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The waves we’ve looked at so far in this book have been “dispersionless” waves, that is, waves
whose speed is independent of ω and k. In all of the systems we’ve studied (longitudinal
spring/mass, transverse string, longitudinal sound), we ended up with a wave equation of
the form,

∂2ψ

∂t2
= c2

∂2ψ

∂x2
, (1)

where c depends on various parameters in the setup. The solutions to this equation can be
built up from exponential functions, ψ(x, t) = Aei(kx−ωt). Plugging this function into Eq.
(1) gives

ω2 = c2k2. (2)

This is the so-called dispersion relation for the above wave equation. But as we’ll see, it
is somewhat of a trivial dispersion relation, in the sense that there is no dispersion. We’ll
explain what we mean by this below.

The velocity of the wave is ω/k = ±c, which is independent of ω and k. More precisely,
this is the phase velocity of the wave, to distinguish it from the group velocity which we’ll
define below. The qualifier “phase” is used here, because the speed of a sinusoidal wave
sin(kx − ωt) is found by seeing how fast a point with constant phase, kx − ωt, moves. So
the phase velocity is given by

kx− ωt = Constant =⇒ d(kx− ωt)

dt
= 0 =⇒ k

dx

dt
− ω = 0 =⇒ dx

dt
=

ω

k
, (3)

as desired.
As we’ve noted many times, a more general solution to the wave equation in Eq. (1) is

any function of the form f(x − ct); see Eq. (2.97). So the phase velocity could reasonably
be called the “argument velocity,” because c is the speed with which a point with constant
argument, x− ct, of the function f moves.

However, not all systems have the property that the phase velocity ω/k is constant (that
is, independent of ω and k). It’s just that we’ve been lucky so far. We’ll now look at a
so-called dispersive system, in which the phase velocity isn’t constant. We’ll see that things
get more complicated for a number of reasons. In particular, a new feature that arises is
the group velocity.

The outline of this chapter is as follows. In Section 6.1 we discuss a classic example of a
dispersive system: transverse waves in a setup consisting of a massless string with discrete
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2 CHAPTER 6. DISPERSION

point masses attached to it. We will find that ω/k is not constant. That is, the speed of
a wave depends on its ω (or k) value. In Section 6.2 we discuss evanescent waves. Certain
dispersive systems support sinusoidal waves only if the frequency is above or below a certain
cutoff value. We will determine what happens when these bounds are crossed. In Section
6.3 we discuss the group velocity, which is the speed with which a wave packet (basically,
a bump in the wave) moves. We will find that this speed is not the same as the phase
velocity. The fact that these two velocities are different is a consequence of the fact that in
a dispersive system, waves with different frequencies move with different speeds. The two
velocities are the same in a non-dispersive system, which is why there was never any need
to introduce the group velocity in earlier chapters.

6.1 Beads on a string

Consider a system that is made up of beads on a massless string. The beads have mass
m and are glued to the string with separation `, as shown in Fig. 1. The tension is T .

m m m m m

l l l l

Figure 1

We’ll assume for now that the system extends infinitely in both directions. The goal of this
section is to determine what transverse waves on this string look like. We’ll find that they
behave fundamentally different from the waves on the continuous string that we discussed
in Chapter 4. However, we’ll see that in a certain limit they behave the same.

We’ll derive the wave equation for the beaded string by writing down the transverse
F = ma equation on a given bead. Consider three adjacent beads, label by n − 1, n, and
n+ 1, as shown in Fig. 2. For small transverse displacements, ψ, we can assume (as we did
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Figure 2
in Chapter 4) that the beads move essentially perpendicular to the equilibrium line of the
string. And as in Chapter 4, the tension is essentially constant, for small displacements.
So the transverse F = ma equation on the middle mass in Fig. 2 is (using sin θ ≈ tan θ for
small angles)

mψ̈n = −T sin θ1 + T sin θ2

= −T

(
ψn − ψn−1

`

)
+ T

(
ψn+1 − ψn

`

)

=⇒ ψ̈n = ω2
0(ψn+1 − 2ψn + ψn−1), where ω2

0 =
T

m`
. (4)

This has exactly the same form as the F = ma equation for the longitudinal spring/mass
system we discussed in Section 2.3; see Eq. (2.41). The only difference is that ω2

0 now equals
T/m` instead of k/m. We can therefore carry over all of the results from Section 2.3. You
should therefore reread that section before continuing onward here.

We will, however, make one change in notation. The results in Section 2.3 were written
in terms of n, which labeled the different beads. But for various reasons, we’ll now find it
more convenient to work in terms of the position, x, along the string (as we did in Section
2.4). The solutions in Eq. (2.55) are linear combinations of functions of the form,

ψn(t) = trig(nθ) trig(ωt), (5)

where each “trig” means either sine or cosine, and where we are now using ψ to label the
displacement (which is now transverse). θ can take on a continuous set of values, because
we’re assuming for now that the string extends infinitely in both directions, so there’s aren’t
any boundary conditions that restrict θ. ω can also take on a continuous set of values, but
it must be related to θ by Eq. (2.56):

2 cos θ ≡ 2ω2
0 − ω2

ω2
0

=⇒ ω2 = 4ω2
0

(
1− cos θ

2

)
=⇒ ω = 2ω0 sin

(
θ

2

)
. (6)
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Let’s now switch from the nθ notation in Eq. (5) to the more common kx notation. But
remember that we only care about x when it is a multiple of `, because these are the locations
of the beads. We define k by

kx ≡ nθ =⇒ k(n`) = nθ =⇒ k` = θ. (7)

We have chosen the x = 0 point on the string to correspond to the n = 0 bead. The ψn(t)
in Eq. (5) now becomes

ψ(x, t) = trig(kx) trig(ωt). (8)

In the old notation, θ gave a measure of how fast the wave oscillated as a function of n, In
the new notation, k gives a measure of how fast the wave oscillates as a function of x. k
and θ differ simply by a factor of the bead spacing, `. Plugging θ = k` into Eq. (6) gives
the relation between ω and k:

ω(k) = 2ω0 sin

(
k`

2

)
(dispersion relation) (9)

where ω0 =
√
T/m`. This is known as the dispersion relation for our beaded-string system.

It tells us how ω and k are related. It looks quite different from the ω(k) = ck dispersion
relation for a continuous string (technically ω(k) = ±ck, but we generally don’t bother with
the sign). However, we’ll see below that they agree in a certain limit.

What is the velocity of a wave with wavenumber k? (Just the phase velocity for now.
We’ll introduce the group velocity in Section 6.3.) The velocity is still ω/k (the reasoning
in Eq. (3) is still valid), so we have

c(k) =
ω

k
=

2ω0 sin(k`/2)

k
. (10)

The main point to note here is that this velocity depends on k, unlike in the dispersionless
systems in earlier chapters. In the present system, ω isn’t proportional to k.

We can perform a double check on the velocity c(k). In the limit of very small ` (tech-
nically, in the limit of very small k`), we essentially have a continuous string. So Eq. (10)
had better reduce to the c =

√
T/µ result we found in Eq. (4.5) for transverse waves on a

continuous string. Or said in another way, the velocity in Eq. (10) had better not depend
on k in this limit. And indeed, using sin ε ≈ ε, we have

c(k) =
2ω0 sin(k`/2)

k
≈ 2ω0(k`/2)

k
= ω0` =

√
T

m`
` =

√
T

m/`
≡

√
T

µ
, (11)

where µ is the mass density per unit length. So it does reduce properly to the constant
value of

√
T/µ. Note that the condition k` ¿ 1 can be written as (2π/λ)` ¿ 1 =⇒ ` ¿ λ.

In other words, if the spacing between the beads is much shorter than the wavelength of the
wave in question, then the string acts like a continuous string. This makes sense. And it
makes sense that the condition should involve these two lengths, because they are the only
two length scales in the system.

