RDF

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ● ○ ○ ○ ○

Semantic Web

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

[Tim Berners-Lee et al. 2001.]

Specific Goals:

- Build a description language with standard semantics
- Make semantics machine-processable and understandable
- Incorporate logical infrastructure to reason about resources
- ► W3C Proposal: Resource Description Framework (RDF)

RDF in a nutshell

- RDF is the W3C proposal framework for representing information in the Web
- Abstract syntax based on directed labeled graph
- Schema definition language (RDFS): Define new vocabulary (typing, inheritance of classes and properties)

- Extensible URI-based vocabulary
- Formal semantics

RDF formal model

- $U = \text{set of } \mathbf{U} \text{ris}$
- B = set of Blank nodes

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ... □

L = set of Literals

RDF formal model

- $U = \text{set of } \mathbf{U} \text{ris}$
- B = set of B lank nodes

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$$L = \text{set of Literals}$$

 $(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$ is called an RDF triple

RDF formal model

- $U = \text{set of } \mathbf{U} \text{ris}$
- B = set of Blank nodes

$$L = \text{set of Literals}$$

 $(s, p, o) \in (U \cup B) \times U \times (U \cup B \cup L)$ is called an RDF triple A set of RDF triples is called an RDF graph An example of an RDF graph: DBLP

: <http://dblp.l3s.de/d2r/resource/authors/>
conf: <http://dblp.l3s.de/d2r/resource/conferences/>
inPods: <http://dblp.l3s.de/d2r/resource/publications/conf/pods/>
swrc: <http://swrc.ontoware.org/ontology#>
dc: <http://purl.org/dc/elements/1.1/>
dct: <http://purl.org/dc/terms/>

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

An example of a URI

http://dblp.13s.de/d2r/resource/conferences/pods

 O
 PODS | D2R Server publishing the

 Image: PODS | D2R Server publishing the

 Image:

Resource URI: http://

Home | Example Conferences

Property	Value
rdfs:label	PODS (xsd:string)
rdfs:seeAlso	<http: dblp.l3s.de="" pods="" venues=""></http:>
is swrc:series of	<http: 00="" conf="" d2r="" dblp.l3s.de="" pods="" publications="" resource=""></http:>
is swrc:series of	<http: 2001="" conf="" d2r="" dblp.l3s.de="" pods="" publications="" resource=""></http:>
is swrc:series of	<http: 2002="" conf="" d2r="" dblp.l3s.de="" pods="" publications="" resource=""></http:>
is swrc:series of	<http: 2003="" conf="" d2r="" dblp.l3s.de="" pods="" publications="" resource=""></http:>
is swrc:series of	<http: 2004="" conf="" d2r="" dblp.l3s.de="" pods="" publications="" resource=""></http:>
is swrc:series of	<http: 2005="" conf="" d2r="" dblp.l3s.de="" pods="" publications="" resource=""></http:>

URI can be used for any abstract resource

http://dblp.13s.de/d2r/page/authors/Ronald_Fagin

Home | Example Authors

Property	Value
is dc:creator of	http://dblp.13s.de/d2r/resource/publications/conf/aaai/FagiHV86
is dc:creator of	<http: aaai="" conf="" d2r="" dblp.l3s.de="" faginhmv94="" publications="" resource=""></http:>
is dc:creator of	http://dblp.l3s.de/d2r/resource/publications/conf/aaai/HalpernF90
is dc:creator of	">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09>">http://dblp.l3s.de/d2r/resource/publications/conf/apccm/Fagin09
is dc:creator of	<http: birthday="" conf="" d2r="" dblp.l3s.de="" faginhhmpv09="" publications="" resource=""></http:>
is dc:creator of	<http: caap="" conf="" d2r="" dblp.l3s.de="" fagin83="" publications="" resource=""></http:>
is dc:creator of	http://dblp.l3s.de/d2r/resource/publications/conf/coco/FaginSV93
is dc:creator of	<http: concur="" conf="" d2r="" dblp.l3s.de="" halpernf88="" publications="" resource=""></http:>

RDF: Another example

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ の Q @

Some peculiarities of the RDF data model

- Existential variables as datavalues (null values)
- Built-in vocabulary with fixed semantics (RDFS)
- Graph model where nodes may also be edge labels

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Previous example: A better representation

Previous example: A better representation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Previous example: A better representation

RDF + RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf (rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range (rdf:range), type (rdf:type).

plus semantics for this vocabulary

RDFS: Messi is a Person

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

► For the case of RDFS, we need to check whether *t* is implied by *G*.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

For the case of RDFS, we need to check whether *t* is implied by *G*.

The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc.

As for the case of first-order logic

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

For the case of RDFS, we need to check whether *t* is implied by *G*.

The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc.

As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

Checking whether a triple t is in a graph G is the basic step when reasoning about RDF(S).

For the case of RDFS, we need to check whether *t* is implied by *G*.

The notion of entailment in RDFS can be defined in terms of classical notions such as model, interpretation, etc.

As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

The closure of an RDFS graph G(cl(G)) is the graph obtained by adding to G all the triples that are implied by G.

