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 102

Spring 2016 IN5526 - Web Intelligence - Chapter 2 103

 Set initial synaptic weights to small random

values, say in an interval [0, 1], and assign a small
positive value to the learning rate parameter α.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 104

 Activate the Kohonen network by applying the

input vector X, and find the winner-takes-all (best
matching) neuron jX at iteration p, using the

minimum-distance Euclidean criterion

 Where n is the number of neurons in the input layer,
and m is the number of neurons in the Kohonen

layer.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 105

 Update the synaptic weights

 Where Δwij(p) is the weight correction at iteration p.

 The weight correction is determined by the competitive
learning rule:

 Where α is the learning rate parameter, and Λj(p) is the

neighbourhood function centred around the winner-
takes-all neuron jX at iteration p.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 106

 Increase iteration p by one.

 Go back to Step 2 and continue until the minimum-

distance Euclidean criterion is satisfied, or no
noticeable changes occur in the feature map.

 To illustrate competitive learning, consider the Kohonen

network with 100 neurons arranged in the form of a

two-dimensional lattice with 10 rows and 10 columns.

 The network is required to classify two-dimensional

input vectors in each neuron in the network should

respond only to the input vectors occurring in its

region.

 The network is trained with 1000 two-dimensional input

vectors generated randomly in a square region in the

interval between –1 and +1. The learning rate parameter

α is equal to 0.1.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 107

Spring 2016 108 IN5526 - Web Intelligence - Chapter 2

Spring 2016 109 IN5526 - Web Intelligence - Chapter 2

Spring 2016 110 IN5526 - Web Intelligence - Chapter 2

Spring 2016 111 IN5526 - Web Intelligence - Chapter 2

Spring 2016 112 IN5526 - Web Intelligence - Chapter 2

Kohonen map Five clusters

Winner frequency

1

2

3
4 5

 Different neural network architectures and learning

algorithms:

 Supervised learning

◦ Perceptron (Perceptron learning rule)

◦ Adaline (Delta rule)

◦ Feed forward Multi-Layer Perceptron (Back propagation).

 Unsupervised learning

◦ Competitive learning

◦ Kohonen Self-Organizing Maps

Spring 2016 IN5526 - Web Intelligence - Chapter 2 114

Bayesian Networks

Spring 2016 IN5526 - Web Intelligence - Chapter 2 115

 Probability theory predict the likelihood of different

outcomes.

 Bayes theorem give a formula for calculating a

conditional probability based on the reverse condition

that sometime is easier.

 Conditional probability:

Spring 2016 116 IN5526 - Web Intelligence - Chapter 2

 The Bayes Theorem

 Expanding total probability for calculating

P(A=ai|B):

Spring 2016 117 IN5526 - Web Intelligence - Chapter 2

 Bayesian Network

 If P(A|B) is “highly probable” is equivalent to [B=>A]

association Rule

 A graph of relation [B=>A] is called “Bayesian Network”

 Example

If(sex=male & weather=rainy)

Then, buy scarf is true with

80% prob.

P(buy

scarf=yes|gender=male,

weather=rainy)=0.8

Buy scarf?

Buy hat?

Weather? Sex?

Job?

Clothe

Color?

Spring 2016 118 IN5526 - Web Intelligence - Chapter 2

 So far, we have looked at algorithm-
independent methods for evaluating and
comparing models.

 ML algorithms can be seen as algorithms that
seek answers to one or both of the following:
 What is the most probable hypothesis (model) given

a set of „training‟ data?
 What is most probable classification of new data

instances?