If the ` ¿ λ condition doesn’t hold, then the value of ω/k in Eq. (10) isn’t independent
of k, so the beaded string apparently doesn’t behave like a continuous string. What does it
behave like? Well, the exact expression for ω in terms of k given in Eq. (9) yields the plot
shown in Fig. 3.
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Figure 3

There are various things to note about this figure:

1. Given a value of k and its associated value of ω, the phase velocity of the wave is ω/k.
But ω/k is the slope from the origin to the point (k, ω) in the figure, as shown. So the
phase velocity has this very simple graphical interpretation. As we saw in Eq. (11),
the slope starts off with a value of ω0` =

√
T/µ near the origin, but then it decreases.

It then repeatedly increases and decreases as the point (k, ω) runs over the successive
bumps in the figure. As k → ∞, the slope ω/k goes to zero (we’ll talk more about
this in the third comment below).

2. Note that ω0 ≡
√
T/m` can be written as ω0 = (1/`)

√
T/µ, where µ = m/` is the

mass density. So if we hold T and µ constant and decrease ` (for example, if we keep
subdividing the masses, thereby making the string more and more continuous), then
ω0 grows like 1/`. So the maximum height of the bumps in Fig. 3, which is 2ω0,
behaves like 1/`. But the width of the bumps also behaves like 1/`. So if we decrease
` while keeping T and µ constant, the whole figure simply expands uniformly. The
linear approximation in Eq. (11) near the origin is therefore relevant for a larger range
of k values. This means that the string behaves like a continuous string for more k
values, which makes sense.

3. From Fig. 3, we see that many different values of k give the same ω value. In particular,
k1, 2π/`− k1, 2π/`+ k1, etc., all give the same ω. However, it turns out that only the
first half-bump of the curve (between k = 0 and k = π/`) is necessary for describing
any possible motion of the beads. The rest of the curve gives repetitions of the first
half-bump. The reason for this is that we care only about the movement of the beads,
which are located at positions of the form x = n`. We don’t care about the rest of
the string. Consider, for example, the case where the wavenumber is k2 = 2π/`− k1.
A rightward-traveling wave with this wavenumber takes the form,

A cos(k2x− ωt) = A cos

((2π
`

− k1

)
(n`)− ωt

)

= A cos
(
2nπ − k1(n`)− ωt

)

= A cos(−k1x− ωt). (12)

We therefore conclude that a rightward-moving wave with wavenumber 2π/`− k1 and
frequency ω gives exactly the same positions of the beads as a leftward-moving wave
with wavenumber k1 and frequency ω. (A similar statement holds with “right” and
“left” reversed.) If we had instead picked the wavenumber to be 2π/` + k1, then
a quick sign change in Eq. (12) shows that this would yield the same positions as a
rightward-moving wave with wavenumber k1 and frequency ω. The rightward/leftward
correspondence alternates as we run through the class of equivalent k’s.
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It is worth emphasizing that although the waves have the same values at the positions
of the beads, the waves look quite different at other locations on the string. Fig.4 shows
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1 2 3 4 5 6
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ψ

(start)

(time t)

(time 2t)

velocity= vvelocity= -3v
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(l=1)

v 3v

Figure 4

the case where k1 = π/2`, and so k2 = 2π/`−k1 = 3π/2`. The two waves have common
values at positions of the form x = n` (we have arbitrarily chosen ` = 1). The k values
are in the ratio of 1 to 3, so the speeds ω/k are in the ratio of 3 to 1 (because the
ω values are the same). The k2 wave moves slower. From the previous paragraph, if
the k2 wave has speed v to the right, then the k1 wave has speed 3v to the left. If we
look at slightly later times when the waves have moved distances 3d to the left and d
to the right, we see that they still have have common values at positions of the form
x = n`. This is what Eq. (12) says in equations. The redundancy of the k values is
simply the Nyquist effect we discussed at the end of Section 2.3, so you should reread
that subsection now if you haven’t already done so.

In comment “1” above, we mentioned that as k → ∞, the phase velocity ω/k goes
to zero. It is easy to see this graphically. Fig. 5 shows waves with wavenumbers

1 2 3 4 5 6

x

ψ
(l=1)

Figure 5

k1 = π/2`, and k2 = 6π/` − k1 = 11π/2`. The wave speed of the latter is small;
it is only 1/11 times the speed of the former. This makes sense, because the latter
wave (the very wiggly one) has to move only a small distance horizontally in order for
the dots (which always have integral values of x here) to move appreciable distances
vertically. A small movement in the wiggly wave will cause a dot to undergo, say, a
full oscillation cycle. At the location of any of the dots, the slope of the k2 wave is
always −11 times the slope of the k1 wave. So the k2 wave has to move only 1/11 as
far as the k1 wave, to give the same change in height of a given dot. This slope ratio
of −11 (at x values of the form n`) is evident from taking the ∂/∂x derivative of Eq.
(12); the derivatives (the slopes) are in the ratio of the k’s.

4. How would the waves in Fig. 4 behave if we were instead dealing with the dispersionless
system of transverse waves on a continuous string, which we discussed in Chapter 4?
(The length ` now doesn’t exist, so we’ll just consider two waves with wavenumbers
k and 3k, for some value of k.) In the dispersionless case, all waves move with the
same speed. (We would have to be given more information to determine the direction,
because ω/k = c only up to a ± sign.) The transverse-oscillation frequency of a given
point described by the k2 wave is therefore 3 times what the frequency would be if the
point were instead described by the k1 wave, as indicated in the straight-line dispersion
relation in Fig. 6. Physically, this fact is evident if you imagine shifting both of the

k

k 3k

ω

ck

3ck

Figure 6

waves horizontally by, say, 1 cm on the paper. Since the k2 wavelength is 1/3 the k1
wavelength, a point on the k2 curve goes through 3 times as much oscillation phase
as a point on the k2 wave. In contrast, in a dispersionful system, the speeds of the
waves don’t have to all be equal. And furthermore, for the k values associated with
the points on the horizontal line in Fig. 3, the speeds work out in just the right way
so that the oscillation frequencies of the points don’t depend on which wave they’re
considered to be on.

6.2 Evanescent waves

6.2.1 High-frequency cutoff

The dispersion relation in Eq. (9) follows from Eq. (6), which we derived back in Section
2.3.1 (although we didn’t use the term “dispersion” there). The bulk of the derivation was
contained in Claim 2.1. But recall that this claim assumed that ω ≤ 2ω0. This is consistent
with the fact that the largest value of ω in Fig. 3 is 2ω0? However, what if we grab the
end of a string and wiggle it sinusoidally with a frequency ω that is larger than 2ω0. We’re
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free to pick any ω we want, and the string will certainly undergo some kind of motion. But
apparently this motion, whatever it is, isn’t described by the above sinusoidal waves that
we found for the ω ≤ 2ω0 case.

If ω > 2ω0, then the math in Section 2.3.1 that eventually led to the ω = 2ω0 sin(k`/2)
result in Eq. (9) is still perfectly valid. So if ω > 2ω0, we conclude that sin(k`/2) must be
greater than 1. This isn’t possible if k is real, but it is possible if k is complex. So let’s plug
k ≡ K + iκ into ω = 2ω0 sin(k`/2), and see what we get. We obtain (the trig sum formula
works fine for imaginary arguments)

ω

2ω0
= sin

(
K`

2
− iκ`

2

)

= sin

(
K`

2

)
cos

(
iκ`

2

)
− cos

(
K`

2

)
sin

(
iκ`

2

)
. (13)

By looking at the Taylor series for cosine and sine, the cos(iκ`/2) function is real because
the series has only even exponents, while the sin(iκ`/2) function is imaginary (and nonzero)
because the series has only odd exponents. But we need the righthand side of Eq. (13) to be
real, because it equals the real quantity ω/2ω0. The only way for this to be the case is for the
cos(K`/2) coefficient of sin(iκ`/2) to be zero. Therefore, we must have K` = π, 3π, 5π, . . ..
However, along the same lines as the redundancies in the k values we discussed in the third
comment in the previous section, the 3π, 5π, . . . values for K` simply reproduce the motions
(at least at the locations of the beads) that are already described by the Ka = π value. So
we need only consider the K` = π =⇒ K = π/` value. Said in another way, if we’re ignoring
all the Nyquist redundancies, then we know that k = π/` when ω = 2ω0 (see Fig. 3). And
since the real part of k should be continuous at ω = 2ω0 (imagine increasing ω gradually
across this threshold), we conclude that K = π/` for all ω > 2ω0. So k ≡ K + iκ becomes

k =
π

`
+ iκ. (14)

Plugging K = π/` into Eq. (13) yields

ω

2ω0
= (1) cos

(
iκ`

2

)
− 0 =⇒ cosh

(
κ`

2

)
=

ω

2ω0
. (15)

This equation determines κ. You van verify the conversion to the hyperbolic cosh function
by writing out the Taylor series for both cos(iy) and cosh(y). We’ll keep writing things in
terms of κ, but it’s understood that we can solve for it by using Eq. (15).