A basic property of the closure:

• G implies t iff $t \in cl(G)$

Example: (Messi, rdf:type, person) over the closure

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ 少へで

Does the blank node add some information?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の��

What about now?

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

SPARQL

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Querying RDF: SPARQL

- SPARQL is the W3C recommendation query language for RDF (January 2008).
 - SPARQL is a recursive acronym that stands for SPARQL Protocol and RDF Query Language
- ► SPARQL is a graph-matching query language.
- A SPARQL query consists of three parts:
 - Pattern matching: optional, union, filtering, ...
 - Solution modifiers: projection, distinct, order, limit, offset, ...

Output part: construction of new triples,

Example: Authors that have published in ISWC

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Example: Authors that have published in ISWC

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

SELECT ?Author

Example: Authors that have published in ISWC

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

SELECT ?Author WHERE {

}

Example: Authors that have published in ISWC

SELECT ?Author WHERE { ?Paper dc:creator ?Author.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

}

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
     ?Paper dc:creator ?Author.
     ?Paper dct:partOf ?Conf.
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

}

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
     ?Paper dc:creator ?Author.
     ?Paper dct:partOf ?Conf.
     ?Conf swrc:series conf:iswc.
}
```

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
     ?Paper dc:creator ?Author.
     ?Paper dct:partOf ?Conf.
     ?Conf swrc:series conf:iswc.
}
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

A SPARQL query consists of a:

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
     ?Paper dc:creator ?Author.
     ?Paper dct:partOf ?Conf.
     ?Conf swrc:series conf:iswc.
}
```

A SPARQL query consists of a: Head: Processing of the variables

Example: Authors that have published in ISWC

```
SELECT ?Author
WHERE
{
    ?Paper dc:creator ?Author.
    ?Paper dct:partOf ?Conf.
    ?Conf swrc:series conf:iswc.
}
```

```
A SPARQL query consists of a:
Head: Processing of the variables
Body: Pattern matching expression
```

Example: Authors that have published in ISWC, and their Web pages if this information is available:

```
SELECT ?Author ?WebPage
WHERE
{
    ?Paper dc:creator ?Author.
    ?Paper dct:partOf ?Conf.
    ?Conf swrc:series conf:iswc.
    OPTIONAL {
        ?Author foaf:homePage ?WebPage.}
}
```

Example: Authors that have published in ISWC, and their Web pages if this information is available:

```
SELECT ?Author ?WebPage
WHERE
{
    ?Paper dc:creator ?Author.
    ?Paper dct:partOf ?Conf.
    ?Conf swrc:series conf:iswc.
    OPTIONAL {
        ?Author foaf:homePage ?WebPage. }
}
```

Interesting features of pattern matching on graphs

SELECT ?X1 ?X2 ... { P1 . P2 }

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Interesting features of pattern matching on graphs

Grouping

SELECT ?X1 ?X2 ... {{ P1 . P2 } { P3 . P4 }

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

}

Interesting features of pattern matching on graphs

- Grouping
- Optional parts

SELECT ?X1 ?X2 ... {{ P1 . P2 OPTIONAL { P5 } } { P3 . P4

OPTIONAL { P7 } }

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

}

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting

```
SELECT ?X1 ?X2 ...
{{ P1 .
    P2
    OPTIONAL { P5 } }

    { P3 .
    P4
    OPTIONAL { P7
        OPTIONAL { P8 } } }
}
```

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns

```
SELECT ?X1 ?X2 ...
{{ P1 .
    P2
    OPTIONAL { P5 } }
  { P3 .
    P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
 }
UNTON
 { P9 }}
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering
- ► ...
- + several new features in the upcoming version: federation, navigation

```
SELECT ?X1 ?X2 ...
{{ P1 .
    P2
    OPTIONAL { P5 } }
  { P3 .
   P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
 }
 UNTON
 { P9
 FILTER (R) }}
```

ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

Interesting features of pattern matching on graphs

- Grouping
- Optional parts
- Nesting
- Union of patterns
- Filtering
- ► ...
- + several new features in the upcoming version: federation, navigation

```
SELECT ?X1 ?X2 ...
{{ P1 .
    P2
    OPTIONAL { P5 } }
  { P3 .
   P4
    OPTIONAL { P7
      OPTIONAL { P8 } } }
 }
 UNTON
 { P9
 FILTER (R) }}
```

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

What is the (formal) meaning of a general SPARQL query?

► Triple patterns: just RDF triples + variables (from a set V)

?X :name "john"

(?X, name, john)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- ▶ Triple patterns: just RDF triples + variables (from a set V)
 - ?X :name "john" (?X, name, john)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Graph patterns: full parenthesized algebra
- $\{ P1 . P2 \}$ (*P*₁ AND *P*₂)

- ► Triple patterns: just RDF triples + variables (from a set V)
 - ?X :name "john" (?X, name, john)
- Graph patterns: full parenthesized algebra
- $\{P1.P2\}$ $(P_1 AND P_2)$
- { P1 OPTIONAL { P2 }} $(P_1 \text{ OPT } P_2)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- Triple patterns: just RDF triples + variables (from a set V)
 - ?X :name "john" (?X, name, john)
- Graph patterns: full parenthesized algebra
- $\{P1.P2\}$ $(P_1 AND P_2)$
- $\{P1 \text{ OPTIONAL } \{P2\}\}$ $(P_1 \text{ OPT } P_2)$
- $\{P1\}UNION \{P2\}$ ($P_1 UNION P_2$)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Triple patterns: just RDF triples + variables (from a set V) (?X, name, john)?X :name "john" Graph patterns: full parenthesized algebra { P1 . P2 } $(P_1 \text{ AND } P_2)$ $(P_1 \text{ OPT } P_2)$ { P1 OPTIONAL { P2 }} { P1 } UNION { P2 } $(P_1 \text{ UNION } P_2)$ $(P_1 \text{ FILTER } R)$ $\{ P1 FILTER (R) \}$

A standard algebraic syntax (cont.)

Explicit precedence/association

Example

