
Chapter 2

Newton, Lagrange and
Hamilton’s Treatments of
the Rigid Body

2.1 Newton

2.1.1 Newtonian form of free rigid rotation

Isaac Newton

Definition 2.1.1 In free rigid rota-
tion, a body undergoes rotation about
its centre of mass and the pairwise dis-
tances between all points in the body re-
main fixed.

Definition 2.1.2 A system of coordi-
nates in free rigid motion is stationary
in the rotating orthonormal basis called
the body frame, introduced by Euler
[Eu1758].

The orientation of the orthonormal body
frame (E1,E2,E3) relative to a ba-
sis (e1, e2, e3) fixed in space depends
smoothly on time t ∈ R.
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In the fixed spatial coordinate system, the body frame is seen as
the moving frame

(O(t)E1, O(t)E2, O(t)E3) ,

where O(t) ∈ SO(3) defines the attitude of the body relative to its
reference configuration according to the following matrix multiplica-
tion on its three unit vectors:

ea(t) = O(t)Ea , a = 1, 2, 3. (2.1.1)

Here the unit vectors ea(0) = Ea with a = 1, 2, 3, comprise at initial
time t = 0 an orthonormal basis of coordinates and O(t) is a special
(detO(t) = 1) orthogonal (OT (t)O(t) = Id) 3 × 3 matrix. That is,
O(t) is a continuous function defined along a curve parameterised by
time t in the special orthogonal matrix group SO(3). At the initial
time t = 0, we may take O(0) = Id, without any loss.

As its orientation evolves according to (2.1.1), each basis vector
in the set,

e(t) ∈ {e1(t), e2(t), e3(t)},

preserves its (unit) length,

1 = |e(t)|2 := e(t) · e(t) := e(t)Te(t) = (O(t)E)TO(t)E
= ETOT (t)O(t)E = ET (Id)E = |E|2 , (2.1.2)

which follows because O(t) is orthogonal; that is, OT (t)O(t) = Id.
The basis vectors in the orthonormal frame ea(0) = Ea define the

initial orientation of the set of rotating points with respect to some
choice of fixed spatial coordinates at time t = 0. Each point r(t) in
the subsequent rigid motion may be represented in either fixed, or
rotating coordinates as,

r(t) = rA
0 (t)eA(0) in the fixed basis , (2.1.3)

= raea(t) in the rotating basis . (2.1.4)

The fixed basis is called the spatial frame and rotating basis is
the body frame. The constant components ra of a position vector
relative to the rotating basis are related to its initial spatial position
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as ra = Oa
A(0)rA

0 (0). (This is simply ra = δa
Ar

A
0 (0) for the choice

O(0) = Id that the two coordinate bases are initially aligned.) The
components of any vector J in the fixed (spatial) frame are related
to those in the moving (body) frame by the mutual rotation of their
axes in (2.1.1) at any time. That is,

J = ea(0)Ja
space(t) = ea(t)Ja

body = O(t)ea(0)Ja
body , (2.1.5)

or equivalently, as in equation (2.1.1),

Jspace(t) = O(t)Jbody . (2.1.6)

Lemma 2.1.3 The velocity ṙ(t) of a point r(t) in free rigid rotation
depends linearly on its position relative to the centre of mass.

Proof. In particular, r(t) = raO(t)ea(0) implies

ṙ(t) = raėa(t) = raȮ(t)ea(0) =: raȮO−1(t)ea(t) =: ω̂(t)r , (2.1.7)

which is linear.

Remark 2.1.4 (Wide-hat notation)
The wide-hat notation ( ·̂ ) denotes a skew-symmetric 3 × 3 matrix.
There is no danger of confusing wide-hat notation ( ·̂ ) with narrow-
hat notation ( ·̂ ), which denotes unit vector (or, later, unit quater-
nion).

Lemma 2.1.5 (Skew symmetry)
The spatial angular velocity matrix ω̂(t) = ȮO−1(t) in (2.1.7)
is skew-symmetric, i.e.,

ω̂T = − ω̂ .

Proof. Being orthogonal, the matrix O(t) satisfies OOT = Id. This
implies that ω̂ is skew-symmetric,

0 = (OOT ) ˙ = ȮOT +OȮT = ȮOT + (ȮOT )T

= ȮO−1 + (ȮO−1)T = ω̂ + ω̂T .
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Remark 2.1.6 The skew 3 × 3 real matrices form a closed linear
space under addition.

Definition 2.1.7 (Commutator product of skew matrices)
The commutator product of two skew matrices ω̂ and ξ̂ is defined as
the skew matrix product,

[ω̂, ξ̂] := ω̂ ξ̂ − ξ̂ ω̂ . (2.1.8)

Remark 2.1.8 This commutator product is again a skew 3× 3 real
matrix.

Definition 2.1.9 (Basis set for skew matrices)
Any 3×3 antisymmetric matrix ω̂T = − ω̂ may be written as a linear
combination of the following three linearly independent basis elements
for the 3× 3 skew matrices:

Ĵ1 =

0 0 0
0 0 −1
0 1 0

 , Ĵ2 =

 0 0 1
0 0 0
−1 0 0

 , Ĵ3 =

0 −1 0
1 0 0
0 0 0

 .

That is, the element Ĵa for this choice of basis has matrix components
(Ĵa)bc = −εabc, where εabc is the totally antisymmetric tensor with
ε123 = +1, ε213 = −1, ε113 = 0, etc.

Lemma 2.1.10 (Commutation relations)
The skew matrix basis Ĵa with a = 1, 2, 3, satisfies the commutation
relations,

[ Ĵa, Ĵb ] := ĴaĴb − ĴbĴa = εabcĴc . (2.1.9)

Proof. This may be verified by a direct calculation [ Ĵ1, Ĵ2 ] = Ĵ3,
etc.

Remark 2.1.11 The closure of the basis set of skew-symmetric ma-
trices under the commutator product gives the linear space of skew-
symmetric matrices a Lie algebra structure. The constants εabc

in the commutation relations among the skew 3 × 3 matrix basis el-
ements are called the structure constants and the corresponding
Lie algebra is called so(3). This also means the abstract so(3) Lie
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algebra may be represented by skew 3 × 3 matrices, which is a great
convenience, as we shall see for example in section 4.2. The Lie al-
gebra so(3) may also be defined as the tangent space to the Lie group
SO(3) at the identity, as discussed in Appendix B.

Theorem 2.1.12 (Hat map)
The components of any 3 × 3 skew matrix ω̂ may be identified with
the corresponding components of a vector ω ∈ R3.

Proof. In the basis (2.1.9), one writes the linear invertible relation,

ω̂ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 = ωaĴa =: ω · Ĵ , (2.1.10)

for a = 1, 2, 3. This is a one-to-one invertible map, i.e., an isomor-
phism, between 3× 3 skew-symmetric matrices and vectors in R3.

Remark 2.1.13 The superscript hat (̂ ) applied to a vector iden-
tifies that vector in R3 with a 3 × 3 skew-symmetric matrix. For
example, the unit vectors in the Cartesian basis set, {e1, e2, e3} are
associated with the basis elements Ĵa for a = 1, 2, 3, in equation
(2.1.9) by Ĵa = êa, or in matrix components,

(êa)bc = −δd
aεdbc = −εabc = (ea×)bc .

Remark 2.1.14 The last equality in the definition of the hat map in
equation (2.1.10) introduces the convenient notation Ĵ that denotes
the basis for the 3 × 3 skew-symmetric matrices Ĵa with a = 1, 2, 3,
as a vector of matrices.

Definition 2.1.15 (Hat map for angular velocity vector)
The relation ω̂ = ω · Ĵ in equation (2.1.10) identifies the skew-
symmetric 3 × 3 matrix ω̂(t) with the angular velocity vector
ω(t) ∈ R3 whose components ωc(t), with c = 1, 2, 3, are given by

(ȮO−1)ab(t) = ω̂ab(t) = − εabc ω
c(t) . (2.1.11)

Equation (2.1.11) defines the matrix components of the hat map
for angular velocity.
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Remark 2.1.16 Equivalently, the hat map in equation (2.1.10) is
defined by the identity,

ω̂ λ = ω × λ for all ω,λ ∈ R3.

Thus, we may write ω̂ = ω̂ = ω× to identify the vector ω ∈ R3 with
the skew 3× 3 matrix ω̂ ∈ so(3).

Proposition 2.1.17 The 3× 3 skew matrices

ω̂ = ω · Ĵ and λ̂ = λ · Ĵ ,

associated with the vectors ω and λ in R3 satisfy the commutation
relation

[ ω̂, λ̂ ] = ω × λ · Ĵ =: (ω × λ)̂ , (2.1.12)

where ω × λ is the vector product in R3.

Proof. Formula (2.1.9) implies the result, by

[ ω̂, λ̂ ] = [ ω · Ĵ , λ · Ĵ ] = [ωaĴa, λ
bĴb ]

= ωaλb[ Ĵa, Ĵb ] = ωaλbεabcĴc = ω × λ · Ĵ .