What does the general exponential solution, Bei(kx−ωt), for ψ look like when k takes on
the value in Eq. (14)? (We could work in terms of trig functions, but it’s much easier to use
exponentials; we’ll take the real part in the end.) Remembering that we care only about the
position of the string at the locations of the masses, the exponential solution at positions of
the form x = n` becomes

ψ(x, t) = Bei(kx−ωt)

=⇒ ψ(n`, t) = Bei((π/`+iκ)(n`)−ωt)

= Be−κn`ei(nπ−ωt)

= Be−κn`(−1)ne−iωt

→ Ae−κn`(−1)n cos(ωt+ φ) (16)

where we have taken the real part. The phase φ comes from a possible phase in B.1 If we

1If you’re worried about the legality of going from real k values to complex ones, and if you have your
doubts that this ψ function actually does satisfy Eq. (4), you should plug it in and explicitly verify that it
works, provided that κ is given by Eq. (15). This is the task of Problem [to be added].
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want to write this as a function of x = n`, then it equals ψ(x, t) = Ae−κx(−1)x/` cos(ωt+φ).
But it is understood that this is valid only for x values that are integral multiples of `.
Adjacent beads are 180◦ out of phase, due to the (−1)n factor in ψ. As a function of
position, the wave is an alternating function that is suppressed by an exponential. A wave
that dies out exponentially like this is called an evanescent wave. Two snapshots of the
wave at a time of maximal displacement (that is, when cos(ωt+φ) = 1) are shown in Fig. 7,
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for the values A = 1, ` = 1. The first plot has κ = 0.03, and the second has κ = 0.3. From
Eq. (15), we then have ω ≈ (2.02)(2ω0) in the latter, and ω is essentially equal to 2ω0 in
the former.

Since the time and position dependences in the wave appear in separate factors (and not
in the form of a kx− ωt argument), the wave is a standing wave, not a traveling wave. As
time goes on, each wave in Fig. 7 simply expands and contracts (and inverts), with frequency
ω. All the beads in each wave pass through equilibrium at the same time.

Remark: A note on terminology. In Section 4.6 we discussed attenuated waves, which are also

waves that die out. The word “attenuation” is used in the case of actual sinusoidal waves that

decrease to zero due to an envelope curve (which is usually an exponential); see Fig. 4.26. The

word “evanescent” is used when there is no oscillatory motion; the function simply decreases to

zero. The alternating signs in Eq. (16) make things a little ambiguous. It’s semantics as to whether

Eq. (16) represents two separate exponential curves going to zero, or a very fast oscillation within

an exponential envelope. But we’ll choose to call it an evanescent wave. At any rate, the system

in Section 6.2.2 below will support waves that are unambiguously evanescent. ♣

We see that 2ω0 is the frequency above which the system doesn’t support traveling waves.
Hence the “High-frequency cutoff” name of this subsection. We can have nice traveling-wave
motion below this cutoff, but not above. Fig. 8 shows the ψ(x, t) = A cos(kx−ωt+φ) waves
that arise if we wiggle the end of the string with frequencies ω equal to (0.1)ω0, ω0, (1.995)ω0,
and 2ω0. The corresponding values of k are determined from Eq. (9). We have arbitrarily
picked A = 1 and ` = 1. The sine waves are shown for convenience, but they aren’t really
there. We haven’t shown the actual straight-line string segments between the masses. At
the ω = 2ω0 cutoff between the traveling waves in Fig. 8 and the evanescent waves in Fig.
7, the masses form two horizontal lines that simply rise and fall.

-

-

-

-

-

-

-

-

x

ψ
ω=(0.1)ω0 ω=ω0

ω=2ω0ω=(1.995)ω0

2 4 6 8 10

1. 0

0. 5

0. 5

1. 0

2 4 6 8 10

1. 0

0. 5

0. 5

1. 0

2 4 6 8 10

1. 0

0. 5

0. 5

1. 0

2 4 6 8 10

1. 0

0. 5

0. 5

1. 0

                    (sine curves not actually present)

(straight-line string segments between masses not shown)

Figure 8



8 CHAPTER 6. DISPERSION

The cutoff case of ω = 2ω0 can be considered to be either an evanescent wave or a
traveling wave. So both of these cases must reduce to the same motion when ω = ω0. Let’s
verify this. If we consider the wave to be an evanescent wave, then with ω = 2ω0, Eq. (15)
gives κ = 0. So there is no exponential decay, and the beads’ positions in Eq. (16) simply
alternate indefinitely to the right, in two horizontal lines. If we instead consider the wave
to be a traveling wave, then with ω = 2ω0, Eq. (9) gives k` = π =⇒ k = π/`, which means
that the wavelength approaches 2`. The traveling wave at positions of the form x = n`
looks like

A cos(kx− ωt+ φ) = A cos
(π
`
· n`− ωt+ φ

)

= A cos(nπ − ωt+ φ)

= A cos(nπ) cos(ωt− φ)

= A(−1)n cos(ωt− φ), (17)

which agrees with Eq. (16) when κ = 0 (with a different definition of φ).

In the extreme case where ω À ω0, Eq. (15) tells us that κ is large, which means that
the exponential factor e−κn` goes to zero very quickly. This makes sense. If you wiggle the
end of the string very quickly (as always, we’re assuming that the amplitude is small, in
particular much smaller than the bead spacing), then the bead that you’re holding onto will
move with your hand, but all the other beads will hardly move at all. This is because they
have essentially zero time to accelerate in one direction before you move your hand to the
other side and change the direction of the force.

In practice, ω doesn’t have to be much larger than 2ω0 for this lack of motion to arise.
Even if ω is only 4ω0, then Eq. (15) gives the value of κ` as 2.6. The amplitude of the
n = 1 and n = 2 masses are then suppressed by a factors of e−κn` = e−1(2.6) ≈ 1/14, and
e−κn` = e−2(2.6) ≈ 1/200. So if you grab the n = 0 mass at the end of the string and move
it back and forth at frequency 4ω0, you’ll end up moving the n = 1 mass a little bit, but all
the other masses will essentially not move.

Remark: For given values of T and µ, the relation ω0 = (1/`)
√

T/µ (see Eq. (11)) implies that if

` is very small, you need to wiggle the string very fast to get into the ω > 2ω0 evanescent regime.

In the limit of a continuous string (` → 0), ω0 is infinite, so you can never get to the evanescent

regime. In other words, any wiggling that you do will produce a normal traveling wave. This

makes intuitive sense. It also makes dimensional-analysis sense, for the following reason. Since a

continuous string is completely defined in terms of the two parameters T (with units of kgm/s2)

and µ (with units of kg/m), there is no way to combine these parameters to form a quantity with

the dimensions of frequency (that is, s−1). So for a continuous string, there is therefore no possible

frequency value that can provide the cutoff between traveling and evanescent waves. All waves

must therefore fall into one of these two categories, and it happens to be the traveling waves. If,

however, a length scale ` is introduced, then it is possible to generate a frequency (namely ω0),

which can provide the scale of the cutoff (which happens to be 2ω0). ♣

Power

If you wiggle the end of a beaded string with a frequency larger than 2ω0, so that an
evanescent wave of the form in Eq. (16) arises, are you transmitting any net power to the
string? Since the wave dies off exponentially, there is essentially no motion far to the right.
Therefore, there is essentially no power being transmitted across a given point far to the
right. So it had better be the case that you are transmitting zero net power to the string,
because otherwise energy would be piling up indefinitely somewhere between your hand and
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the given point far to the right. This is impossible, because there is no place for this energy
to go.2

It is easy to see directly why you transmit zero net power over a full cycle (actually over
each half cycle). Let’s start with the position shown in Fig. 9, which shows a snapshot when
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the masses all have maximal displacement. The n = 0 mass is removed, and you grab the
end of the string where that mass was. As you move your hand downward, you do negative
work on the string, because you are pulling upward (and also horizontally, but there is no
work associated with this force because your hand is moving only vertically), but your hand
is moving in the opposite direction, downward. However, after your hand passes through
equilibrium, it is still moving downward but now pulling downward too (because the string
you’re holding is now angled up to the right), so you are doing positive work on the string.
The situation is symmetric (except for signs) on each side of equilibrium, so the positive
and negative works cancel, yielding zero net work, as expected.