```
{ t1
   t2
   OPTIONAL { t3 }
   OPTIONAL { t4 }
   t5
}
```

$((((t_1 \text{ AND } t_2) \text{ OPT } t_3) \text{ OPT } t_4) \text{ AND } t_5)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A mapping is a partial function from variables to RDF terms

 $\mu: \quad \mathbf{V} \rightarrow \quad \mathbf{U} \cup \mathbf{L}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Definition

A mapping is a partial function from variables to RDF terms

 $\mu: \quad \mathbf{V} \rightarrow \quad \mathbf{U} \cup \mathbf{L}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Given a mapping μ and a triple pattern t:

Definition

A mapping is a partial function from variables to RDF terms

 $\mu: \quad \mathbf{V} \rightarrow \quad \mathbf{U} \cup \mathbf{L}$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ

Definition

A mapping is a partial function from variables to RDF terms

 $\mu: \quad \mathbf{V} \rightarrow \quad \mathbf{U} \cup \mathbf{L}$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ

Example

Definition

A mapping is a partial function from variables to RDF terms

 $\mu: \quad \mathbf{V} \rightarrow \quad \mathbf{U} \cup \mathbf{L}$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ Example

$$\mu = \{?X \rightarrow R_1, ?Y \rightarrow R_2, ?Name \rightarrow \mathsf{john}\}$$

Definition

A mapping is a partial function from variables to RDF terms

 $\mu: \quad \mathbf{V} \rightarrow \quad \mathbf{U} \cup \mathbf{L}$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ Example

$$\mu = \{?X
ightarrow R_1, ?Y
ightarrow R_2, ?Name
ightarrow ext{john} \}$$

 $t = (?X, ext{ name, } ?Name)$

Definition

A mapping is a partial function from variables to RDF terms

 $\mu: \quad \mathbf{V} \rightarrow \quad \mathbf{U} \cup \mathbf{L}$

Given a mapping μ and a triple pattern t:

• $\mu(t)$: triple obtained from t replacing variables according to μ Example

$$\mu = \{?X \rightarrow R_1, ?Y \rightarrow R_2, ?Name \rightarrow \text{john}\}$$
$$t = (?X, \text{ name, } ?Name)$$
$$\mu(t) = (R_1, \text{ name, john})$$

The semantics of triple patterns

Definition

The evaluation of triple patter t over a graph G, denoted by $[t]_G$, is the set of all mappings μ such that:

The semantics of triple patterns

Definition

The evaluation of triple patter t over a graph G, denoted by $[t]_G$, is the set of all mappings μ such that:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• dom(μ) is exactly the set of variables occurring in t

The semantics of triple patterns

Definition

The evaluation of triple patter t over a graph G, denoted by $[t]_G$, is the set of all mappings μ such that:

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- dom(μ) is exactly the set of variables occurring in t
- $\mu(t) \in G$

G(R_1 , name, john) (R_1 , email, J@ed.ex) (R_2 , name, paul)

 $[(?X, name, ?N)]_G$

$$G$$

(R_1 , name, john)
(R_1 , email, J@ed.ex)
(R_2 , name, paul)

$$[[(?X, name, ?N)]_G \\ \left\{ \begin{array}{l} \mu_1 = \{?X \to R_1, ?N \to \mathsf{john}\} \\ \mu_2 = \{?X \to R_2, ?N \to \mathsf{paul}\} \end{array} \right\}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

$$G$$

(R_1 , name, john)
(R_1 , email, J@ed.ex)
(R_2 , name, paul)

$$\begin{bmatrix} (?X, name, ?N) \end{bmatrix}_{G} \\ \mu_{1} = \{?X \rightarrow R_{1}, ?N \rightarrow \text{john} \} \\ \mu_{2} = \{?X \rightarrow R_{2}, ?N \rightarrow \text{paul} \}$$

 $\llbracket (?X, \text{ email}, ?E) \rrbracket_G$

$$G$$

(R_1 , name, john)
(R_1 , email, J@ed.ex)
(R_2 , name, paul)

$$\begin{bmatrix} (?X, name, ?N) \end{bmatrix}_{G} \\ \mu_{1} = \{?X \rightarrow R_{1}, ?N \rightarrow \text{john} \} \\ \mu_{2} = \{?X \rightarrow R_{2}, ?N \rightarrow \text{paul} \}$$

$$\llbracket (?X, \text{ email}, ?E) \rrbracket_G$$
$$\{ \mu = \{?X \to R_1, ?E \to \mathsf{J@ed.ex} \} \}$$

G(R_1 , name, john) (R_1 , email, J@ed.ex) (R_2 , name, paul)

 $[(?X, name, ?N)]_G$

	?X ?N	
μ_1	R_1	john
μ_2	R_2	paul

 $[(?X, email, ?E)]_G$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

	?X	?E
μ	R_1	J@ed.ex

 $\llbracket (R_1, \mathsf{webPage}, ?W) \rrbracket_G$

 $[(R_3, name, ringo)]_G$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $[(R_2, name, paul)]_G$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Definition

The mappings μ_1 , μ_2 are compatibles iff they agree in their shared variables:

Definition

The mappings μ_1 , μ_2 are compatibles iff they agree in their shared variables:

• $\mu_1(?X) = \mu_2(?X)$ for every $?X \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$.

Definition

The mappings μ_1 , μ_2 are compatibles iff they agree in their shared variables:

• $\mu_1(?X) = \mu_2(?X)$ for every $?X \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$.

 $\mu_1 \cup \mu_2$ is also a mapping.

Definition

The mappings μ_1 , μ_2 are compatibles iff they agree in their shared variables:

• $\mu_1(?X) = \mu_2(?X)$ for every $?X \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$.

 $\mu_1 \cup \mu_2$ is also a mapping.

Example

	?X	?Y	?U	?V
$\mu_1 \ \mu_2$	R_1 R_1	john	J@edu.ex	
μ_3			P@edu.ex	R_2

Definition

The mappings μ_1 , μ_2 are compatibles iff they agree in their shared variables:

• $\mu_1(?X) = \mu_2(?X)$ for every $?X \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$.

 $\mu_1 \cup \mu_2$ is also a mapping.

Example

?X	?Y	?U	?V
R_1 R_1	john	J@edu.ex	
-		P@edu.ex	R_2
		R ₁ john	$\begin{array}{c c} R_1 & \text{john} \\ R_1 & & \text{J@edu.ex} \end{array}$

Definition

The mappings μ_1 , μ_2 are compatibles iff they agree in their shared variables:

• $\mu_1(?X) = \mu_2(?X)$ for every $?X \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$.

 $\mu_1 \cup \mu_2$ is also a mapping.

Example

	?X	?Y	?U	?V
μ_1	R_1	john		
μ_2	R_1		J@edu.ex	
μ_{3}			P@edu.ex	R_2
$\mu_1\cup\mu_2$	R_1	john	J@edu.ex	

Definition

The mappings μ_1 , μ_2 are compatibles iff they agree in their shared variables:

• $\mu_1(?X) = \mu_2(?X)$ for every $?X \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$.

 $\mu_1 \cup \mu_2$ is also a mapping.

Example

	?X	?Y	?U	?V
μ_1	R_1	john		
μ_2	R_1		J@edu.ex	
μ_{3}			P@edu.ex	R_2
$\mu_1 \cup \mu_2$	R_1	john	J@edu.ex	

Definition

The mappings μ_1 , μ_2 are compatibles iff they agree in their shared variables:

• $\mu_1(?X) = \mu_2(?X)$ for every $?X \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$.

 $\mu_1 \cup \mu_2$ is also a mapping.

Example

	?X	?Y	?U	?V
μ_1	R_1	john		
μ_2	R_1		J@edu.ex	
μ_{3}			P@edu.ex	R_2
$\mu_1 \cup \mu_2$	R_1	john	J@edu.ex	
$\mu_1 \cup \mu_3$	R_1	john	P@edu.ex	R_2

Definition

The mappings μ_1 , μ_2 are compatibles iff they agree in their shared variables:

• $\mu_1(?X) = \mu_2(?X)$ for every $?X \in \operatorname{dom}(\mu_1) \cap \operatorname{dom}(\mu_2)$.

 $\mu_1 \cup \mu_2$ is also a mapping.

Example

	?X	?Y	?U	?V
μ_1	R_1	john		
μ_2	R_1		J@edu.ex	
μ_{3}			P@edu.ex	R_2
$\mu_1\cup\mu_2$	R_1	john	J@edu.ex	
$\mu_1\cup\mu_3$	R_1	john	P@edu.ex	<i>R</i> ₂

 $\mu_{\emptyset}=\{ \ \}$ is compatible with every mapping.

Let Ω_1 and Ω_2 be sets of mappings:

Definition

- $\{\mu_1 \cup \mu_2 \mid \mu_1 \in \Omega_1, \mu_2 \in \Omega_2, \text{ and } \mu_1, \mu_2 \text{ are compatibles}\}\$
- extending mappings in Ω_1 with compatible mappings in Ω_2

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

will be used to define AND

Let Ω_1 and Ω_2 be sets of mappings:

Definition

- $\{\mu_1 \cup \mu_2 \mid \mu_1 \in \Omega_1, \mu_2 \in \Omega_2, \text{ and } \mu_1, \mu_2 \text{ are compatibles}\}\$
- extending mappings in Ω_1 with compatible mappings in Ω_2

will be used to define AND

Definition

Union: $\Omega_1 \cup \Omega_2$

- $\{\mu \mid \mu \in \Omega_1 \text{ or } \mu \in \Omega_2\}$
- mappings in Ω_1 plus mappings in Ω_2 (the usual set union)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

will be used to define UNION

Definition Difference: $\Omega_1 \smallsetminus \Omega_2$

- $\{\mu \in \Omega_1 \mid \text{ for all } \mu' \in \Omega_2, \mu \text{ and } \mu' \text{ are not compatibles} \}$
- mappings in Ω_1 that cannot be extended with mappings in Ω_2

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition Difference: $\Omega_1 \smallsetminus \Omega_2$

- $\{\mu \in \Omega_1 \mid \text{ for all } \mu' \in \Omega_2, \mu \text{ and } \mu' \text{ are not compatibles} \}$
- \blacktriangleright mappings in Ω_1 that cannot be extended with mappings in Ω_2

Definition

Left outer join: $\Omega_1 \bowtie \Omega_2 = (\Omega_1 \bowtie \Omega_2) \cup (\Omega_1 \smallsetminus \Omega_2)$

- extension of mappings in Ω_1 with compatible mappings in Ω_2

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

• plus the mappings in Ω_1 that cannot be extended.

will be used to define OPT

Definition

Given a graph G the evaluation of a pattern is recursively defined

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Definition

Given a graph G the evaluation of a pattern is recursively defined

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

•
$$[(P_1 \text{ AND } P_2)]_G = [P_1]_G \bowtie [P_2]_G$$

Definition

Given a graph G the evaluation of a pattern is recursively defined

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

•