Remark 2.1.18 According to Proposition 2.1.17, the hat map ̂ :
(R3,×) 7→ (so(3), [ · , · ] ) allows the velocity in space (2.1.7) of a
point at r undergoing rigid-body motion to be expressed equivalently
either by a skew-matrix multiplication, or as a vector product. That
is,

ṙ(t) =: ω̂(t)r =: ω(t)× r . (2.1.13)

Hence, free rigid motion of a point displaced by r from the centre of
mass is a rotation in space of r about the time dependent angular
velocity vector ω(t). Accordingly, d|r|2/dt = 2r · ṙ = 0, and the
displacement distance is preserved, |r|(t) = |r|(0).
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Kinetic energy of free rigid rotation

The kinetic energy for N particles of masses mj , j = 1, 2, . . . , N
mutually undergoing free rigid rotation is computed in terms of the
angular velocity as

K =
1
2

N∑
j=1

mj ṙj · ṙj

=
1
2

N∑
j=1

mj(ω × rj) · (ω × rj)

=:
1
2
〈〈ω,ω〉〉 .

Definition 2.1.19 (Symmetric mass-weighted pairing)
The kinetic energy induces a symmetric mass-weighted pairing

〈〈 · , · 〉〉 : R3 × R3 7→ R ,

defined for any two vectors a,b ∈ R3 as,

〈〈a,b〉〉 :=
∑

j

mj(a× rj) · (b× rj) =: Ia · b . (2.1.14)

Definition 2.1.20 (Moment of inertia tensor)
The mass-weighted pairing, or inner product in (2.1.14)

〈〈a,b〉〉 = Ia · b ,

defines the symmetric moment of inertia tensor I for the particle
system.

Definition 2.1.21 (Angular momentum of rigid motion)
The angular momentum is defined as the derivative of the ki-
netic energy with respect to angular velocity. In the present case
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with (2.1.14), this produces the linear relation,

J =
∂K

∂ω
= − 1

2

N∑
j=1

mjrj ×
(
rj × ω

)

=
1
2

N∑
j=1

mj

(
|rj |2Id− rj ⊗ rj

))
ω

=: I ω , (2.1.15)

where I is the moment of inertia tensor defined by the symmetric
pairing in (2.1.14).

Conservation of angular momentum in free rigid rotation

In free rigid rotation no external torques are applied, so the angular
momentum J is conserved. In the fixed basis J = JA

0 (t)eA(0) and
this conservation law is expressed as,

0 =
dJ
dt

=
dJA

0

dt
eA(0) , (2.1.16)

so each component JA
0 for A = 1, 2, 3, of angular momentum in the

spatial frame is separately conserved. In the rotating basis J =
Ja(t)ea(t) and angular momentum conservation becomes

0 =
dJ
dt

=
dJa

dt
ea(t) + Jadea(t)

dt

=
dJa

dt
ea(t) + ω × Jaea(t)

=
(dJa

dt
+ (ω × J)a

)
ea(t) . (2.1.17)

Consequently, the components Ja for a = 1, 2, 3, of angular momen-
tum in the body frame satisfy the quadratically nonlinear system of
equations (2.1.17) with J = I ω.

Lemma 2.1.22 (Space vs body dynamics)
Upon denoting Jspace = (J1

0 , J
2
0 , J

3
0 ) in the fixed basis eA(0) and

Jbody = (J1, J2, J3) in the time-dependent basis ea(t), with

Jspace = O(t)Jbody , (2.1.18)
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one may summarise the two equivalent sets of equations (2.1.16) and
(2.1.17) as,

dJspace

dt
= 0 and

dJbody

dt
+

(
I−1Jbody

)
× Jbody = 0 . (2.1.19)

Proof. The time derivative of relation (2.1.18) gives

dJbody

dt
=

d

dt

(
O−1(t)Jspace(t)

)
= −O−1Ȯ

(
O−1(t)Jspace(t)

)
+O−1 dJspace

dt︸ ︷︷ ︸
vanishes

= − ω̂bodyJbody = −ωbody × Jbody , (2.1.20)

with ω̂body := O−1Ȯ = ωbody× and ωbody = I−1Jbody, which defines
the body angular velocity. This is the usual heuristic derivation
of the dynamics for body angular momentum.

Remark 2.1.23 (Darwin, Coriolis and centifugal forces)

Many elementary mechanics texts make the following points
about the various noninertial forces that arise in a rotating
frame. For any vector r(t) = ra(t)ea(t) the body and space
time derivatives satisfy the first time-derivative relation, as in
(2.1.17),

ṙ(t) = ṙaea(t) + raėa(t)
= ṙaea(t) + ω × raea(t)
=

(
ṙa + εabcω

brc
)
ea(t)

=:
(
ṙa + (ω × r)a

)
ea(t) . (2.1.21)

Taking a second time-derivative in this notation yields

r̈(t) =
(
r̈ a + (ω̇ × r)a + (ω × ṙ)a

)
ea(t) +

(
ṙa + (ω × r)a

)
ėa(t)

=
(
r̈ a + (ω̇ × r)a + (ω × ṙ)a

)
ea(t) +

(
ω ×

(
ṙ + ω × r

))aea(t)
=

(
r̈ a + (ω̇ × r)a + 2(ω × ṙ)a + (ω × ω × r)

)aea(t) .
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Newton’s 2nd Law for the evolution of the position vector r(t)
of a particle of mass m in a frame rotating with time-dependent
angular velocity ω(t) becomes

F(r) = m
(
r̈ + ω̇ × r︸ ︷︷ ︸

Darwin

+ 2(ω × ṙ)︸ ︷︷ ︸
Coriolis

+ ω × (ω × r)︸ ︷︷ ︸
centrifugal

)
(2.1.22)

• The Darwin force is usually small; so, it is often neglected.

• Only the Coriolis force depends on the velocity in the mov-
ing frame. The Coriolis force is very important in large-
scale motions on Earth. For example, pressure balance with
Coriolis force dominates the (geostrophic) motion of the
weather systems that comprise the climate.

• The centrifugal force is important, for example, in obtain-
ing orbital equilibria in gravitationally attracting systems.

Remark 2.1.24 The space and body angular velocities differ by

ω̂body := O−1Ȯ versus ω̂space := ȮO−1 = Oω̂bodyO
−1 .

Namely, ω̂body is left invariant under O → RO and ω̂space is right-
invariant under O → OR, for any choice of matrix R ∈ SO(3). This
means that neither angular velocity depends on initial orientation.

Remark 2.1.25 The angular velocities ω̂body = O−1Ȯ and ω̂space =
ȮO−1 are respectively the left and right translations to the identity of
the tangent matrix Ȯ(t) at O(t). These are called the left and right
tangent spaces of SO(3) at its identity.

Remark 2.1.26 Equations (2.1.19) for free rigid rotations of par-
ticle systems are prototypes of Euler’s equations for the motion of a
rigid body.
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2.1.2 Newtonian form of rigid-body motion

In describing rotations of a rigid body, for example a solid object
occupying a spatial domain B ⊂ R3, one replaces the mass-weighted
sums over points in space in the previous definitions of dynamical
quantities for free rigid rotation, by volume integrals weighted with
a mass density as a function of position in the body. That is,∑

j

mj →
∫
B
d 3X ρ(X) ,

where ρ(X) is the mass density at a point X ∈ B fixed inside the
body, as measured in coordinates whose origin is at the centre of
mass.

Example 2.1.27 (Kinetic energy of a rotating solid body)
The kinetic energy of a solid body rotating about its centre of mass
is given by

K =
1
2

∫
B
ρ(X) |ẋ(X, t)|2 d 3X , (2.1.23)

where the spatial path in R3 of a point X ∈ B in the rotating body
is given by

x(X, t) = O(t)X ∈ R3 with O(t) ∈ SO(3) .

The time derivative of this rotating motion yields the spatial veloc-
ity,

ẋ(X, t) = Ȯ(t)X = ȮO−1(t)x =: ω̂(t)x =: ω(t)× x , (2.1.24)

as in equation (2.1.7) for free rotation.

Kinetic energy and angular momentum of a rigid body

The kinetic energy (2.1.23) of a rigid body rotating about its centre of
mass may be expressed in the spatial frame in analogy to equation
(2.1.14) for free rotation,

K =
1
2

∫
O(t)B

ρ(O−1(t)x) |ω(t)× x|2 d 3x . (2.1.25)
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However, its additional time dependence makes this integral un-
wieldy. Instead, one takes advantage of the preservation of scalar
products by rotations to write

|ẋ|2 = |O−1ẋ|2 ,

and one computes as in equation (2.1.24) the body velocity

O−1ẋ(X, t) = O−1Ȯ(t)X =: Ω̂(t)X =: Ω(t)×X . (2.1.26)

Here skew symmetry Ω̂T = −Ω̂ of the matrix

Ω̂ = O−1Ȯ = ω̂body ,

follows because the matrix O is orthogonal, that is, OOT = Id. Skew
symmetry of Ω̂ allows one to introduce the body angular velocity
vector Ω(t) whose components Ωi, with i = 1, 2, 3, are given in body
coordinates by

(O−1Ȯ)jk = Ω̂jk = −Ωiεijk . (2.1.27)

In terms of body angular velocity vector Ω(t) the kinetic energy of
a rigid body becomes

K =
1
2

∫
B
ρ(X) |Ω(t)×X|2 d 3X =:

1
2

〈〈
Ω(t),Ω(t)

〉〉
, (2.1.28)

where 〈〈 · , · 〉〉 is a mass-weighted symmetric pairing, defined for any
two vectors a,b ∈ R3 as the following integration over the body,〈〈

a,b
〉〉

:=
∫
B
ρ(X)(a×X) · (b×X) d3X . (2.1.29)

Definition 2.1.28 (Moment of inertia tensor)
The mass-weighted pairing, or inner product in (2.1.29)〈〈

a,b
〉〉

= Ia · b ,

defines the symmetric moment of inertia tensor I for the rigid
body.