In short, your force is in “quadrature” with the velocity of your hand. That is, it is
90◦ out of phase with the velocity (behind it). So the product of the force and the velocity
(which is the power) cancels over each half cycle. This is exactly the same situation that
arises in a simple harmonic oscillator with a mass on a spring. You can verify that the force
and velocity are in quadrature (the force is ahead now), and there is no net work done by
the spring (consistent with the fact that the average motion of the mass does’t change over
time).

How do traveling waves (ω < 2ω0) differ from evanescent waves (ω > 2ω0), with regard
to power? For traveling waves, when you wiggle the end, your force isn’t in quadrature
with the velocity of your hand, so you end up doing net positive work. In the small-ω limit
(equivalently, the continuous-string limit), your force is exactly in phase with the velocity,
so you’re always doing positive work. However, as ω increases (with a beaded string), your
force gradually shifts from being in phase with the velocity at ω ≈ 0, to being in quadrature
with it at ω = 2ω0, at which point no net work is being done. The task of Problem [to be
added] is to be quantitative about this.

6.2.2 Low-frequency cutoff

The above beaded string supported traveling waves below a certain cutoff frequency but not
above it. Let’s now consider the opposite situation. We’ll look at a system that supports
traveling waves above a certain cutoff frequency but not below it. Hence the “Low-frequency
cutoff” name of this subsection.

Consider a continuous string (not a beaded one) with tension T and density µ. Let the
(infinite) string be connected to a wall by an essentially continuous set of springs, initially
at their relaxed length, as shown in Fig. 10.

string

springs

wall

Figure 10

If the springs weren’t present, then the return force (for transverse waves) on a little
piece of the string with length ∆x would be T∆x(∂2ψ/∂x2); see Eq. (4.2). But we now also

2We are assuming steady-state motion. At the start, when you get the string going, you are doing net
work on the string. Energy piles up at the start, because the string goes from being in equilibrium to moving
back and forth. But in steady state, the average motion of the string doesn’t change in time.
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have the spring force, −(σ∆x)ψ, where σ is the spring constant per unit length. (The larger
the piece, the more springs that touch it, so the larger the force.) The transverse F = ma
equation on the little piece is therefore modified from Eq. (4.3) to

(µ∆x)
∂2ψ

∂t2
= T∆x

∂2ψ

∂x2
− (σ∆x)ψ

=⇒ ∂2ψ

∂t2
= c2

∂2ψ

∂x2
− ω2

sψ, where c2 ≡ T

µ
and ω2

s ≡ σ

µ
. (18)

We will find that c is not the wave speed, as it was in the simple string system with no
springs. To determine the dispersion relation associated with Eq. (18), we can plug in our
standard exponential solution, ψ(x, t) = Aei(kx−ωt). This tells us that ω and k are related
by

ω2 = c2k2 + ω2
s (dispersion relation) (19)

This is the dispersion relation for the string-spring system. The plot of ω vs. k is shown in
Fig. 11. There is no (real) value of k that yields a ω smaller than ωs. However, there is an

k

ωs

ω

ω=ck

ω= c2k2+ωs
2

Figure 11

imaginary value of k that does. If ω < ωs, then Eq. (19) gives

k =

√
ω2 − ω2

s

c
≡ iκ, where κ ≡

√
ω2
s − ω2

c
. (20)

Another solution for κ is the negative of this one, but we’ll be considering below the case
where the string extends to x = +∞, so this other solution would cause ψ to diverge,
given our sign convention in the exponent of ei(kx−ωt). Substituting k ≡ iκ into ψ(x, t) =
Aei(kx−ωt) gives

ψ(x, t) = Aei((iκ)x−ωt) = Ae−κxe−iωt → Be−κx cos(ωt+ φ) (21)

where as usual we have taken the real part. We see that ψ(x, t) decays as a function of x,
and that all points on the string oscillate with the same phase as a function of t. (This is
in contrast with adjacent points having opposite phases in the above beaded-string setup.
Opposite phases wouldn’t make any sense here, because we don’t have discrete adjacent
points on a continuous string.) So we have an evanescent standing wave. If we wiggle the
left end up and down sinusoidally with a frequency ω < ωs, then snapshots of the motion
take the general form shown in Fig. 12. The rate of the exponential decrease (as a function

(start)

(1/4 period later)

(1/2 period later)

Figure 12

of x) depends on ω. If ω is only slightly smaller than ωs, then the κ in Eq. (20) is small, so
the exponential curve dies out very slowly to zero. In the limit where ω ≈ 0, we’re basically
holding the string at rest in the first position in Fig. 12, and you can show from scratch by
balancing transverse forces in this static setup that the string does indeed take the shape
of a decreasing exponential with κ ≈ ωs/c =

√
σ/T ; see Problem [to be added]. This static

case yields the quickest spatial decay to zero.
It makes sense that the system doesn’t support traveling waves for ω < ωs, because even

without any tension force, the springs would still make the atoms in the string oscillate
with a frequency of at least

√
σ∆x/µ∆x = ωs. Adding on a tension force will only increase

the restoring force (at least in a traveling wave, where the curvature is always toward the
x axis), and thus also the frequency. In the cutoff case where ω = ωs, the string remains
straight, and it oscillates back and forth as a whole, just as a infinite set of independent
adjacent masses on springs would oscillate.

We have been talking about evanescent waves where ω < ωs, but we can still have normal
traveling waves if ω > ωs, because the k in Eq. (20) is then real. If ω À ωs, then Eq. (20)
tells us that ω ≈ ck. In other words, the system acts like a simple string with no springs
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attached to it. This makes sense; on the short time scale of the oscillations, the spring
doesn’t have time to act, so it’s effectively like it’s not there. Equivalently, the transverse
force from the springs completely dominates the spring force. If on the other hand ω is
only slightly larger than ωs, then Eq. (20) says that k is very small, which means that the
wavelength is very large. In the ω → ωs limit, we have λ → ∞. The speed of the wave is
then ω/k ≈ ωs/k ≈ ∞. This can be seen graphically in Fig. 13, where the slope from the

k

ωs

ω

ω= c2k2+ωs
2

slope = ω/k 

= phase velocity

Figure 13

origin is ω/k, which is the phase velocity (just as it was in Fig. 3). This slope can be made
arbitrarily large by making k be arbitrarily small. We’ll talk more about excessively large
phase velocities (in particular, larger than the speed of light) in Section 6.3.3.

Note that the straight-line shape of the string in the ω = ωs case that we mentioned
above can be considered to be the limit of a traveling wave with an infinitely long wavelength,
and also an evanescent wave with an infinitely slow decay.

Power

As with the evanescent wave on the beaded string in Section 6.2.1, no net power can be
transmitted in the present evanescent wave, because otherwise there would be energy piling
up somewhere (because the wave dies out). But there is no place for it to pile up, because
we are assuming steady-state motion. This can be verified with the same reasoning as in
the beaded-string case; the net power you transmit to the string as you wiggle the left end
alternates sign each quarter cycle, so there is complete cancelation over a full cycle.