$$[(P_1 \text{ AND } P_2)]_G = [P_1]_G \bowtie [P_2]_G$$

•
$$[(P_1 \text{ UNION } P_2)]_G = [P_1]_G \cup [P_2]_G$$

Definition

Given a graph G the evaluation of a pattern is recursively defined

- $\llbracket (P_1 \text{ AND } P_2) \rrbracket_G = \llbracket P_1 \rrbracket_G \bowtie \llbracket P_2 \rrbracket_G$
- $[(P_1 \cup N \cup P_2)]_G = [P_1]_G \cup [P_2]_G$
- $\llbracket (P_1 \text{ OPT } P_2) \rrbracket_G = \llbracket P_1 \rrbracket_G \bowtie \llbracket P_2 \rrbracket_G$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{email, \, R@ed.ex}) & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

$[((?X, name, ?N) AND (?X, email, ?E))]_G$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{email, \, R@ed.ex}) & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

$\llbracket ((?X, name, ?N) AND (?X, email, ?E)) \rrbracket_G$ $\llbracket (?X, name, ?N) \rrbracket_G \bowtie \llbracket (?X, email, ?E) \rrbracket_G$

 $(R_1, \text{ name, john})$ $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$ G: $(R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$ $(R_3, \text{ webPage, www.ringo.com})$

 $[((?X, name, ?N) AND (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_{3}	R_3	ringo

$$\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$$

 $[((?X, name, ?N) AND (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_{3}	R_3	ringo

	?X	?E
μ_4	R_1	J@ed.ex
μ_{5}	R_3	R@ed.ex

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

$$\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$$

 $[((?X, name, ?N) AND (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

$$(R_1, \text{ name, john})$$
 $(R_2, \text{ name, paul})$ $(R_3, \text{ name, ringo})$
 $G:$ $(R_1, \text{ email, J@ed.ex})$ $(R_3, \text{ email, R@ed.ex})$
 $(R_3, \text{ webPage, www.ringo.com})$

 $[((?X, name, ?N) AND (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 $[((?X, name, ?N) OPT (?X, email, ?E))]_G$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G \\ [(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

$$\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline G : (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_{3}	R_3	ringo

$$\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline G : (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_{3}	R_3	ringo

	?X	?E		
μ_{4}	R_1	J@ed.ex		
μ_{5}	R_3	R@ed.ex		

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

$$\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline G : (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

	?Χ	?N		i		
					?X	?E
μ_1	κ_1	john	М		R_1	J@ed.ex
μ_2	R_2	paul		μ_{4}	1	
		· ·		μ_5	R_3	R@ed.ex
μ_3	R_3	ringo				

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

$$\begin{array}{c} (R_1, \text{ name, john}) & (R_2, \text{ name, paul}) & (R_3, \text{ name, ringo}) \\ \hline G: (R_1, \text{ email, J@ed.ex}) & (R_3, \text{ email, R@ed.ex}) \\ & (R_3, \text{ webPage, www.ringo.com}) \end{array}$$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

	?X	?N			1	2 Y	?F
μ_1	R_1	john		74			
μ_2	R_2	paul		\mathbb{X}	μ_4	<u>Γ</u>	J@ed.ex
μ3	R_3	ringo			μ_5	R_3	R@ed.ex
, .	0	0	J				
			?X	?N	?	Ε	

	!X	£N	?E
$\mu_1\cup\mu_4$	R_1	john	J@ed.ex
$\mu_{3}\cup\mu_{5}$	R_3	ringo	R@ed.ex
μ_2	R_2	paul	

◆ロ > ◆母 > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

$$\begin{array}{c} (R_1, \text{ name, john}) & (R_2, \text{ name, paul}) & (R_3, \text{ name, ringo}) \\ \hline G: (R_1, \text{ email, J@ed.ex}) & (R_3, \text{ email, R@ed.ex}) \\ & (R_3, \text{ webPage, www.ringo.com}) \end{array}$$

 $[((?X, name, ?N) \text{ OPT } (?X, email, ?E))]_G$ $[(?X, name, ?N)]_G \bowtie [(?X, email, ?E)]_G$

	?X	?N	1				
	D	iahn				?X	?E
μ_1	R_1	john		\bowtie	μ_4	R_1	J@ed.ex
μ_2	R_2	paul				_	
μ_3	R_3	ringo	1		μ_{5}	R_3	R@ed.ex
<i>µ</i> ~3			J				
			?X	?N	?	E]
	μ	$_1\cup \mu_4$	R_1	john	J@e	d.ex	
	μ	$_3\cup\mu_5$	R_3	ringo	R@e	ed.ex	

paul

 R_2

 μ_2

- ▲ロト ▲御 ト ▲ ヨ ト ▲ ヨ ト の ۹ ()

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{email, \, R@ed.ex}) & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

[((?X, email, ?Info) UNION (?X, webPage, ?Info))]]_G

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, \text{ email}, ?Info) \cup \text{NION} (?X, \text{ webPage}, ?Info))]_G$ $[(?X, \text{ email}, ?Info)]_G \cup [(?X, \text{ webPage}, ?Info)]_G$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, email, ?Info) UNION (?X, webPage, ?Info))]_G$

 $\llbracket (?X, \text{ email}, ?Info) \rrbracket_G \cup \llbracket (?X, \text{ webPage}, ?Info) \rrbracket_G$

	?X	?Info
μ_1	R_1	J@ed.ex
μ_2	R_3	R@ed.ex