Exercise. By definition, I is constant in the body frame.
What is its time dependence in the spatial frame? F
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Remark 2.1.29 (Principal axis frame)
The moment of inertia tensor becomes diagonal,

I = diag (I1, I2, I3) ,

upon aligning the body reference coordinates with its principal axis
frame. In the principal axis coordinates of I, the kinetic energy
(2.1.28) takes the elegant form,

K =
1
2
〈〈Ω , Ω 〉〉 =

1
2

IΩ ·Ω =
1
2

(I1Ω2
1 + I2Ω2

2 + I3Ω2
3) .

Definition 2.1.30 (Body angular momentum)
The body angular momentum is defined as the derivative of the
kinetic energy (2.1.28) with respect to body angular velocity. This
produces the linear relation,

Π =
∂K

∂Ω
= −

∫
B
ρ(X)X×

(
X×Ω(t)

)
d 3X

=
( ∫

B
ρ(X)

(
|X|2Id−X⊗X

)
d 3X

)
Ω(t)

= IΩ . (2.1.30)

This I is the continuum version of the moment of inertia tensor de-
fined for particle systems in Definition 2.1.14. It is called the moment
of inertia tensor of the rigid body.

Remark 2.1.31 In general, the body angular momentum vector Π
is not parallel to the body angular velocity vector Ω. Their misalign-
ment is measured by Π×Ω 6= 0.

Angular momentum conservation

The rigid body rotates freely along O(t) in the absence of any exter-
nally applied forces or torques, so Newton’s 2nd Law implies that the
motion of the rigid body conserves total angular momentum when
expressed in the fixed space coordinates in R3. This conservation
law is expressed in the spatial frame as

dπ

dt
= 0 ,
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where π(t) is the angular momentum vector in space. The
angular momentum vector in space π(t) is related to the angular
momentum vector in the body Π(t) by the mutual rotation of their
axes at any time. That is, π(t) = O(t)Π(t). Likewise, the angular
velocity vector in space satisfies ω(t) = O(t)Ω(t). The angu-
lar velocity vector in space is related to its corresponding angular
momentum vector by

π(t) = O(t)Π(t) = O(t)IΩ(t)
=

(
O(t)IO−1(t)

)
ω(t) =: Ispace(t)ω(t) .

Thus, the moment of inertia tensor in space Ispace(t) transforms
as a symmetric tensor,

Ispace(t) = O(t)IO−1(t) , (2.1.31)

so it is time-dependent and the relation of the spatial angular velocity
vector ω(t) to the motion of the rigid body may be found by using
(2.1.26), as

ẋ(X, t) = Ȯ(t)X =: ȮO−1(t)x =: ω̂(t)x =: ω(t)× x . (2.1.32)

As expected, the motion in space of a point at x within the rigid body
is a rotation by the time-dependent angular velocity ω(t). We may
formally confirm the relation of the spatial angular velocity vector to
the body angular velocity vector ω(t) = O(t)Ω(t) by using (2.1.26)
in the following calculation:

Ω(t)×X = Ω̂(t)X = O−1ȮX

= O−1ω̂(t)x = O−1(ω(t)× x) = (O−1ω(t)×O−1x) .

Consequently, the conservation of spatial angular momentum in the
absence of external torques implies

dπ

dt
=

d

dt

(
O(t)Π

)
= O(t)

(dΠ
dt

+O−1ȮΠ
)

= O(t)
(dΠ
dt

+ Ω̂Π
)

= O(t)
(
dΠ
dt

+ Ω×Π
)

= 0 .
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Hence, the body angular momentum satisfies Euler’s equations
for a rigid body,

dΠ
dt

+ Ω×Π = 0 . (2.1.33)

Remark 2.1.32 (Body angular momentum equation)
Viewed in the moving frame, the rigid body occupies a fixed domain
B, so its moment of inertia tensor in that frame I is constant. Its
body angular momentum vector Π = IΩ evolves according to (2.1.33)
by rotating around the body angular velocity vector Ω = I−1Π. That
is, conservation of spatial angular momentum π(t) = O(t)Π(t) rela-
tive to a fixed frame implies the body angular momentum Π appears
constant in a frame rotating with the body angular velocity Ω = I−1Π.

Proposition 2.1.33 (Conservation laws)
The dynamics of equation (2.1.33) conserves both the square of the
body angular momentum |Π|2 and the kinetic energy K = Ω ·Π/2.

Proof. These two conservation laws may be verified by direct cal-
culations:

d|Π|2

dt
= 2Π · dΠ

dt
= 2Π ·Π×Ω = 0 ,

d(Ω ·Π)
dt

= 2Ω · dΠ
dt

= 2Ω ·Π×Ω = 0 ,

where one uses symmetry of the moment of inertia tensor in the
second line.

Remark 2.1.34 (Reconstruction formula)
Having found the evolution of Π(t) and thus Ω(t) by solving (2.1.33),
one may compute the net angle of rotation O(t) in body coordinates
from the skew-symmetric angular velocity matrix Ω̂ in (2.1.27) and
its defining relation,

Ȯ(t) = OΩ̂(t) .

Solving this linear differential equation with time-dependent coeffi-
cients yields the paths of rotations O(t) ∈ SO(3). Having these, one
may finally construct the trajectories in space taken by points X in
the body B given by x(X, t) = O(t)X ∈ R3.
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2.2 Lagrange

2.2.1 The principle of stationary action

J. L. Lagrange

In Lagrangian mechanics, a mechanical
system in a configuration space with
generalised coordinates and velocities,

qa, q̇a , a = 1, 2, . . . , 3N ,

is characterised by its Lagrangian
L(q(t), q̇(t)) – a smooth, real-valued
function. The motion of a Lagrangian
system is determined by the principle of
stationary action, formulated using the
operation of variational derivative.

Definition 2.2.1 (Variational derivative)
The variational derivative of a functional S[q] is defined as its
linearisation in an arbitrary direction δq in the configuration space.
That is, S[q] is defined as

δS[q]; = lim
s→0

S[q + sδq]− S[q]
s

=
d

ds

∣∣∣
s=0

S[q + sδq] =:
〈δS
δq

, δq
〉
,

where the pairing 〈 · , · 〉 is obtained in the process of linearisation.

Theorem 2.2.2 (The principle of stationary action)
The Euler-Lagrange equations,[

L
]
qa :=

d

dt

∂L

∂q̇a
− ∂L

∂qa
= 0 , (2.2.1)

follow from stationarity of the action integral, S, defined as the
integral over a time interval t ∈ (t1 , t2)

S :=
∫ t2

t1

L(q, q̇) dt . (2.2.2)

Then the principle of stationary action,

δS = 0 ,
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implies [L ]qa = 0, for variations δqa that vanish at the endpoints in
time.

Proof. Applying the variational derivative in Definition 2.2.1 to the
action integral in (2.2.2) yields

δS[q] =
∫ t2

t1

(
∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a

)
dt

=
∫ t2

t1

(
∂L

∂qa
− d

dt

∂L

∂q̇a

)
δqa dt+

[
∂L

∂q̇a
δqa

]t2

t1

=:
〈
−

[
L

]
qa , δq

a
〉

=:
〈δS
δq

, δq
〉

= 0 . (2.2.3)

Here one integrates by parts and applies the condition that the vari-
ations δqa vanish at the endpoints in time. Because the variations
δqa are otherwise arbitrary, one concludes that the Euler-Lagrange
equations (2.2.1) are satisfied.

Remark 2.2.3 The principle of stationary action is sometimes also
called Hamilton’s principle.

Example 2.2.4 (Geodesic motion in a Riemannian space)
The Lagrangian for the motion of a free particle in a Riemannian
space is its kinetic energy with respect to the Riemannian metric,

L(q, q̇) =
1
2
q̇bgbc(q)q̇c .

The Lagrangian in this case has partial derivatives,

∂L

∂q̇a
= gac(q)q̇c and

∂L

∂qa
=

1
2
∂gbc(q)
∂qa

q̇bq̇c .

Consequently, its Euler-Lagrange equations [L ]qa = 0 are

[
L

]
qa :=

d

dt

∂L

∂q̇a
− ∂L

∂qa

= gae(q)q̈ e +
∂gae(q)
∂qb

q̇bq̇e − 1
2
∂gbe(q)
∂qa

q̇bq̇e = 0 .
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Symmetrising the middle term and contracting with co-metric gca

satisfying gcagae = δc
e yields

q̈ c + Γc
be(q)q̇

bq̇e = 0 , (2.2.4)

where Γc
be are the Christoffel symbols, given in terms of the metric

by

Γc
be(q) =

1
2
gca

[
∂gae(q)
∂qb

+
∂gab(q)
∂qe

− ∂gbe(q)
∂qa

]
. (2.2.5)

These Euler-Lagrange equations are the geodesic equations of a
free particle moving in a Riemannian space.