 Bayesian reasoning provides the basis for
answering these questions
 Many choices made by practical ML algorithms can be

better understood within Bayesian setting.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 119

Spring 2016 IN5526 - Web Intelligence - Chapter 2 120

Probability that

hypothesis h holds

given the observed

training data D

Prior

probability of

a hypothesis

h

Prior probability of

observing the

training

data D

Probability of

observing data

D if hypothesis

h holds

 The most (maximally) probable hypothesis, given

the data is called the maximum a posteriori (or MAP)

hypothesis:

Spring 2016 121 IN5526 - Web Intelligence - Chapter 2

 The term PDh is called the ‘likelihood’ of the data,

given the hypothesis. If all hypotheses are equally

likely, then the MAP hypothesis reduces to the maximum

likelihood or ML hypothesis:

Spring 2016 122 IN5526 - Web Intelligence - Chapter 2

bits required to encode D
given h using an optimal

code
bits required to encode h
using an optimal code

Spring 2016 123 IN5526 - Web Intelligence - Chapter 2

1. Choose a scheme for encoding hypotheses (C1)

and for encoding data given a hypothesis (C2)

2. The MDL hypothesis is:

If C1 and C2 are optimal, then hMDL =

hMAP

Spring 2016 124 IN5526 - Web Intelligence - Chapter 2

Given: Figure out:

Spring 2016 125 IN5526 - Web Intelligence - Chapter 2

𝐶 ∈ 𝑡, 𝑓

𝐴 ∈ 𝑚, 𝑔, 𝑕

𝐵 ∈ 𝑏, 𝑠, 𝑞

Spring 2016 126 IN5526 - Web Intelligence - Chapter 2

Spring 2016 127 IN5526 - Web Intelligence - Chapter 2

Final answer: hMAP is t

 Many choices made by particular ML algorithms translate

to particular assumptions within the Bayesian framework

for identifying hMAP

 A NN that tries to find the model that minimises MSE on the

training set is equivalent to a Maximum Likelihood hypothesis

under the assumption about noise in the training data. Recall that

this means that it is a MAP hypothesis that assumes all

hypotheses (models) are equally likely.

 A Classification Tree that tries to balance the size of the tree with

the errors made on the training set can be seen as an algorithm

that is employing the MDL principle. The result is some

approximation to the MAP hypothesis.

Spring 2016 128 IN5526 - Web Intelligence - Chapter 2

 For a given problem (given the space of hypotheses and

prior information),
 Will the MAP hypothesis result in the lowest error when predicting new

data?

 Surprisingly: No! The ‘Bayes Optimal Classifier’ is one

that classifies the new data instance by combining the

predictions of all the hypotheses (not just the MAP

hypothesis)

PhD h

h1

h2

h3

0.4

0.3

0.3

New

data

+

-

-

Bayes

Optimal

Classifier

-

Combine predictions

 of all hypotheses

Spring 2016 129 IN5526 - Web Intelligence - Chapter 2

New

data

+

-

-

K-Nearest Neighbour (KNN)

Spring 2016 IN5526 - Web Intelligence - Chapter 2 130

 1-Nearest Neighbour:
Given a query (test) instance xq,

 Locate the nearest training example xn and assign f(xq)= f(xn)

 K-Nearest Neighbour:
Given a query (test) instance xq,

 Locate the k-nearest training examples

 If the target function has discrete values, then return the most
common value of f among the k nearest training examples;

 If continuous-valued target function, then return the mean of the f
values of the k nearest training examples.

Spring 2016 131 IN5526 - Web Intelligence - Chapter 2

 5-NN classifies xq as -, 1-NN as Voronoi diagram

 If the target function is continuous-valued, kNN calculates

the mean of the k nearest neighbours

Spring 2016 IN5526 - Web Intelligence - Chapter 2 132

 We need a distance measure in order to know who are
the neighbours

 Assume that we have M attributes (features). Then one
example point xi is described by a feature vector <xi1,
xi2, …, xiM>.