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, email, ?Info) UNION (?X, webPage, ?Info))]_G$

 $\llbracket (?X, \text{ email}, ?Info) \rrbracket_G \cup \llbracket (?X, \text{ webPage}, ?Info) \rrbracket_G$

	?X	?Info	
μ_1	R_1	J@ed.ex	
μ_2	R_3	R@ed.ex	

	?X	?Info
μ_{3}	R_3	www.ringo.com

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, email, ?Info) UNION (?X, webPage, ?Info))]_G$

 $\llbracket (?X, \text{ email}, ?Info) \rrbracket_G \cup \llbracket (?X, \text{ webPage}, ?Info) \rrbracket_G$

$$\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$$

 $[((?X, email, ?Info) UNION (?X, webPage, ?Info))]_G$

 $\llbracket (?X, \text{ email}, ?Info) \rrbracket_G \cup \llbracket (?X, \text{ webPage}, ?Info) \rrbracket_G$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Boolean filter expressions (value constraints)

In filter expressions we consider

- the equality = among variables and RDF terms
- a unary predicate bound
- boolean combinations (\land , \lor , \neg)

A mapping μ satisfies

•
$$?X = c$$
 if $\mu(?X) = c$

•
$$?X = ?Y$$
 if $\mu(?X) = \mu(?Y)$

▶ bound(?X) if μ is defined in ?X, i.e. ?X ∈ dom(μ)

Satisfaction of value constraints

► If P is a graph pattern and R is a value constraint then (P FILTER R) is also a graph pattern.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Satisfaction of value constraints

► If P is a graph pattern and R is a value constraint then (P FILTER R) is also a graph pattern.

Definition

Given a graph G

- $\llbracket (P \text{ FILTER } R) \rrbracket_G = \{ \mu \in \llbracket P \rrbracket_G \mid \mu \text{ satisfies } R \}$
 - i.e. mappings in the evaluation of P that satisfy R.

Example (FILTER)

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(?X, name, ?N) \text{ FILTER } (?N = ringo \lor ?N = paul))]_G$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(?X, name, ?N) \text{ FILTER } (?N = ringo \lor ?N = paul))]_G$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_{3}	R_3	ringo

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(?X, name, ?N) \text{ FILTER } (?N = ringo \lor ?N = paul))]_G$

	?X	?N
μ_1	R_1	john
μ_2	R_2	paul
μ_{3}	R_3	ringo

$$N = ringo \lor N = paul$$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[((?X, name, ?N) FILTER (?N = ringo \lor ?N = paul))]_{G}$

	?X	?N	
μ_1	R_1	john	?٨
μ_2	R_2	paul	: /\
μ_3	R_3	ringo	

$$N = \mathsf{ringo} \lor N = \mathsf{paul}$$

	?X	?N
μ_2	R_2	paul
μ_{3}	R_3	ringo

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline G : (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER \neg bound(?E))]_G$

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline G : (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER \neg bound(?E))]_G$

	?X	?N	?E
$\mu_1\cup\mu_4$	R_1	john	J@ed.ex
$\mu_{3}\cup\mu_{5}$	R_3	ringo	R@ed.ex
μ_2	R_2	paul	

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline G : (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER \neg bound(?E))]_G$

	?X	?N	?E
$\mu_1\cup\mu_4$	R_1	john	J@ed.ex
$\mu_{3}\cup\mu_{5}$	R_3	ringo	R@ed.ex
μ_2	R_2	paul	

 $\frac{\langle}{\langle}$ \neg bound(?E)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\begin{array}{ll} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline G : & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$$

 $[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER \neg bound(?E))]_G$

	?X	?N		?E
$\mu_1\cup\mu_4$	R_1	john	J	∂ed.ex
$\mu_1 \cup \mu_4 \\ \mu_3 \cup \mu_5 \\ \mu_2$	R_3	ringc	R	@ed.ex
μ_2	R_2	paul		
		Г	?X	?N
		μ_2	R_2	paul

 \neg bound(?*E*)

$$\begin{array}{ll} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ \hline G : & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$$

 $[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER \neg bound(?E))]_G$

	?X	?N		?E]
$\mu_1\cup\mu_4$	R_1	john	J@	∂ed.ex	\neg bound(?E)
$\mu_{3}\cup\mu_{5}$	R_3	ringo	R	@ed.ex	· bound(: L)
μ_2	R_2	paul			
			?X	?N	
		μ_2	R_2	paul	

(a non-monotonic query)

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Why do we need/want to formalize SPARQL

- A formalization is beneficial
 - clarifying corner cases
 - helping in the implementation process
 - providing solid foundations (we can actually prove properties!)

SELECT (a.k.a. projection)

Besides graph patterns, SPARQL 1.0 allow result forms the most simple is SELECT

Definition A SELECT query is an expression

(SELECT W P)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

where P is a graph pattern and W is a set of variables, or *

SELECT (a.k.a. projection)

Besides graph patterns, SPARQL 1.0 allow result forms the most simple is SELECT

Definition A SELECT query is an expression