2.3 Noether’s theorem

2.3.1 Lie symmetries & conservation laws

Emmy Noether

Recall from Definition 1.2.3 that a Lie
group depends smoothly on its parame-
ters. (See Appendix B for more details.)

Definition 2.3.1 (Lie symmetry)
A smooth transformation of variables
{t, q} depending on a single parameter s
defined by

{t, q} 7→ { t(t, q, s), q(t, q, s)} ,

that leaves the action S =
∫
Ldt invari-

ant is called a Lie symmetry of the
action.

Theorem 2.3.2 (Noether’s theorem) Each Lie symmetry of the
action for a Lagrangian system defined on a manifold M with La-
grangian L corresponds to a constant of the motion – [No1918].

Example 2.3.3 Suppose the variation of the action in (2.2.3) van-
ishes (δS = 0) because of a Lie symmetry which does not preserve
the endpoints. Then on solutions of the Euler-Lagrange equations,
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the endpoint term must vanish for another reason. For example, if
the Lie symmetry leaves time invariant, so that

{t, q} 7→ { t, q(t, q, s)} ,

then the endpoint term must vanish,[
∂L

∂q̇
δq

]t2

t1

= 0 .

Hence, the quantity

A(q, q̇, δq) =
∂L

∂q̇a
δqa

is a constant of motion for solutions of the Euler-Lagrange equa-
tions. In particular, if δqa = ca for constants ca, a = 1, . . . , n, that is,
for spatial translations in n dimensions, then the quantities ∂L/∂q̇a

(the corresponding momentum components) are constants of motion.

Remark 2.3.4 This result first appeared in Noether [No1918]. See
e.g. [Ol2000, SaCa1981] for good discussions of the history, frame-
work and applications of Noether’s theorem. We shall see in a mo-
ment that Lie symmetries that reparameterise time may also yield
constants of motion.

2.3.2 Infinitesimal transformations of a Lie group

Definition 2.3.5 (Infinitesimal Lie transformations)

Sophus Lie

Consider the Lie group of transforma-
tions

{t, q} 7→ { t(t, q, s), q(t, q, s)} ,

and suppose the identity transformation
is arranged to occur for s = 0. The
derivatives with respect to the group pa-
rameters s at the identity,

τ(t, q) =
d

ds

∣∣∣∣
s=0

t(t, q, s) ,

ξa(t, q) =
d

ds

∣∣∣∣
s=0

qa(t, q, s) ,
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are called the infinitesimal transformations of the action of a
Lie group on the time and space variables.

Thus, at linear order in a Taylor expansion in the group parameter
s one has

t = t+ sτ(t, q) , qa = qa + sξa(t, q) , (2.3.1)

where τ and ξa are functions of coordinates and time, but do not
depend on velocities. Then, to first order in s the velocities of the
transformed trajectories are computed as,

dqa

dt
=
q̇a + sξ̇a

1 + sτ̇
= q̇a + s(ξ̇a − q̇aτ̇) , (2.3.2)

where order O(s2) terms are neglected and one defines the total time
derivatives

τ̇ ≡ ∂τ

∂t
(t, q) + q̇b ∂τ

∂qb
(t, q) and ξ̇a ≡ ∂ξa

∂t
(t, q) + q̇b∂ξ

a

∂qb
(t, q) .

We are now in a position to prove Noether’s Theorem 2.3.2.
Proof. The variation of the action corresponding to the Lie symme-
try with infinitesimal transformations (2.3.1) is

δS =
∫ t2

t1

(∂L
∂t
δt+

∂L

∂qa
δqa +

∂L

∂q̇a
δq̇a + L

dδt

dt

)
dt

=
∫ t2

t1

(∂L
∂t
τ +

∂L

∂qa
ξa +

∂L

∂q̇a
(ξ̇a − q̇aτ̇) + Lτ̇

)
dt

=
∫ t2

t1

( ∂L
∂qa

− d

dt

∂L

∂q̇a

)
(ξa − q̇aτ) +

d

dt

(
Lτ +

∂L

∂q̇a
(ξa − q̇aτ)

)
dt

=
∫ t2

t1

[L ]qa(ξa − q̇aτ) +
d

dt

[
∂L

∂q̇a
ξa −

( ∂L
∂q̇a

q̇a − L
)
τ

]
dt .

Thus, stationarity δS = 0 and the Euler-Lagrange equations [L ]qa =
0 imply

0 =
[
∂L

∂q̇a
ξa −

( ∂L
∂q̇a

q̇a − L
)
τ

]t2

t1

,
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so that the quantity

C(t, q, q̇) =
∂L

∂q̇a
ξa −

( ∂L
∂q̇a

q̇a − L
)
τ (2.3.3)

≡ 〈 p , δq 〉 − E δt , (2.3.4)

has the same value at every time along the solution path. That is,
C(t, q, q̇) is a constant of the motion.

Remark 2.3.6 The abbreviated notation in equation (2.3.4) for δq
and δt is standard. If δt is absent and δq is a constant (corresponding
to translations in space) then δS = 0 implies that the canonically con-
jugate momentum p is conserved for solutions of the Euler-Lagrange
equations [L ]q = 0.

Exercise. Show that conservation of energy results
from Noether’s theorem if, in Hamilton’s principle,
the variations are chosen as

δq(t) =
d

ds

∣∣∣∣
s=0

q( t(t, q, s)) ,

corresponding to symmetry of the Lagrangian under space-
time dependent transformations of time along a given
curve, so that q(t) → q( t(t, q, s)) with t(t, q, 0) = t.

F

Answer. Under reparameterisations of time along the curve

q(t) → q( t(t, q, s)) ,

the action S =
∫ t2
t1
L(q, q̇) dt , changes infinitesimally according to

δS =
[(
L(q, q̇)− ∂L

∂q̇
q̇
)
δt

]t2

t1

,

with variations in position and time defined by

δq(t) =
d

ds

∣∣∣∣
s=0

q( t(t, q, s)) = q̇(t)δt and δt =
dt(t, q, s)

ds

∣∣∣∣
s=0

.
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For translations in time, δt is a constant and stationarity of the action
δS = 0 implies that the energy

E(t, q, q̇) ≡ ∂L

∂q̇a
q̇a − L , (2.3.5)

is a constant of motion along solutions of the ELd’A equations. N

Exercise. (Euclidean group)
Find the infinitesimal transformations of SE(3) – that is,
calculate its tangent vectors at the identity – by using its
4× 4 matrix representation. F

Answer. The 4 × 4 matrix representation of tangent vectors for
SE(3) at the identity is found by first computing the derivative of a
general group element (O(s), sr0) along the group path with param-
eter s and bringing the result back to the identity at s = 0,[(

O(s) sr0

0 1

)−1 (
O ′(s) r0

0 0

) ]
s=0

=
(
O−1(0)O ′(0) O−1(0)r0

0 0

)
=:

(
Ξ̂ r0

0 0

)
.

The quantity Ξ̂ = O−1(s)O ′(s)|s=0 is a 3×3 skew-symmetric matrix,
since O is a 3× 3 orthogonal matrix. Thus, Ξ̂ may be written using
the hat map, as in equation (2.1.11),

Ξ̂ =

 0 −Ξ3 Ξ2

Ξ3 0 −Ξ1

−Ξ2 Ξ1 0

 , (2.3.6)

in terms of a vector Ξ ∈ R3 with components Ξi, with i = 1, 2, 3.
Infinitesimal rotations are expressed by the vector cross product,

Ξ̂r = Ξ× r . (2.3.7)

The matrix components of Ξ̂ may also be written in terms of the
components of the vector Ξ as

Ξ̂jk =
(
O−1dO

ds

)
jk

∣∣∣∣∣
s=0

= −Ξiεijk ,
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where εijk with i, j, k = 1, 2, 3 is the totally antisymmetric tensor
with ε123 = 1, ε213 = −1, etc. One may compute directly for a fixed
vector r,

d

ds
es

bΞr = Ξ̂esbΞr = Ξ× es
bΞr .

Consequently, one may evaluate at s = 0,

d

ds
es

bΞr
∣∣∣∣
s=0

= Ξ̂r = Ξ× r .

This expression recovers the expected result in (2.3.7) in terms of
the exponential notation. It means the quantity r(s) = exp(sΞ̂)r
describes a finite, right-handed rotation of the initial vector r = r(0)
by the angle s|Ξ| around the axis pointing in the direction of Ξ.

N

Remark 2.3.7 (Properties of the hat map)
The hat map arises in the infinitesimal rotations,

Ξ̂jk = (O−1dO/ds)jk|s=0 = −Ξiεijk .

The hat map is an isomorphism:

(R3,×) 7→ (so(3), [ · , · ] ) .

That is, the hat map identifies the composition of two vectors in R3

using the cross product with the commutator of two skew-symmetric
3× 3 matrices. Specifically, we write for any two vectors Q,Ξ ∈ R3,

− (Q×Ξ)k = εklmΞ lQm = Ξ̂kmQm .