Let’s now consider the modified setup shown in Fig. 14. To the left of x = 0, we have
a normal string with no springs. What happens if we have a rightward-traveling wave that
comes in from the left, with a frequency ω < ωs. (Or there could even be weak springs in
the left region, as long as we have ωs,left < ω < ωs,right. This would still allow a traveling
wave in the left region.)

string

springs(no springs)

wall

x=0

Figure 14

From the same reasoning as above, the fact that the wave dies out on the right side
implies that no net power is transmitted along the string (in the steady state). However,
there certainly is power transmitted in the incoming traveling wave. Where does it go?
Apparently, there must be complete reflection at x = 0, so that all the power gets reflected
back. The spring region therefore behaves effectively like a brick wall, as far as reflection
goes. But the behavior isn’t exactly like a brick wall, because ψ isn’t constrained to be zero
at the boundary in the present case.

To figure out what the complete wave looks like, we must apply the boundary conditions
(continuity of the function and the slope) at x = 0.3 If we work with exponential solutions,
then the incoming, reflected, and transmitted waves take the form of Aei(ωt−kx), Bei(ωt+kx),
and Ceiωte−κx, respectively. The goal is to solve for B and C (which may be complex) in
terms of A, that is, to solve for the ratios B/A and C/A. For ease of computation, it is

3As usual, the continuity of the slope follows from the fact that there can be no net force on the essentially
massless atom at the boundary. The existence of the springs in the right region doesn’t affect this fact.
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customary to divide all of the functions by A, in which case the total waves on the two sides
of the boundary can be written as

ψL = (e−ikx +Reikx)eiωt,

ψR = De−κxeiωt, (22)

where R ≡ B/A and D ≡ C/A. R is the complex reflection coefficient. Its magnitude
is what we normally call the “reflection coefficient,” and its phase yields the phase of the
reflected wave when we eventually take the real part to obtain the physical solution. The
task of Problem [to be added] is to apply the boundary conditions and solve for R and D.

Tunneling

What happens if we have a setup in which the region with strings is finite, as shown in Fig.
15? If a rightward-traveling wave with ω < ωs comes in from the left, some of it will make it
through, and some of it will be reflected. That is, there will be a nonzero rightward-traveling
wave in the right region, and there will be the usual combination of a traveling and standing
wave in the left region that arises from partial reflection.

Figure 15

The nonzero wave in the right region implies that power is transmitted. This is consistent
with the fact that we cannot use the reasoning that zero power follows from the fact that the
wave dies out to zero; the wave doesn’t die out to zero, because the middle region has finite
length. We can’t rule out the e+κx solution, because the x = +∞ boundary condition isn’t
relevant now. So the general (steady state) solution in the left, middle, and right regions
takes the form,

ψL = (e−ikx +Reikx)eiωt,

ψM = (Be−κx + Ceκx)eiωt,

ψR = Te−ikxeiωt, (23)

where R and T are the complex reflection and transmission coefficients, defined to be the
ratio of the reflected and transmitted (complex) amplitudes to the incident (complex) am-
plitude. As in Eq. (22), we have written the waves in their complex forms, with the un-
derstanding that we will take the real part to find the actual wave. The four boundary
conditions (value and slope at each of the two boundaries) allow us to solve for the four
unknowns (R, T , B, C). This is the task of Problem [to be added]; the math gets a bit
messy.

The effect where some of the wave makes it through the “forbidden” region where trav-
eling waves don’t exist is known as tunneling. The calculation in Problem [to be added] is
exactly the same as in a quantum mechanical system involving tunneling through a classi-
cally forbidden region (a region where the total energy is less than the potential energy).
In quantum mechanics, the waves are probability waves instead of transverse string waves,
so the interpretation of the waves is different. But all the math is exactly the same as in
the above string-spring system. We’ll talk much more about quantum-mechanical waves in
Chapter 11.
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6.3 Group velocity

6.3.1 Derivation

Whether a system is dispersionless (with a linear relationship between ω and k) or disper-
sionful (with a nonlinear relationship between ω and k), the phase velocity in both cases is
vp = ω/k. The phase velocity gives the speed of a single sinusoidal traveling wave. But what
if we have, say, a wave in the form of a lone bump, which (from Fourier analysis) can be
written as the sum of many (or an infinite number of) sinusoidal waves. How fast does this
bump move? If the system is dispersionless, then all of the wave components move with the
same speed vp, so the bump also moves with this speed. We discussed this effect in Section
2.4 (see Eq. (2.97)), where we noted that any function of the form f(x−ct) is a solution to a
dispersionless wave equation, that is, an equation of the form ∂2ψ/∂t2 = c2(∂2ψ/∂x2). This
equation leads to the relation ω = ck, where c takes on a single value that is independent
of ω and k.

However, if the system is dispersionful, then ω/k depends on k (and ω), so the different
sinusoidal waves that make up the bump travel at different speeds. So it’s unclear what the
speed of the bump is, or even if the bump has a well-defined speed. It turns out that it does
in fact have a well-defined speed, and it is given by the slope of the ω(k) curve:

vg =
dω

dk
(24)

This is called the group velocity, which is a sensible name considering that a bump is made
up of a group of Fourier components, as opposed to a single sinusoidal wave. Although the
components travel at different speeds, we will find below that they conspire in such a way
as to make their sum (the bump) move with speed vg = dω/dk. However, an unavoidable
consequence of the differing speeds of the components is the fact that as time goes on, the
bump will shrink in height and spread out in width, until you can hardly tell that it’s a
bump. In other words, it will disperse. Hence the name dispersion.

Since the bump consists of wave components with many different values of k, there is
an ambiguity about which value of k is the one where we should evaluate vg = dω/dk. The
general rule is that it is evaluated at the value of k that dominates the bump. That is, it is
evaluated at the peak of the Fourier transform of the bump.

We’ll now derive the result for the group velocity in Eq. (24). And because it is so
important, we derive it in three ways.

First derivation

Although we just introduced the group velocity by talking about the speed of a bump,
which consists of many Fourier components, we can actually understand what’s going on by
considering just two waves. Such a system has all the properties needed to derive the group
velocity. So consider the two waves:

ψ1(x, t) = A cos(ω1t− k1x),

ψ2(x, t) = A cos(ω2t− k2x). (25)

It isn’t necessary that they have equal amplitudes, but it simplifies the discussion. Let’s see
what the sum of these two waves looks like. It will be advantageous to write the ω’s and
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k’s in terms of their averages and differences.4 So let’s define:

ω+ ≡ ω1 + ω2

2
, ω− ≡ ω1 − ω2

2
, k+ ≡ k1 + k2

2
, k− ≡ k1 − k2

2
. (26)

Then ω1 = ω+ + ω− and ω2 = ω+ − ω−. And likewise for the k’s. So the sum of the two
waves can be written as

ψ1(x, t) + ψ2(x, t) = A cos
(
(ω+ + ω−)t− (k+ + k−)x

)

+A cos
(
(ω+ − ω−)t− (k+ − k−)x

)

= A cos
(
(ω+t− k+x) + (ω−t− k−x)

)

+A cos
(
(ω+t− k+x)− (ω−t− k−x)

)

= 2A cos
(
ω+t− k+x

)
cos

(
ω−t− k−x

)
, (27)

where we have used cos(α ± β) = cosα cosβ ∓ sinα sinβ. We see that the sum of the two
original traveling waves can be written as the product of two other traveling waves.

This is a general result for any values of ω1, ω2, k1, and k2. But let’s now assume that
ω1 is very close to ω2 (more precisely, that their difference is small compared with their
sum). And likewise that k1 is very close to k2. We then have ω− ¿ ω+ and k− ¿ k+.
Under these conditions, the sum ψ1+ψ2 in Eq. (27) is the product of the quickly-varying (in
both space and time) wave, cos

(
ω+t−k+x

)
, and the slowly-varying wave, cos

(
ω−t−k−x

)
.

A snapshot (at the arbitrarily-chosen time of t = 0) of ψ1 + ψ2 is shown in Fig. 16. The
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-

-

x

ψ1+ψ2

Figure 16
quickly-varying wave is the actual sum, while the slowly-varying envelope is the function
2A cos

(
ω−t− k−x

)
. We have arbitrarily picked 2A = 1 in the figure. And we have chosen

k1 = 10 and k2 = 12, which yield k+ = 11 and k− = 1. So the envelope function is cos(x),
and the wiggly function (which equals ψ1 + ψ2) is cos(11x) cos(x).