 The distance between two points xi and xj is usually
defined in terms of Euclidean distance:

Spring 2016 133 IN5526 - Web Intelligence - Chapter 2

 Use no more than, say, 20 attributes per

instance

 Advantages:

 Training is very fast

 Can learn complex target functions

 Do not lose any information contained in the training

set

 Disadvantages:

 During classification, kNN has to calculate the

distances between the test case and all training

examples

 Some attributes may be irrelevant
Spring 2016 134 IN5526 - Web Intelligence - Chapter 2

 Weight nearer neighbours more heavily:

 This allows us to use all training examples instead of just
k (Sheppard's method), and we call this a global
learning method. If only the nearest examples are used,
we have a local learning method.

where

Spring 2016 135 IN5526 - Web Intelligence - Chapter 2

Clustering and K- Means

Spring 2016 IN5526 - Web Intelligence - Chapter 2 136

Spring 2016 IN5526 - Web Intelligence - Chapter 2 137

 Is the process of grouping objects with similar
characteristics.

 We need a similarity measure and a neighbourhood
definition.

 A similarity measure is not a distance function!

 In a supervised learning process

 The classification is known a priori.

 In a Unsupervised learning process

 Che classification is NOT known a priori.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 138

 Cluster
◦ A collection of similar physical/abstract objects.

 (Similar within the same cluster, dissimilar to objects in
other clusters)

 Clustering
◦ process of grouping a set of objects into clusters

 It is an unsupervised learning method.

 It is a common and important ML task

 It has many applications:

 stand-alone classification tool

 preprocessing tool for other ML algorithms.

Spring 2016 IN5526 - Web Intelligence - Chapter 2 139

 First we should define a
 distance (similarity measure) between points

 A good clustering is one where:
 high intra-cluster similarity

 the sum of distances between objects in the same cluster are
minimized,

 low inter-cluster similarity
 while the distances between different clusters are maximized

 Clusters can be evaluated using:
 “internal measures” that are related to the inter/intra cluster

distance

 “external measures” that are related to how representative are
the current clusters to “true” classes. This is typically highly
subjective.

 Centroid – centre of the cluster (i.e. mean point of the
cluster)

 Medoid - the most centrally located (or most
representative) object in a cluster

 Euclidean distance

 Minkowski distance

 Manhattan distance

 where nof is the number of features





nof

f

fjfiji xxxxd
1

,, ||),(

Spring 2016 IN5526 - Web Intelligence - Chapter 2 140





nof

f

fjfiji xxxxd
1

2

,,)(),(

p

nof

f

p

fjfiji xxxxd 



1

,,)(),(

 Intra-cluster similarity

measure

 Sum/Min/Max/Avg of the

absolute/squared distances

between:

 All pairs of points in the

cluster OR

 Between the “centroid” and all

points in the cluster OR

 Between the “medoid” and all

points in the cluster

 Inter-cluster similarity

measure

 Sum the (squared) distance

between all pairs of clusters,

where the distance between

two clusters is defined as:

- Distance between their

centroids/medoids (i.e.

spherical clusters)

- Distance between the closest

pair of points belonging to the

clusters (i.e., chain shaped

clusters)

Spring 2016 IN5526 - Web Intelligence - Chapter 2 141

 Given n points, and say we would like to cluster them into

k clusters

 - How many possible cluster???

 Answer: Too many
  exponential in terms of n and k

 we can not test exhaustively all possibilities.

 Solution: Iterative optimization algorithms
 Start with an initial clustering and iteratively improve it

 (see K-means)

Spring 2016 IN5526 - Web Intelligence - Chapter 2 142

Spring 2016 IN5526 - Web Intelligence - Chapter 2 143

 Partitioning methods
◦ Construct various partitions and then evaluate them by

some criterion

◦ k-Means (and EM), k-Medoids

 Hierarchical methods
◦ Create a hierarchical decomposition of the set of

objects using some criterion

◦ agglomerative, divisive

 Model-based clustering methods
◦ A model is hypothesized for each of the clusters and

the idea is to find the best fit of that model to each
other

Spring 2016 IN5526 - Web Intelligence - Chapter 2 144

 Fuzzy clustering algorithms

 Fuzzy C-means is the most popular one

 Neural networks have been used for clustering

 Self-Organizing Maps (SOMs – Kohonen, 1984)

 Adaptive Resonance Theory (ART) networks

(Carpenter & Grossberg, 1990)

 Evolutionary algorithms based clustering

 Simulated annealing based clustering

Spring 2016 IN5526 - Web Intelligence - Chapter 2 145

 First we should specify k

 the number of clusters we want to find out

 Each cluster will be represented by the center of the cluster.