That is,
Ξ×Q = Ξ̂Q for all Ξ, Q ∈ R3 .

The following formulas may be easily verified for P,Q,Ξ ∈ R3:

(P×Q)̂ =
[
P̂ , Q̂

]
,[

P̂ , Q̂
]
Ξ = (P×Q)×Ξ ,

P ·Q = − 1
2

trace
(
P̂ Q̂

)
.
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Remark 2.3.8 The commutator of infinitesimal transformation ma-
trices given by the formula,[(

Ξ̂1 r1

0 0

)
,

(
Ξ̂2 r2

0 0

)]
=

(
Ξ̂1Ξ̂2 − Ξ̂2Ξ̂1 Ξ̂1r2 − Ξ̂2r1

0 0

)
,

provides a matrix representation of se(3), the Lie algebra of the Lie
group SE(3). In vector notation, this becomes[(

Ξ1× r1

0 0

)
,

(
Ξ2× r2

0 0

)]
=

((
Ξ1 ×Ξ2

)
× Ξ1 × r2 −Ξ2 × r1

0 0

)
.

Remark 2.3.9 The se(3) matrix commutator yields[
(Ξ̂1 , r1) , (Ξ̂2 , r2)

]
=

(
Ξ̂1Ξ̂2 − Ξ̂2Ξ̂1 , Ξ̂1r2 − Ξ̂2r1

)
,

which is the classic expression for the Lie algebra of a semidirect-
product Lie group.

Exercise. (Infinitesimal Galilean transformations)
From their finite transformations in Definition 1.2.1 and
Exercise 1.3 compute the infinitesimal transformations of
the Galilean group under composition of first rotations,
then boosts, then translations in space and time. F

Answer. The composition of translations, g1(sr0, st0), Galilean
boosts g3(sv0) and rotations g2(O(s)) acting on a velocity-space-time
point (v, r, t) is given by

g1g3g2(v, r, t) =
(
O(s)v + sv0, O(s)r + tsv0 + sr0, t+ st0

)
.

One computes the infinitesimal transformations as

τ =
dt

ds

∣∣∣
s=0

= t0 ,

ξ =
dr
ds

∣∣∣
s=0

= r0 + v0t+ Ξ× r ,

ξ̇ − vτ̇ =
dv
ds

∣∣∣
s=0

= v0 + Ξ× v .
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The infinitesimal velocity transformation may also be computed from
equation (2.3.2).

Consequently, the infinitesimal transformation by the Galilean
group of a function F (t, r,v) is given by operation of the following
vector field, obtained as the first term in a Taylor series,

d

ds

∣∣∣∣
s=0

F (t(s), r(s),v(s)) (2.3.8)

= t0
∂F

∂t
+

(
r0 + v0t+ Ξ× r

)
· ∂F
∂r

+
(
v0 + Ξ× v

)
· ∂F
∂v

.

The finite transformations of the translations, g1(sr0, st0), boosts
g3(sv0) and rotations g2(O(s)) acting on a space-time point as

(r(s), t(s)) = g1(sr0, st0)g3(sv0)g2(O(s))(r, t) ,

are obtained by integrating the characteristic curves of this vector
field from the identity s = 0 at which (r(0), t(0)) = (r, t).

N

Exercise. (Galilean Lie symmetries)
Since the Galilean transformations form a Lie group, one
may expect them to be a source of Lie symmetries of the
action. Compute the corresponding Noether conservation
laws. F

Answer. As we have already seen, symmetries under space and
time translations imply conservation of linear momentum and energy,
respectively. Likewise, symmetry under rotations implies angular
momentum conservation. Finally, symmetry under Galilean boosts
implies conservation of centre-of-mass momentum. These classical
statements may all be proved explicitly from Noether’s theorem and
the infinitesimal transformations of the Galilean group. N

Exercise. (Galilean infinitesimal transformations)
Verify the infinitesimal transformations of Gal(3) – that
is, calculate its tangent vectors at the identity – by using
its 5× 5 matrix representation in Exercise 1.3. F
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Answer. The 5 × 5 matrix representation of tangent vectors for
Gal(3) at the identity is found by first computing the derivative of a
general group element (O(s), sv0, sr0, st0) along the group path with
parameter s and bringing the result back to the identity at s = 0,

[ O(s) sv0 sr0

0 1 st0
0 0 1

−1 O ′(s) v0 r0

0 0 t0
0 0 0

 ]
s=0

=

O−1(s)O ′(s) O−1(s)v0 O−1(s)(r0 − v0t0)
0 0 t0
0 0 0

 ∣∣∣∣∣
s=0

=

 Ξ̂ v0 r0 − v0t0
0 0 t0
0 0 0

 =:
(
Ξ̂, v0, r0, t0

)
,

in terms of the 3 × 3 skew-symmetric matrix Ξ̂ = O−1(s)O ′(s)|s=0

and the Galilean shift parameters v0, r0, t0. N

Exercise. (Galilean Lie algebra commutators)
Verify the commutation relation[

(Ξ̂1, v1, r1, t1), (Ξ̂2, v2, r2, t2)
]

=([
Ξ̂1, Ξ̂2

]
, Ξ̂1v2 − Ξ̂2v1, Ξ̂1(r2,v2, t2)− Ξ̂2(r1,v1, t1), 0

)
,

where

Ξ̂1(r2,v2, t2)− Ξ̂2(r1,v1, t1)

=
(
Ξ̂1(r2 − v2t2) + v1t2

)
−

(
Ξ̂2(r1 − v1t1) + v2t1

)
.

Show that this commutation relation is equivalent to the
commutation relation for the vector field representation
in equation (2.3.8).

F
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2.4 Lagrangian form of rigid-body motion

In the absence of external torques, Euler’s equations (2.1.33) for
rigid-body motion in principal axis coordinates are:

I1Ω̇1 = (I2 − I3)Ω2Ω3,

I2Ω̇2 = (I3 − I1)Ω3Ω1,

I3Ω̇3 = (I1 − I2)Ω1Ω2,

(2.4.1)

or, equivalently,
IΩ̇ = IΩ×Ω , (2.4.2)

where Ω = (Ω1,Ω2,Ω3) is the body angular velocity vector and
I1, I2, I3 are the moments of inertia in the principal axis frame of
the rigid body. We ask whether these equations may be expressed
using Hamilton’s principle on R3. For this, we will need to define the
variational derivative of a functional S[(Ω].

Definition 2.4.1 (Variational derivative)
The variational derivative of a functional S[(Ω] is defined as its lin-
earisation in an arbitrary direction δΩ in the vector space of body
angular velocities. That is,

δS[Ω] := lim
s→0

S[Ω + sδΩ]− S[Ω]
s

=
d

ds

∣∣∣
s=0

S[Ω + sδΩ]=:
〈 δS
δΩ

, δΩ
〉
,

where the new pairing, also denoted as 〈 · , · 〉, is between the space
of body angular velocities and its dual, the space of body angular
momenta.

Theorem 2.4.2 (Euler’s rigid-body equations)
Euler’s rigid-body equations are equivalent to Hamilton’s princi-
ple

δS(Ω) = δ

∫ b

a
l(Ω) dt = 0, (2.4.3)
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in which the Lagrangian l(Ω) appearing in the action integral

S(Ω) =
∫ b
a l(Ω) dt is given by the kinetic energy in principal axis

coordinates,

l(Ω) =
1
2
〈IΩ,Ω〉 =

1
2

IΩ ·Ω =
1
2

(I1Ω2
1 + I2Ω2

2 + I3Ω2
3) , (2.4.4)

and variations of Ω are restricted to be of the form

δΩ = Ξ̇ + Ω×Ξ , (2.4.5)

where Ξ(t) is a curve in R3 that vanishes at the endpoints in
time.

Proof. Since l(Ω) = 1
2〈IΩ,Ω〉, and I is symmetric, one obtains

δ

∫ b

a
l(Ω) dt =

∫ b

a

〈
IΩ, δΩ

〉
dt

=
∫ b

a

〈
IΩ, Ξ̇ + Ω×Ξ

〉
dt

=
∫ b

a

[〈
− d

dt
IΩ,Ξ

〉
+

〈
IΩ,Ω×Ξ

〉]
dt

=
∫ b

a

〈
− d

dt
IΩ + IΩ×Ω,Ξ

〉
dt,

upon integrating by parts using the endpoint conditions,

Ξ(a) = 0 = Ξ(b) .

Since Ξ is otherwise arbitrary, (2.4.3) is equivalent to

− d

dt
(IΩ) + IΩ×Ω = 0,

which recovers Euler’s equations (2.4.1) in vector form.
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Proposition 2.4.3 (Derivation of the restricted variation)
The restricted variation in (2.4.5) arises via the following steps.

1. Vary the definition of body angular velocity, Ω̂ = O−1Ȯ.

2. Take the time derivative of the variation, Ξ̂ = O−1O ′.

3. Use equality of cross derivatives, O ˙ ′ = d2O/dtds = O ′ .̇

4. Apply the hat map.

Proof. One computes directly that

Ω̂ ′ = (O−1Ȯ) ′ = −O−1O ′O−1Ȯ +O−1O ˙ ′ = − Ξ̂Ω̂ +O−1O ˙ ′ ,
Ξ̂ ˙ = (O−1O ′) ˙ = −O−1ȮO−1O ′ +O−1O ′ ˙ = − Ω̂Ξ̂ +O−1O ′ ˙ .