At t increases, the quickly- and slowly-varying waves will move horizontally. What are
the velocities of these two waves? The velocity of the quickly-wiggling wave is ω+/k+,
which is essentially equal to either of ω1/k1 and ω2/k2, because we are assuming ω1 ≈ ω2

and k1 ≈ k2. So the phase velocity of the quickly-wiggling wave is essentially equal to the
phase velocity of either wave.

The velocity of the slowly-varying wave (the envelope) is

ω−
k−

=
ω1 − ω2

k1 − k2
. (28)

(Note that this may be negative, even if the phase velocities of the original two waves are
both positive.) If we have a linear dispersion relation, ω = ck, then this speed equals
c(k1 − k2)/(k1 − k2) = c. So the group velocity equals the phase velocity, and this common
velocity is constant, independent of k. But what if ω and k aren’t related linearly? Well, if
ω is given by the function ω(k), and if k1 is close to k2, then (ω1−ω2)/(k1−k2) is essentially
equal to the derivative, dω/dk. This is the velocity of the envelope formed by the two waves,
and it is called the the group velocity. To summarize:

vp =
ω

k
and vg =

dω

dk
(29)

In general, both of these velocities are functions of k. And in general they are not equal.
(The exception to both of these statements occurs in the case of linear dispersion.) In the

4We did something similar to this when we talked about beats in Section 2.1.4. But things are a little
different here because the functions are now functions of both x and t, as opposed to just t.
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general case where vg 6= vp, the fast wiggles in Fig. 16 move with respect to the envelope.
If vp > vg, then the little wiggles pop into existence at the left end of an envelope bump
(or the right end if vp < vg). They grow and then shrink as they move through the bump,
until finally they disappear when they reach the right end of the bump.

In the case of the beaded-string system discussed in Section 6.1, the plot of ω(k) was
shown in Fig. 3. So the phase and group velocities are shown graphically in Fig. 17. For k

ω

slope = dω/dk = vg

2ω0

slope = ω/k = vp

π/l

Figure 17

0 < k < π/` (which is generally the part of the graph we’re concerned with), the slope of
the curve at any point is less than the slope of the line from the origin to the point, so we
see that vg is always less than vp.

In the case of the string/spring system discussed in Section 6.2.2, the plot of ω(k) was
shown in Fig. 11. So the phase and group velocities are shown graphically in Fig. 18. We

k

ωs

ω

slope = ω/k = vp

slope = dω/dk = vg

Figure 18

again see that vg is always less than vp. However, this need not be true in general, as we’ll
see in the examples in Section 6.3.2 below. For now, we’ll just note that in the particular
case where the plot of ω(k) passes through the origin, there are two basic possibilities of
what the ω(k) curve can look like, depending on whether it is concave up or down. These
are shown in Fig. 19. The first case always has vg > vp, while the second always has vg < vp.

k

ω

k

ω

vg

vg

vp

(vg > vp)

(vg < vp)vp

Figure 19

In the first case, sinusoidal waves with small k (large λ) travel slower (that is, they have a
smaller vp) than waves with large k (small λ). The opposite is true in the second case.

Second derivation

Consider two waves with different values of ω and k, as shown in the first pair of waves in
Fig. 20. These two waves constructively interfere at the dots, so there will be a bump there.
When and where does the next bump occur? If we can answer these questions, then we can
find the effective velocity of the bump.

v1

v2

λ2

λ1

Figure 20

If v1 = v2 (that is, if ω1/k1 = ω2/k2), then both waves travel at the same speed, so the
bump simply travels along with the waves, at their common speed. But if v1 6= v2, then the
dots will become unaligned. If we assume that v1 > v2 (the v1 < v2 case is similar), then
at some later time the next two peaks will line up, as shown in the second pair of waves in
Fig. 20. These peaks are marked with x’s. There will then be a bump at this new location.
(If v1 < v2, the next alignment will occur to the left of the initial one.)

When do these next peaks line up? The initial distance between the x’s is λ2 − λ1, and
the top wave must close this gap at a relative speed of v1 − v2, so t = (λ2 − λ1)/(v1 − v2).
Equivalently, just set λ1+v1t = λ2+v2t, because these two quantities represent the positions
of the two x’s, relative to the initial dots. Having found the time t, the position of the next
alignment is given by x = λ1 + v1t (and also λ2 + v2t). The velocity at which the bump
effectively travels is therefore

x

t
=

λ1 + v1t

t
=

λ1

t
+ v1 = λ1

(
v1 − v2
λ2 − λ1

)
+ v1 =

λ1v1 − λ1v2
λ2 − λ1

+
λ2v1 − λ1v1
λ2 − λ1
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=
λ2v1 − λ1v2
λ2 − λ1

=
2π
k2

ω1

k1
− 2π

k1

ω2

k2

2π
k2

− 2π
k1

=
ω1−ω2

k1k2

k1−k2

k1k2

=
ω1 − ω2

k1 − k2
≡ vg. (30)

This is the same speed we obtained in Eq. (28). This is no surprise, because we basically
did the same calculation here. In the previous derivation, we assumed that the waves were
nearly identical, whereas we didn’t assume that here. This assumption isn’t needed for the
vg = (ω1 − ω2)/(k1 − k2) result. Whenever and wherever a bump in the present derivation
exists, it touches the top of the envelope curve (if we had drawn it). So what we effectively
did in this derivation is find the speed of the envelope curve. But this is exactly what we
did in the previous derivation.

In between the alignments of the dot and the x in Fig. 20, the bump disappears, then
appears in the negative direction, then disappears again before reappearing at the x. This
is consistent with the fact that the wiggly wave in Fig. 16 doesn’t always (in fact, rarely
does) touch the midpoint (the highest point) of the envelope bump. But on average, the
bump effectively moves with velocity vg = (ω1 − ω2)/(k1 − k2).

Note that if k1 is very close to k2, and if ω1 is not very close to ω2, then vg = (ω1 −
ω2)/(k1 − k2) is large. It is easy to see intuitively why this is true. We may equivalently
describe this scenario by saying that λ1 is very close to λ2, and that v1 is not very close to
v2 (because v = ωk). The nearly equal wavelengths imply that in Fig. 20 the two x’s are
very close together. This means that it takes essentially no time for them to align (because
the velocities aren’t close to each other). The location of the alignment therefore jumps
ahead by a distance of one wavelength in essentially no time, which means that the effective
speed is large (at least as large as the λ1/t term in Eq. (30)).

What if we have a large number of waves with roughly the same values of k (and hence
ω), with a peak of each wave lining up, as shown by the dots in Fig. 21? Since the plot of

Figure 21

ω(k) at any point is locally approximately a straight line, the quotient (ω1 − ω2)/(k1 − k2),
which is essentially equal to the derivative dω/dk, is the same for all nearby points, as shown
in Fig. 22. This means that the next bumps (the x’s in Fig. 21) will all line up at the same

k

ω

Figure 22

time and at the same place, because the location of all of the alignments is given by x = vgt,
by Eq. (30). In other words, the group velocity vg is well defined. The various waves all
travel with different phase velocities vp = ω/k, but this is irrelevant as far as the group
velocity goes, because vg depends on the differences in ω and k through Eq. (30), and not
on the actual values of ω and k.

Third derivation

By definition, vg is the velocity at which a bump in a wave travels. From Fourier analysis,
we know that in general a wave consists of components with many different frequencies. If
these components are to “work together” to form a bump at a certain location, then the
phases ωit− kit+ φi of the different components (or at least many of them) must be equal
at the bump, if they are to add constructively to form the bump.