Iteratively minimize the objective function (distance to clusters).

 Algorithm:

1. Randomly pick k points (inside the hypervolume containing the pattern

set) as the “centroids” of the k clusters we want

2. For each pattern in the data set, assign the pattern to the cluster with

the closest centroid

3. Recompute the cluster centroids using the current cluster

memberships

4. If there is no (or minimal) change in the identified clusters between two

consecutive iterations stop, otherwise go to step 2

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

K=2

Arbitrarily choose K
object as initial
cluster center

Assign

each
objects
to most

similar
center

Update

the
cluster
means

Update

the
cluster
means

reassign reassign

Example of K-Means

Spring 2016 146 IN5526 - Web Intelligence - Chapter 2

 Objects: 1, 2, 5, 6,7 (1-dimensional objects)

 We want to find 2 clusters (k=2). Numerical difference is used as
distance.

 K-means:

 Randomly select 5 and 6 as centroids;

 => Two clusters {1,2,5} and {6,7}; meanC1=8/3,
meanC2=6.5

 => {1,2}, {5,6,7}; meanC1=1.5, meanC2=6

 => no change.

 Aggregate dissimilarity

 sum of squared distances between each point (in all
clusters)

 and its cluster center--(intra-cluster distance)

 = 0.52+ 0.52+ 12+ 02+12 = 2.5

Spring 2016 IN5526 - Web Intelligence - Chapter 2 147

|1-1.5|2

Example of K-Means (2)

 We need to specify k in advance!

 Solution: May need to try out several k

 Tends to go to local minima that depend on the selection

of starting centroidsSolution: Run the algorithm with different

starting points

 Assumes clusters are spherical in vector space

(Euclidean topology), could be foils, donuts and others

shapes!!

 Sensitive to coordinate changes, weighting, etc.

 K-means is sensitive to “outliers” (does not recognize

them) an object with an extremely large value (outlier)

may substantially distort the distribution of the data

Spring 2016 IN5526 - Web Intelligence - Chapter 2 148

Spring 2016 IN5526 - Web Intelligence - Chapter 2 149

 Outlier problem can be handled by K-medoid or

neighborhood-based algorithms

 K-Medoids method:

◦ Use the medoids (the most centrally located object in a cluster)

instead of computing the mean value of the objects in a cluster

(centroids) as a reference point for that cluster. See for example PAM

(Partitioning Around Medoids) algorithm - (Kaufman & Rousseeuw, 1987

Wiley).

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

7

8

9

10

0 1 2 3 4 5 6 7 8 9 10

medoid

centroid

Spring 2016 IN5526 - Web Intelligence - Chapter 2 150

 Recompute the centroids after every change (or few

changes), rather than after all the patterns are re-

assigned

 Improves the convergence speed

 Starting centroids (seeds) may determine to converge to

local minima, as well as the rate of convergence

 Use heuristics to pick good seeds

 Run K-means M times and pick the best clustering obtained

Spring 2016 IN5526 - Web Intelligence - Chapter 2 151

1. Divide n object into k group called partitions

2. A partition P={p1,...,pk} of a set X={x1,...,xn}, satisfy:

a) pi  X, pi != ø

b) X = U pi

c) pi ∩ pj = ø i != j

Spring 2016 IN5526 - Web Intelligence - Chapter 2 152

 Same data but ...

 There are a tree like structure to decide how to perform
the aggregation.

 This involves more information than partition
clustering

 Because we could split clusters in different types.

 The final clustering are perform by

 the leaves of the tree structure.