On taking the difference, the cross derivatives cancel and one finds
a variational formula equivalent to (2.4.5),

Ω̂ ′ − Ξ̂ ˙ =
[
Ω̂ , Ξ̂

]
with [ Ω̂ , Ξ̂ ] := Ω̂Ξ̂− Ξ̂Ω̂ . (2.4.6)

Under the bracket-relation (5.1.1) for the hat map, this equation
recovers the vector relation (2.4.5) in the form,

Ω ′ − Ξ̇ = Ω×Ξ . (2.4.7)

Thus, Euler’s equations for the rigid body in TR3,

IΩ̇ = IΩ×Ω , (2.4.8)

do follow from the variational principle (2.4.3) with variations of the
form (2.4.5) derived from the definition of body angular velocity Ω̂.

Exercise. The body angular velocity is expressed in
terms of the spatial angular velocity by Ω(t) = O−1(t)ω(t).
Consequently, the kinetic energy Lagrangian in (2.4.4)
transforms as

l(Ω) =
1
2

Ω · IΩ =
1
2

ω · Ispace(t)ω =: lspace(ω) ,
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where Ispace(t) = O(t)IO−1(t) as in (2.1.31).

Show that Hamilton’s principle for the action

S(ω) =
∫ b

a
lspace(ω) dt ,

yields conservation of spatial angular momentum

π = Ispace(t)ω(t) .

Write this as a geodesic equation in the form (2.2.4).

F

Remark 2.4.4 (Reconstruction of O(t) ∈ SO(3))
The Euler solution is expressed in terms of the time-dependent
angular velocity vector in the body, Ω. The body angular velocity
vector Ω(t) yields the tangent vector Ȯ(t) ∈ TO(t)SO(3) along the
integral curve in the rotation group O(t) ∈ SO(3) by the relation,

Ȯ(t) = O(t)Ω̂(t) , (2.4.9)

where the left-invariant skew-symmetric 3×3 matrix Ω̂ is defined
by the hat map (2.1.27),

(O−1Ȯ)jk = Ω̂jk = −Ωiεijk . (2.4.10)

Equation (2.4.9) is the reconstruction formula for O(t) ∈
SO(3).

Once the time dependence of Ω(t) and hence Ω̂(t) is deter-
mined from the Euler equations, solving formula (2.4.9) as a lin-
ear differential equation with time-dependent coefficients yields
the integral curve O(t) ∈ SO(3) for the orientation of the rigid
body.
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2.4.1 Hamilton-Pontryagin constrained variations

Formula (2.4.6) for the variation Ω̂ of the skew-symmetric matrix

Ω̂ = O−1Ȯ ,

may be imposed as a constraint in Hamilton’s principle and thereby
provide a variational derivation of Euler’s equations (2.1.33) for rigid-
body motion in principal axis coordinates. This constraint is incor-
porated into the matrix Euler equations, as follows.

Proposition 2.4.5 (Matrix Euler equations)
Euler’s rigid-body equation may be written in matrix form as,

dΠ
dt

= −
[
Ω̂ , Π

]
with Π = IΩ̂ =

δl

δΩ̂
, (2.4.11)

for the Lagrangian l(Ω̂) given by

l =
1
2

〈
IΩ̂ , Ω̂

〉
. (2.4.12)

Here, the bracket [
Ω̂ , Π

]
:= Ω̂Π−ΠΩ̂ , (2.4.13)

denotes the commutator and 〈 · , · 〉 denotes the trace pairing, e.g.,〈
Π , Ω̂

〉
=:

1
2

trace
(
ΠT Ω̂

)
. (2.4.14)

Remark 2.4.6 Note that the symmetric part of Π does not con-
tribute in the pairing and if set equal to zero initially, it will remain
zero.

Proposition 2.4.7 (Constrained variational principle)
The matrix Euler equations (2.4.11) are equivalent to stationarity
δS = 0 of the following constrained action

S(Ω̂, O, Ȯ,Π) =
∫ b

a
l(Ω̂, O, Ȯ,Π) dt (2.4.15)

=
∫ b

a

[
l(Ω̂) + 〈Π , (O−1Ȯ − Ω̂ ) 〉

]
dt .
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Remark 2.4.8 The integrand of the constrained action in (2.4.15)
is similar to the formula for the Legendre transform, but its func-
tional dependence is different. This variational approach is related
to the classic Hamilton-Pontryagin principle for control theory
in [YoMa2007]. It is also used in [BoMa2007] to develop algorithms
for geometric numerical integrations of rotating motion.

Proof. The variations of S in formula (2.4.15) are given by

δS =
∫ b

a

{〈 δl

δΩ̂
−Π , δΩ̂

〉
+

〈
δΠ , (O−1Ȯ − Ω)

〉
+

〈
Π , δ(O−1Ȯ)

〉}
dt ,

where
δ(O−1Ȯ) = Ξ̂ ˙+ [ Ω̂ , Ξ̂ ] , (2.4.16)

and Ξ̂ = (O−1δO) from equation (2.4.6).

Substituting for δ(O−1Ȯ) into the last term of δS produces∫ b

a

〈
Π , δ(O−1Ȯ)

〉
dt =

∫ b

a

〈
Π , Ξ̂ ˙ + [ Ω̂ , Ξ̂ ]

〉
dt

=
∫ b

a

〈
− Π˙− [ Ω̂ , Π ] , Ξ̂

〉
dt ,

where one uses the cyclic properties of the trace operation for matri-
ces,

trace(ΠT Ξ̂ Ω̂) = trace(Ω̂ ΠT Ξ̂) . (2.4.17)

Thus, stationarity of the Hamilton-Pontryagin variational principle
implies the following set of equations

δl

δΩ̂
= Π , O−1Ȯ = Ω̂ , Π˙ = −[ Ω̂ , Π ] . (2.4.18)

Remark 2.4.9 (Interpreting the formulas in (2.4.18))
The first formula in (2.4.18) defines the angular momentum matrix
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Π as the fibre derivative of the Lagrangian with respect to the an-
gular velocity matrix Ω̂. The second formula is the reconstruction
formula (2.4.9) for the solution curve O(t) ∈ SO(3), given the so-
lution Ω̂(t) = O−1Ȯ. And the third formula is Euler’s equation for
rigid-body motion in matrix form.

2.4.2 Manakov’s formulation of the SO(n) rigid body

Proposition 2.4.10 (Manakov [Man1976])
Euler’s equations for a rigid body on SO(n) take the matrix commu-
tator form,

dM

dt
= [M , Ω ] with M = AΩ + ΩA , (2.4.19)

where the n× n matrices M, Ω are skew-symmetric (forgoing super-
fluous hats) and A is symmetric.

Proof. Manakov’s commutator form of the SO(n) rigid-body equa-
tions (2.4.19) follows as the Euler-Lagrange equations for Hamilton’s
principle δS = 0 with S =

∫
l dt for the Lagrangian

l = −1
2
tr(ΩAΩ) ,

where Ω = O−1Ȯ ∈ so(n) and the n × n matrix A is symmetric.
Taking matrix variations in Hamilton’s principle yields

δS = −1
2

∫ b

a
tr

(
δΩ (AΩ + ΩA)

)
dt = −1

2

∫ b

a
tr

(
δΩM

)
dt ,

after cyclically permuting the order of matrix multiplication under
the trace and substituting M := AΩ + ΩA. Using the variational
formula (2.4.16) for δΩ now leads to

δS = −1
2

∫ b

a
tr

(
(Ξ˙+ ΩΞ− ΞΩ)M

)
dt .

Integrating by parts and permuting under the trace then yields the
equation

δS =
1
2

∫ b

a
tr

(
Ξ ( Ṁ + ΩM −MΩ )

)
dt .
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Finally, invoking stationarity for arbitrary Ξ implies the commutator
form (2.4.19).

2.4.3 Matrix Euler-Poincaré equations

Manakov’s commutator form of the rigid-body equations recalls much
earlier work by Poincaré [Po1901], who also noticed that the matrix
commutator form of Euler’s rigid-body equations suggests an addi-
tional mathematical structure going back to Sophus Lie’s theory of
groups of transformations depending continuously on parameters. In
particular, Poincaré [Po1901] remarked that the commutator form of
Euler’s rigid-body equations would make sense for any Lie algebra,
not just for so(3). The proof of Manakov’s commutator form (2.4.19)
by Hamilton’s principle makes contact with Poincaré’s generalisation
of Euler’s equations in the following Theorem.

Theorem 2.4.11 (Matrix Euler-Poincaré equations)
The Euler-Lagrange equations for Hamilton’s principle δS = 0
with S =

∫
l(Ω) dt may be expressed in matrix commutator form

dM

dt
= [M , Ω ] with M =

δl

δΩ
, (2.4.20)

for any Lagrangian l(Ω), where Ω = g−1ġ ∈ g and g is the matrix
Lie algebra of any matrix Lie group G.

Proof. The proof here is the same as the proof of Manakov’s
commutator formula via Hamilton’s principle, modulo replacing
O−1Ȯ ∈ so(n) by g−1ġ ∈ g.