Assume that we have a bump at a particular value of x and t. We are free to pick the
origins of x and t to be wherever and whenever we want, so let’s pick the bump to be located
at x = 0 and t = 0. Since the phases ωit− kit+ φi are all equal (or at least many of them)
in a region around some particular k value, we conclude that the φi are all equal, because
x = t = 0. In other words, φ is independent of k.5

At what other values of x and t, besides (x, t) = (0, 0), is there a bump? That is, at
what other values of x and t are the phases still all equal? Well, we want ωt − kx + φ to
be independent of k near some particular k value, because then the phases of the waves for

5You can check that the following derivation still works in the case of general initial coordinates (x0, t0);
see Problem [to be added]. But it’s less messy if we choose (0, 0).
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all the different k values will be equal, which means that the waves will add constructively
and therefore produce another bump. (We have dropped the index i on ω and k, and it is
understood that ω is a function ω(k) of k.) Demanding that the phase be independent of k
gives

0 =
d(ωt− kx+ φ)

dk
=⇒ 0 =

dω

dk
t− x =⇒ x

t
=

dω

dk
, (31)

where we have used dφ/dk = 0. So we have a bump at any values of x and t satisfying this
relation. In other words, the speed of the bump is

vg =
dω

dk
, (32)

in agreement with the result from the previous derivations.
Note that the phase velocity (of single traveling wave) is obtained by demanding that

the phase ωt− kx+ φ of the wave be independent of time:

0 =
d(ωt− kx+ φ)

dt
=⇒ 0 = ω − k

dx

dt
=⇒ vp ≡ dx

dt
=

ω

k
. (33)

But the group velocity (of a group of traveling waves) is obtained by demanding that the
phase ωt− kx+ φ of all the different waves be independent of the wavenumber k:

0 =
d(ωt− kx+ φ)

dk
=⇒ 0 =

dω

dk
t− x =⇒ vg ≡ x

t
=

dω

dk
. (34)

Just because the quantity dω/dk exists, there’s no guarantee that there actually will be
a noticeable bump traveling at the group velocity vg. It’s quite possible (and highly likely
if things are random) that there is no constructive interference anywhere. But what we
showed above was that if there is a bump at a given time and location, then it travels with
velocity vg = dω/dk, evaluated at the k value that dominates the bump. This value can be
found by calculating the Fourier transform of the bump.

6.3.2 Examples

Beaded string

We discussed the beaded string in Section 6.1. Eq. (9) gives the dispersion relation as
ω(k) = 2ω0 sin(k`/2), where ω0 ≡

√
T/m`. Therefore,

vp =
ω

k
=

2ω0 sin(k`/2)

k
, and vg =

dω

dk
= ω0` cos(k`/2). (35)

For small k (more precisely, for k` ¿ 1), we can use sin ε ≈ ε and cos ε ≈ 1, to quickly show
that

vp ≈ 2ω0(k`/2)

k
= ω0` =

√
T

m`
` =

√
T

m/`
=

√
T

µ
,

vg ≈ ω0`(1) =

√
T

µ
. (36)

As expected, these both agree with the (equal) phase and group velocities for a continuous
string, because k` ¿ 1 implies ` ¿ λ, which means that the string is essentially continuous
on a length scale of the wavelength.
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String/spring system

We discussed the string/spring system in Section 6.2.2. Eq. (19) gives the dispersion relation
as ω2 = c2k2 + ω2

s , where c2 ≡ T/µ and ω2
s ≡ σ/µ. Therefore,

vp =
ω

k
=

√
c2k2 + ω2

s

k
, and vg =

dω

dk
=

c2k√
c2k2 + ω2

s

. (37)

If ωs ≈ 0, then these reduce to vp ≈ c and vg ≈ c, as expected. If ωs is large (more precisely,
if ωs À ck), then vp is large and vg is small (more precisely, vp À c and vg ¿ c). These
facts are consistent with the slopes in Fig. 18.

Stiff string

When dealing with uniform strings, we generally assume that they are perfectly flexible.
That is, we assume that they don’t bounce back when they are bent. But if we have a “stiff
string” that offers resistance when bent, it can be shown that the wave equation picks up
an extra term and now takes the form,

∂2ψ

∂t2
= c2

[
∂2ψ

∂x2
− α

(
∂4ψ

∂x4

)]
,

where α depends on various things (the cross-sectional area, Young’s modulus, etc.).6 Plug-
ging in ψ(x, t) = Aei(ωt−kx) yields the dispersion relation,

ω2 = c2k2 + αc2k4 =⇒ ω = ck
√
1 + αk2. (38)

This yields

vp =
ω

k
= c

√
1 + αk2 , and vg =

dω

dk
=

c(1 + 2αk2)√
1 + αk2

. (39)

The dispersion relation in Eq. (38) has implications in piano tuning, because although
the strings in a piano are reasonably flexible, they aren’t perfectly so. They are slightly stiff,
with a small value of α. If they were perfectly flexible (α = 0), then the linear dispersion
relation, ω = ck, would imply that the standing-wave frequencies are simply proportional
to the mode number, n, because the wavenumbers take the usual form of k = nπ/L. So the
“first harmonic” mode (n = 2) would have twice the frequency of the fundamental mode
(n = 1). In other words, it would be an octave higher.

However, for a stiff string (α 6= 0), Eq. (38) tells us that the frequency of the first
harmonic is larger than twice the frequency of the fundamental. (The k values still take the
form of k = nπ/L. This is a consequence of the boundary conditions and is independent of
the dispersion relation.)

Consider two notes that are an “octave” apart on the piano (the reason for the quotes
will soon be clear). These notes are in tune with each other if the first harmonic of the
lower string equals the fundamental of the higher string. Your ear then won’t hear any beats
between these two modes when the strings are played simultaneously, so things will sound
nice.7 A piano is therefore tuned to make the first harmonic of the lower string equal to

6In a nutshell, the fourth derivative comes from the facts that (1) the resistance to bending (the so-
called “bending moment”) is proportional to the curvature, which is the second derivative of ψ, and (2)
the resulting net transverse force can be shown to be proportional to the second derivative of the bending
moment.

7Your ear only cares about beats between nearby frequencies. The relation between the two fundamentals
is irrelevant because they are so far apart. Beats don’t result from widely-different frequencies.
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the fundamental of the higher string. But since the dispersion relation tells us that the first
harmonic (of any string) has more than twice the frequency of the fundamental, we conclude
that the spacing between the fundamentals of the two strings is larger than an octave. But
this is fine because it’s what your ear wants to hear. The (equal) relation between the first
harmonic of the lower string and the fundamental of the higher string is what’s important.
The relation between the two fundamentals doesn’t matter.8

Power law

If a dispersion relation takes the form of a power law, ω = Akr, then

vp =
ω

k
= Akr−1, and vg =

dω

dk
= rAkr−1. (40)

We see that vg = rvp for any value of k. If r = 1, then we have a dispersionless system. If
r > 1, then the dispersion curve is concave up, so it looks like the first plot we showed in
Fig. 19, with vg > vp. Sinusoidal waves with small k travel slower than waves with large k.
If r < 1, then we have the second plot in Fig. 19, and these statements are reversed.

Quantum mechanics

In nonrelativistic quantum mechanics, particles are replaced by probability waves. The wave
equation (known as the Schrodinger equation) for a free particle moving in one dimension
happens to be

ih̄
∂ψ

∂t
= − h̄2

2m

∂2ψ

∂x2
, (41)

where h̄ = 1.05 · 16−34J · s is Planck’s constant. Plugging in ψ(x, t) = Aei(ωt−kx) yields the
dispersion relation,

ω =
h̄k2

2m
. (42)

We’ll give an introduction to quantum mechanics in Chapter 12, but for now we’ll just note
that the motivation for the dispersion relation (and hence the wave equation) comes from
the substitutions of E = h̄ω and p = h̄k into the standard classical relation, E = p2/2m.
We’ll discuss the origins of these forms of E and p in Chapter 12.

The dispersion relation gives

vp =
ω

k
=

h̄k

2m
, and vg =

dω

dk
=

h̄k

m
. (43)

Classically, the velocity of a particle is given by v = p/m. So if p = h̄k, then we see that
vg, and not vp, corresponds to the classical velocity of a particle. This is consistent with
the fact that a particle can be thought of as a localized bump in the probability wave,
and this bump moves with the group velocity vg. A single sinusoidal wave moving with
velocity vp doesn’t correspond to a localized particle, because the wave (which represents
the probability) extends over all space. So we shouldn’t expect vp to correspond to the
standard classical velocity of p/m.