Remark 2.4.12 Poincaré’s observation leading to the Matrix Euler-
Poincaré equation (2.4.20) was reported in two pages with no ref-
erences [Po1901]. The proof above shows that the Matrix Euler-
Poincaré equations possess a natural variational principle. Note that
if Ω = g−1ġ ∈ g, then M = δl/δΩ ∈ g∗, where the dual is defined in
terms of the matrix trace pairing.
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Exercise. Retrace the proof of the variational princi-
ple for the Euler-Poincaré equation replacing the left-
invariant quantity g−1ġ by the right-invariant quantity
ġg−1.

F

2.4.4 Manakov’s integration of the SO(n) rigid body

Manakov [Man1976] observed that equations (2.4.19) may be “de-
formed” into

d

dt
(M + λA) = [(M + λA), (Ω + λB)] , (2.4.21)

where A, B are also n × n matrices and λ is a scalar constant pa-
rameter. For these deformed rigid-body equations on SO(n) to hold
for any value of λ, the coefficient of each power must vanish.

• The coefficent of λ2 is

0 = [A,B] .

Therefore, A and B must commute. For this, let them be
constant and diagonal:

Aij = diag(ai)δij , Bij = diag(bi)δij (no sum).

• The coefficent of λ is

0 =
dA

dt
= [A,Ω] + [M,B] .

Therefore, by antisymmetry of M and Ω,

(ai − aj)Ωij = (bi − bj)Mij ,

which implies that

Ωij =
bi − bj
ai − aj

Mij (no sum).

Hence, angular velocity Ω is a linear function of angular mo-
mentum, M .
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• Finally, the coefficent of λ0 recovers the Euler equation,

dM

dt
= [M,Ω] ,

but now with the restriction that the moments of inertia are of
the form,

Ωij =
bi − bj
ai − aj

Mij (no sum).

This relation turns out to possess only five free parameters for
n = 4.

Under these conditions, Manakov’s deformation of the SO(n) rigid-
body equation into the commutator form (2.4.21) implies for every
non-negative integer power K that

d

dt
(M + λA)K = [(M + λA)K , (Ω + λB)] .

Since the commutator is antisymmetric, its trace vanishes and K
conservation laws emerge, as

d

dt
tr (M + λA)K = 0 ,

after commuting the trace operation with time derivative. Conse-
quently,

tr (M + λA)K = constant ,

for each power of λ. That is, all the coefficients of each power of λ
are constant in time for the SO(n) rigid body. Manakov [Man1976]
proved that these constants of motion are sufficient to completely
determine the solution for n = 4.

Remark 2.4.13 This result generalises considerably. For example,
Manakov’s method determines the solution for all the algebraically
solvable rigid bodies on SO(n). The moments of inertia of these
bodies possess only 2n−3 parameters. (Recall that in Manakov’s case
for SO(4) the moment of inertia possesses only five parameters.)
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Exercise. Try computing the constants of motion tr(M+
λA)K for the valuesK = 2, 3, 4. Hint: Keep in mind that
M is a skew-symmetric matrix, MT = −M , so the trace
of the product of any diagonal matrix times an odd power
of M vanishes. F

Answer. The traces of the powers trace(M + λA)K are given by

n=2 : trM2 + 2λtr (AM) + λ2trA2 ,

n=3 : trM3 + 3λtr (AM2) + 3λ2trA2M + λ3trA3 ,

n=4 : trM4 + 4λtr (AM3) + λ2(2trA2M2 + 4trAMAM)
+ λ3trA3M + λ4trA4 .

The number of conserved quantities for n = 2, 3, 4 are, respectively,
one (C2 = trM2), one (C3 = trAM2) and two (C4 = trM4 and
I4 = 2trA2M2 + 4trAMAM). N

Exercise. How do the Euler equations look on so(4)∗ as
a matrix equation? Is there an analog of the hat map for
so(4)? Hint: The Lie algebra so(4) is locally isomorphic
to so(3)× so(3). F

2.5 Hamilton

The Legendre transform of Lagrangian (2.4.4) in the variational
principle (2.4.3) for Euler’s rigid-body dynamics (2.4.8) on R3 will
reveal its well-known Hamiltonian formulation.

Definition 2.5.1 (Legendre transformation)
The Legendre transformation Fl : R3 → R3∗ ' R3 is defined by
the fibre derivative,

Fl(Ω) =
δl

δΩ
= Π .
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The Legendre transformation defines the body angular mo-
mentum by the variations of the rigid-body’s reduced Lagrangian
with respect to the body angular velocity. For the Lagrangian in
(2.4.3), the R3 components of the body angular momentum are

Πi = IiΩi =
∂l

∂Ωi
, i = 1, 2, 3. (2.5.1)

Remark 2.5.2 This is also how body angular momentum was de-
fined in the Newtonian setting. See Definition 2.1.30.

Exercise. Express the Lagrangian (2.4.4) in terms of the
matrices O(t) and Ȯ(t). Show that this Lagrangian is
left-invariant under (O, Ȯ) 7→ (RO, RȮ) for any orthog-
onal matrix RT = R−1. Compute the Euler-Lagrange
equations for this Lagrangian in geodesic form (2.2.4).

F

Exercise. Compute the Legendre transformation and
pass to the canonical Hamiltonian formulation using the
Lagrangian l(Ω) = L(O , Ȯ) and the following definitions
of the canonical momentum and Hamiltonian,

P =
∂L(O , Ȯ)

∂Ȯ
and H(P , O) =

〈
P , Ȯ

〉
−L(O , Ȯ) ,

in combination with the chain rule for Ω = O−1Ȯ. F

2.5.1 Hamiltonian form of rigid-body motion

Definition 2.5.3 (Poisson bracket)
A Poisson bracket operation {· , ·} is defined as possessing
the following properties.

1. It is bilinear,

2. skew-symmetric, {F , H} = −{H , F},
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3. satisfies the Leibnitz rule (product rule),

{FG , H} = {F , H}G+ F{G , H} ,

for the product of any two functions F and G on M , and

4. satisfies the Jacobi identity

{F , {G , H}}+{G , {H , F}}+{H , {F , G}} = 0 , (2.5.2)

for any three functions F , G and H on M .

Remark 2.5.4 This definition of Poisson bracket does not require
it to be the standard canonical bracket in position q and conjugate
momentum p, although it does include that case, as well.

Definition 2.5.5 (Dynamical systems in Hamiltonian form)
A dynamical system on a manifold M

ẋ(t) = F(x) , x ∈M ,

is said to be in Hamiltonian form, if it can be expressed as

ẋ(t) = {x,H} , for H : M 7→ R ,

in terms of a Poisson bracket operation {· , ·} among smooth real
functions F(M) : M 7→ R on the manifold M ,

{· , ·} : F(M)×F(M) 7→ F(M) ,

so that Ḟ = {F , H} for any F ∈ F(M).

2.5.2 Lie-Poisson Hamiltonian rigid-body dynamics

Let
h(Π) := 〈Π,Ω〉 − l(Ω) , (2.5.3)

where the pairing 〈· , ·〉 : R3∗ × R3 → R is understood as the vector
dot product on R3

〈Π,Ω〉 := Π ·Ω . (2.5.4)
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Hence, one finds the expected expression for the rigid-body Hamil-
tonian

h =
1
2

Π · I−1Π :=
Π2

1

2I1
+

Π2
2

2I2
+

Π2
3

2I3
. (2.5.5)

The Legendre transform Fl for this case is a diffeomorphism, so one
may solve for

∂h

∂Π
= Ω +

〈
Π ,

∂Ω
∂Π

〉
−

〈
∂l

∂Ω
,
∂Ω
∂Π

〉
= Ω , (2.5.6)

upon using the definition of angular momentum Π = ∂l/∂Ω in (2.5.1).
In R3 coordinates, the relation (2.5.6) expresses the body angular ve-
locity as the derivative of the reduced Hamiltonian with respect to
the body angular momentum, namely,

∂h

∂Π
= Ω .

Hence, the reduced Euler-Lagrange equations for l may be expressed
equivalently in angular momentum vector components in R3 and
Hamiltonian h as:

d

dt
(IΩ) = IΩ×Ω ⇐⇒ Π̇ = Π× ∂h

∂Π
:= {Π, h} .

This expression suggests we introduce the following rigid-body Pois-
son bracket on functions of the Π’s:

{f, h}(Π) := −Π ·
(
∂f

∂Π
× ∂h

∂Π

)
. (2.5.7)

For the Hamiltonian (2.5.5), one checks that the Euler equations in
terms of the rigid-body angular momenta,

Π̇1 =
(

1
I3
− 1
I2

)
Π2Π3 ,

Π̇2 =
(

1
I1
− 1
I3

)
Π3Π1 ,

Π̇3 =
(

1
I2
− 1
I1

)
Π1Π2 ,

(2.5.8)
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that is, the equations,

Π̇ = Π× I−1Π , (2.5.9)

are equivalent to

ḟ = {f, h} , with f = Π .

The Poisson bracket proposed in (2.5.7) is an example of a Lie-
Poisson bracket. It satisfies the defining relations of a Poisson
bracket for a number of reasons, not least because it is an example
of a Nambu bracket, to be discussed next.