8A nice article on piano tuning is: Physics Today, December 2009, pp 46-49. It’s based on a letter from
Richard Feynman to his piano tuner. See in particular the “How to tune a piano” box on page 48.
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Water waves

We’ll discuss water waves in detail in Chapter 11, but we’ll invoke some results here so that
we can see what a few phase and group velocities look like. There are three common types
of waves:

• Small ripples: If the wavelength is short enough so that the effects of surface tension
dominate the effects of gravity, then the dispersion relation takes the form, ω =√
σk3/ρ, where σ is the surface tension and ρ is the mass density. The surface tension

dominates if the wavelength be small compared with about 2 cm. The dispersion
relation then gives

vp =
ω

k
=

√
σk

ρ
, and vg =

dω

dk
=

3

2

√
σk

ρ
. (44)

So vg = 3vp/2. The smaller the wavelength (the larger the k), then the larger the vp.
Very small ripples travel fast.

• Long wavelengths in deep water: If the wavelength is large compared with 2 cm, then
the effects of gravity dominate. If we further assume that the wavelength is small
compared with the depth of the water, then the dispersion relation takes the form,
ω =

√
gk. This gives

vp =
ω

k
=

√
g

k
, and vg =

dω

dk
=

1

2

√
g

k
. (45)

So vg = vp/2. The larger the wavelength (the smaller the k), then the larger the vp.
Long waves travel fast.

• Long wavelengths, compared with depth: If the wavelength is large compared with the
depth of the water, then the dispersion relation takes the form, ω =

√
gH k, where H

is the depth. This is a dispersionless system, with

vp = vg =
√
gH. (46)

So all waves travel with the same speed (provided that the wavelength is large com-
pared with H). This has dramatic consequences with regard to tsunamis.

Consider a huge wave that is created in the ocean, most commonly by an earthquake.
If the wave has, say, an amplitude of 100 ft and a wavelength of half a mile (which is
indeed a huge wave), what will happen as it travels across the ocean? The depth of
the ocean is on the order of a few miles, so we’re in the regime of “long wavelengths in
deep water.” From above, this is a dispersive system. Different wavelengths therefore
travel with different speeds, and the wave disperses. It grows shallower and wider,
until there is hardly anything left. When it reaches the other side of the ocean, it will
be barely distinguishable from no wave at all. The fast Fourier components of the
initial bump (the ones with long wavelengths) will arrive much sooner than the slower
components, so the energy of the wave will be diluted over a long period of time.

However, consider instead a wave with an amplitude of only 5 ft, but with a wavelength
of 10 miles. (Assuming roughly the same shape, this wave has the same volume as
the one above.) What will happen to this wave as it travels across the ocean? We’re
now in the “long wavelengths, compared with depth” regime. This is a nondispersive
system, so all of the different Fourier components of the initial “bump” travel with the
same speed. The wave therefore keeps the same shape as it travels across the ocean.
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Now, a 5 ft wave might not seem severe, but when the wave reaches shallower water
near the shore, its energy gets concentrated into a smaller region, so the amplitude
grows. If the boundary between the ocean and land were a hypothetical vertical
wall extending miles downward, then the waves would simply reflect off the wall and
travel back out to sea. But in reality the boundary is sloped. In short, the very
long wavelength allows the wave to travel intact all the way across the ocean, and the
sloped shore causes the amplitude to grow once the wave arrives.

What is the speed of a tsunami wave in deep water? The average depth of the Pacific
Ocean is about 4000m, so we have v =

√
gH ≈ 200m/s ≈ 450mph, which is quite

fast. It takes only a little over a minute for all of the 10-mile wave to hit the shore. So
the energy is deposited in a short amount of time. It isn’t diluted over a large time as
it was with the half-mile wave above. Note that in contrast with the dramatic effects
at the shore, the wave is quite unremarkable far out to sea. It rises to a height of
5 ft over the course of many miles, so the slope at any point is extremely small. It is
impossible to spot such a wave visually, but fortunately deep-sea pressure sensors on
the ocean floor can measure changes in the water level with extreme precision.

6.3.3 Faster than c?

Group velocity

In the first derivation of the group velocity in Section 6.3.1, we found the velocity of the
envelope to be vg = (ω2 − ω1)/(k2 − k1). If ω1 6= ω2, and if the k values are close together,
then vg is large. In fact, vg can be made arbitrarily large by making k2 be arbitrarily close
to k1. This means that it is possible for vg to exceed the speed of light. Is this bad? Does it
mean that we can send a signal faster than the speed of light (commonly denoted by “c”),
which would violate the theory of relativity? Answers: No, No.

In order for this scenario to be possible, the two individual waves we used in the derivation
of Eq. (28) already needed to be in existence over a very wide range of x values. So the
envelope in Fig. 16 is going to travel with velocity vg, independent of what anyone does.
Two people therefore can’t use this effect to send information. To communicate something,
you need to change the wave, and it can be demonstrated that the leading edge of this
change can never travel faster than c.

Demonstrating this fact requires invoking some facts about relativity. It certainly can’t
be demonstrated without invoking anything about relativity, because there is nothing at all
special about the speed of light if you haven’t invoked the postulates of relativity. One line
of reasoning is to say that if the leading edge travels faster than c, then there exists a frame
in which causality is violated. This in turn violates innumerable laws of physics (F = ma
type laws, for example). The fact of the matter is that a line of atoms can’t talk to each
other faster than c, independent of whether they’re part of a wave.

At any rate, the point of the present discussion isn’t so much to say what’s right about
the relativistic reasoning (because we haven’t introduced relativity in this book), but rather
to say what’s wrong about the reasoning that vg > c implies a contradiction with relativity.
As we stated above, the error is that no information is contained in a wave that is formed
from the superposition of two waves that already existed over a wide range of x values. If
you had set up these waves, you must have set them up a while ago.

Another way to have vg > c is shown in Fig. 23. Because the bump creeps forward, it
might be possible for vg to exceed c even if the speed of the leading edge doesn’t. But that’s
fine. The leading edge is what is telling someone that something happened, and this speed
never exceeds c.
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Figure 23

Phase velocity

The phase velocity can also exceed c. For the string/spring system in Section 6.2.2, we
derived the dispersion relation, ω2 = v2k2 + ω2

s , where v2 ≡ T/µ and ω2
s ≡ σ/µ. (We’re

using v here, to save c for the speed of light.) The phase velocity, vp = ω/k, is the slope of
the line from the origin to a point on the ω(k) curve. By making k as small as we want, we
can make the slope be as large as we want, as we noted in Fig. 13. Is this bad? No. Again,
we need to make a change in the wave if we want to convey information. And any signal
can travel only as fast as the leading edge of the change.

It is quite easy to create a system whose phase velocity vp is arbitrarily large. Just put a
bunch of people in a long line, and have them stand up and sit down at prearranged times.
If the person a zillion meters away stands up 1 second after the person at the front of the
line stands up, then the phase velocity is vp = 1 zillionm/s. But no information is contained
in this “wave” because the actions of the people were already decided.

This is sort of like scissors. If you have a huge pair of scissors held at a very small angle,
and if you close them, then it seems like the intersection point can travel faster than c. You
might argue that this doesn’t cause a conflict with relativity, because there is no actual
object in this system that is traveling faster than c (the intersection point isn’t an actual
object). However, although it is correct that there isn’t a conflict, this reasoning isn’t valid.
Information need not be carried by an actual object.

The correct reasoning is that the intersection point will travel faster than c only if you
prearrange for the blades to move at a given instant very far away. If you were to simply
apply forces at the handles, then the parts of the blades very far away wouldn’t know right
away that they should start moving. So the blades would bend, even if they were made out
of the most rigid material possible.

Said in another way, when we guess a solution of the form ei(ωt−kx) in our various
wave equations, it is assumed that this is the solution for all space and time. These waves
always were there, and they always will be there, so they don’t convey any information by
themselves. We have to make a change in them to send a signal. And the leading edge of
the change can travel no faster than c.