2.5.3 Nambu’s R3 Poisson bracket

The rigid-body Poisson bracket (2.5.7) is a special case of the Poisson
bracket for functions of x ∈ R3 introduced in [Na1973],

{f, h} = −∇c · ∇f ×∇h . (2.5.10)

This bracket generates the motion

ẋ = {x, h} = ∇c×∇h . (2.5.11)

For this bracket the motion takes place along the intersections of
level surfaces of the functions c and h in R3. In particular, for the
rigid body, the motion takes place along intersections of angular mo-
mentum spheres c = |x|2/2 and energy ellipsoids h = x · Ix. (See the
cover illustration of [MaRa1994].)

Exercise. Consider the R3 Nambu bracket

{f, h} = −∇c · ∇f ×∇h . (2.5.12)

Let c = xT · Cx/2 be a quadratic form on R3, and let
C be the associated symmetric 3 × 3 matrix. Show by
direct computation that this Nambu bracket satisfies the
Jacobi identity. F
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Exercise. Find the general conditions on the function
c(x) so that the R3 bracket

{f, h} = −∇c · ∇f ×∇h ,

satisfies the defining properties of a Poisson bracket. Is
this R3 bracket also a derivation satisfying the Leibnitz
relation for a product of functions on R3? If so, why?

F

Answer. The bilinear skew-symmetric Nambu R3 bracket yields the
divergenceless vector field,

Xc,h = { · , h} = (∇c×∇h) · ∇ with div (∇c×∇h) = 0 .

Divergenceless vector fields are derivative operators that satisfy the
Leibnitz product rule. They also satisfy the Jacobi identity for any
choice of C2 functions c and h. Hence, the Nambu R3 bracket is a
bilinear skew-symmetric operation satisfying the defining properties
of a Poisson bracket. N

Theorem 2.5.6 (Jacobi identity)
The Nambu bracket R3-bracket (2.5.12) satisfies the Jacobi identity.

Proof. The isomorphism XH = { · , H} between the Lie algebra of
divergenceless vector fields and functions under the R3-bracket is the
key to proving this theorem. The Lie derivative among vector fields
is identified with the Nambu bracket by

LXG
XH = [XG, XH ] = −X{G,H} .

Repeating the Lie derivative produces,

LXF
(LXG

XH) = [XF , [XG, XH ] ] = X{F,{G,H}} .

The result follows because both the left- and right-hand sides in this
equation satisfy the Jacobi identity.

Exercise. How is the R3 bracket related to the canonical
Poisson bracket? Hint: Restrict to level surfaces of the
function c(x). F
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Exercise. (Casimirs of the R3 bracket) The Casimirs (or
distinguished functions, as Lie called them) of a Poisson
bracket satisfy

{c, h}(x) = 0 , for all h(x) .

Suppose the function c(x) is chosen so that the R3 bracket
(2.5.10) defines a proper Poisson bracket. What are the
Casimirs for the R3 bracket (2.5.10)? Why? F

Exercise. (Geometric interpretation of Nambu motion)

• Show that the Nambu motion equation (2.5.11)

ẋ = {x, h} = ∇c×∇h ,

for the R3 bracket (2.5.10) is invariant under a cer-
tain linear combination of the functions c and h.
Interpret this invariance geometrically.

• Show that the rigid-body equations for

I = diag (1, 1/2, 1/3) ,

may be interpreted as intersections in R3 of the
spheres x2

1 + x2
2 + x2

3 = constant and the hyperbolic
cylinders x2

1 − x2
3 = constant. See [HoMa1991] for

more discussions of this geometric interpretation of
solutions under the R3 bracket.

• A special case of the equations for three-wave inter-
actions is [AlLuMaRo1998]

ẋ1 = s1γ1x2x3 , ẋ2 = s2γ2x3x1 , ẋ3 = s3γ3x1x2 ,

for a set of constants γ1 + γ2 + γ3 = 0 and signs
s1, s2, s3 = ±1. Write these equations as a Nambu
motion equation on R3 of the form (2.5.11). Inter-
pret their solutions geometrically as intersections of
level surfaces of quadratic functions for various val-
ues and signs of the γ’s.

F
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2.5.4 Clebsch variational principle for the rigid body

Proposition 2.5.7 (Clebsch variational principle)
The Euler rigid-body equations (2.4.2) on TR3 are equivalent to
the constrained variational principle,

δS(Ω,Q, Q̇;P) = δ

∫ b

a
l(Ω,Q, Q̇;P) dt = 0, (2.5.13)

for a constrained action integral

S(Ω,Q, Q̇) =
∫ b

a
l(Ω,Q, Q̇) dt (2.5.14)

=
∫ b

a

1
2
Ω · IΩ + P ·

(
Q̇ + Ω×Q

)
dt .

Remark 2.5.8 (Reconstruction as constraint)

• The first term in the Lagrangian (2.5.14),

l(Ω) =
1
2
(I1Ω2

1 + I2Ω2
2 + I3Ω2

3) =
1
2
ΩT IΩ , (2.5.15)

is again the (rotational) kinetic energy of the rigid body in
(2.1.23).

• The second term in the Lagrangian (2.5.14) introduces a
the Lagrange multiplier P which imposes the constraint

Q̇ + Ω×Q = 0 .

This reconstruction formula has solution

Q(t) = O−1(t)Q(0) ,

which satisfies

Q̇(t) = − (O−1Ȯ)O−1(t)Q(0)
= − Ω̂(t)Q(t) = −Ω(t)×Q(t) . (2.5.16)
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Proof. The variations of S are given by

δS =
∫ b

a

( δl

δΩ
· δΩ +

δl

δP
· δP +

δl

δQ
· δQ

)
dt

=
∫ b

a

[(
IΩ−P×Q

)
· δΩ

+ δP ·
(
Q̇ + Ω×Q

)
− δQ ·

(
Ṗ + Ω×P

)]
dt .

Thus, stationarity of this implicit variational principle implies
the following set of equations

IΩ = P×Q , Q̇ = −Ω×Q , Ṗ = −Ω×P . (2.5.17)

These symmetric equations for the rigid body first appeared in the
theory of optimal control of rigid bodies [BlCrMaRa1998]. Euler’s
form of the rigid-body equations emerges from these, upon elimina-
tion of Q and P, as

IΩ̇ = Ṗ×Q + P× Q̇

= Q× (Ω×P) + P× (Q×Ω)
= −Ω× (P×Q) = −Ω× IΩ ,

which are Euler’s equations for the rigid body in TR3.

Remark 2.5.9 The Clebsch variational principle for the rigid body
is a natural approach in developing geometric algorithms for numer-
ical integrations of rotating motion. Geometric integrators for rota-
tions are derived using the Clebsch approach in [CoHo2007].

Remark 2.5.10 The Clebsch approach is also a natural path across
to the Hamiltonian formulation of the rigid-body equations. This
becomes clear in the course of the following exercise.

Exercise. Given that the canonical Poisson brackets in
Hamilton’s approach are

{Qi, Pj} = δij and {Qi, Qj} = 0 = {Pi, Pj} ,

what are the Poisson brackets for Π = P × Q ∈ R3 in
(2.5.17)? Show that these Poisson brackets recover the
rigid-body Poisson bracket (2.5.7). F
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Answer. The components of the angular momentum Π = IΩ in
(2.5.17) are

Πa = εabcPbQc ,

and their canonical Poisson brackets are (noting the similarity with
the hat map)

{Πa,Πi} = {εabcPbQc , εijkPjQk} = − εailΠl .

Consequently, the derivative property of the canonical Poisson bracket
yields,

{f, h}(Π) =
∂f

∂Πa
{Πa,Πi}

∂h

∂Πb
= − εabcΠc

∂f

∂Πa

∂h

∂Πb
, (2.5.18)

which is indeed the Lie-Poisson bracket in (2.5.7) on functions of the
Π’s. The correspondence with the hat map noted above shows that
this Poisson bracket satisfies the Jacobi identity as a result of the
Jacobi identity for the vector cross product on R3.

N

Remark 2.5.11 This exercise proves that the map T ∗R3 → R3

given by Π = P × Q ∈ R3 in (2.5.17) is Poisson. That is, the
map takes Poisson brackets on one manifold into Poisson brackets
on another manifold. Later we will recognise such an occurrence as
one of the properties of a momentum map.

Exercise. The Euler-Lagrange equations in matrix com-
mutator form of Manakov’s formulation of the rigid body
on SO(n) are

dM

dt
= [M , Ω ] ,

where the n×nmatricesM, Ω are skew-symmetric. Show
that these equations may be derived from Hamilton’s
principle δS = 0 with constrained action integral

S(Ω, Q, P ) =
∫ b

a
l(Ω) + tr

(
P T

(
Q̇−QΩ

))
dt ,
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for which M = δl/δΩ = P TQ−QTP and Q,P ∈ SO(n)
satisfy the following symmetric equations reminiscent of
those in (2.5.17),

Q̇ = QΩ and Ṗ = PΩ , (2.5.19)

as a result of the constraints. F

Exercise. Write Manakov’s deformation of the rigid-
body equations (2.4.21) in the symmetric form (2.5.19).

F