```
(SELECT W P)
```

where P is a graph pattern and W is a set of variables, or *The evaluation of a SELECT query against G is

• $[[(SELECT \ W \ P)]]_G = \{\mu_{|_W} \mid \mu \in [[P]]_G\}$ where $\mu_{|_W}$ is the restriction of μ to domain W.

$$\blacktriangleright \ \llbracket (\mathsf{SELECT} * P) \rrbracket_G = \llbracket P \rrbracket_G$$

Example (SELECT)

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(SELECT \{?N, ?E\} ((?X, name, ?N) AND (?X, email, ?E)))]_G$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

Example (SELECT)

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(SELECT \{?N, ?E\} ((?X, name, ?N) AND (?X, email, ?E)))]_G$

		?X	?N	?E
SELECT{? <i>N</i> ,? <i>E</i> }	μ_1	R_1	john	J@ed.ex
	μ_2	R_3	ringo	R@ed.ex

Example (SELECT)

 $\begin{array}{c} (R_1, \, \mathsf{name, \, john}) & (R_2, \, \mathsf{name, \, paul}) & (R_3, \, \mathsf{name, \, ringo}) \\ G: & (R_1, \, \mathsf{email, \, J@ed.ex}) & (R_3, \, \mathsf{email, \, R@ed.ex}) \\ & (R_3, \, \mathsf{webPage, \, www.ringo.com}) \end{array}$

 $[(SELECT \{?N, ?E\} ((?X, name, ?N) AND (?X, email, ?E)))]_G$

SELECT{? <i>N</i> ,? <i>E</i> }	μ_1
---------------------------------	---------

	?X	?N	?E
μ_1	R_1	john	J@ed.ex
μ_2	R_3	ringo	R@ed.ex

	?N	?E
$\mu_{1 _{\{?N,?E\}}}$	john	J@ed.ex
$\mu_{2 _{\{?N,?E\}}}$	ringo	R@ed.ex

SPARQL 1.1 introduces several new features

In SPARQL 1.1:

- ► (SELECT W P) can be used as any other graph pattern ⇒ sub-queries
- Aggregations via ORDER-BY plus COUNT, SUM, etc.
- Most interesting features: Federation and Navigation

Assume a graph with cities and connections with RDF triples like:

 $(C_1, \text{connected}, C_2)$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Assume a graph with cities and connections with RDF triples like:

 $(C_1, \text{connected}, C_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

query: is city *B* reachable from *A* by a sequence of connections?

Assume a graph with cities and connections with RDF triples like:

 $(C_1, \text{connected}, C_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

query: is city *B* reachable from *A* by a sequence of connections?

Known fact: SPARQL 1.0 cannot express this query!

Follows easily from locality of FO-logic

Assume a graph with cities and connections with RDF triples like:

 $(C_1, \text{connected}, C_2)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

query: is city *B* reachable from *A* by a sequence of connections?

Known fact: SPARQL 1.0 cannot express this query!

Follows easily from locality of FO-logic

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで


```
SELECT ?X
WHERE
{
     ?X :friendOf ?Y .
     ?Y :name "Maria" .
}
```



```
SELECT ?X
WHERE
{
     ?X :friendOf ?Y .
     ?Y :name "Maria" .
}
```



```
SELECT ?X
WHERE
{
     ?X (:friendOf)* ?Y .
     ?Y :name "Maria" .
}
```



```
SELECT ?X
WHERE
{
     ?X (:friendOf)* ?Y .
     ?Y :name "Maria" .
}
```


◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

Idea: navigate RDF graphs using regular expressions

General navigation using regular expressions

Regular expressions define sets of strings using

- concatenation: /
- disjunction: |
- Kleene star: *

Example

Consider strings composed of symbols ${\rm a}$ and ${\rm b}$

a/(b)*/a

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

defines strings of the form abbb...bbba.

General navigation using regular expressions

Regular expressions define sets of strings using

- concatenation: /
- disjunction: |
- Kleene star: *

Example

Consider strings composed of symbols ${\tt a}$ and ${\tt b}$

a/(b)*/a

defines strings of the form abbb...bbba.

Idea: use regular expressions to define paths

a path p satisfies a regular expression r if the string composed of the sequence of edges of p satisfies expression r

RDF graph with :father, :mother edges:

ancestors of John

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

RDF graph with :father, :mother edges: ancestors of John { John (:father|:mother)* ?X }

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Connections between cities via :train, :bus, :plane Cities that reach Paris with exactly one :bus connection

- RDF graph with :father, :mother edges: ancestors of John { John (:father|:mother)* ?X }
- Connections between cities via :train, :bus, :plane Cities that reach Paris with exactly one :bus connection { ?X Paris }

- RDF graph with :father, :mother edges: ancestors of John { John (:father|:mother)* ?X }
- Connections between cities via :train, :bus, :plane Cities that reach Paris with exactly one :bus connection { ?X (:train|:plane)* Paris }

RDF graph with :father, :mother edges: ancestors of John { John (:father|:mother)* ?X }

Connections between cities via :train, :bus, :plane Cities that reach Paris with exactly one :bus connection { ?X (:train|:plane)*/:bus Paris }

- Connections between cities via :train, :bus, :plane Cities that reach Paris with exactly one :bus connection { ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

- Connections between cities via :train, :bus, :plane Cities that reach Paris with exactly one :bus connection { ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }
 - Exercise: cities that reach Paris with an *even number* of connections

- Connections between cities via :train, :bus, :plane Cities that reach Paris with exactly one :bus connection { ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }
 - Exercise: cities that reach Paris with an *even number* of connections

Mixing regular expressions and SPARQL operators gives interesting expressive power:

Persons in my professional network that attended the same school

RDF graph with :father, :mother edges: ancestors of John { John (:father|:mother)* ?X }

Connections between cities via :train, :bus, :plane Cities that reach Paris with exactly one :bus connection { ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an *even number* of connections

Mixing regular expressions and SPARQL operators gives interesting expressive power:

Persons in my professional network that attended the same school

```
{ ?X (:conn)* ?Y .
    ?X (:conn)* ?Z .
    ?Y :sameSchool ?Z }
```

Regular expressions in SPARQL queries seem reasonable

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

We need to agree in the meaning of these new queries

- Regular expressions in SPARQL queries seem reasonable
- We need to agree in the meaning of these new queries
- A bit of history on W3C standardization of property paths:
 - ▶ Mid 2010: W3C defines an informal semantics for paths

- Regular expressions in SPARQL queries seem reasonable
- We need to agree in the meaning of these new queries
- A bit of history on W3C standardization of property paths:
 - Mid 2010: W3C defines an informal semantics for paths
 - Late 2010: several discussions on possible drawbacks on the non-standard definition by the W3C

- Regular expressions in SPARQL queries seem reasonable
- We need to agree in the meaning of these new queries
- A bit of history on W3C standardization of property paths:
 - Mid 2010: W3C defines an informal semantics for paths
 - Late 2010: several discussions on possible drawbacks on the non-standard definition by the W3C

• Early 2011: first formal semantics by the W3C

- Regular expressions in SPARQL queries seem reasonable
- We need to agree in the meaning of these new queries
- A bit of history on W3C standardization of property paths:
 - Mid 2010: W3C defines an informal semantics for paths
 - Late 2010: several discussions on possible drawbacks on the non-standard definition by the W3C
 - Early 2011: first formal semantics by the W3C
 - Late 2011: empirical and theoretical study on SPARQL 1.1 property paths showing unfeasibility of evaluation

- Regular expressions in SPARQL queries seem reasonable
- We need to agree in the meaning of these new queries
- A bit of history on W3C standardization of property paths:
 - Mid 2010: W3C defines an informal semantics for paths
 - Late 2010: several discussions on possible drawbacks on the non-standard definition by the W3C
 - Early 2011: first formal semantics by the W3C
 - Late 2011: empirical and theoretical study on SPARQL 1.1 property paths showing unfeasibility of evaluation
 - Mid 2012: semantics change to overcome the raised issues

- Regular expressions in SPARQL queries seem reasonable
- We need to agree in the meaning of these new queries
- A bit of history on W3C standardization of property paths:
 - Mid 2010: W3C defines an informal semantics for paths
 - Late 2010: several discussions on possible drawbacks on the non-standard definition by the W3C
 - Early 2011: first formal semantics by the W3C
 - Late 2011: empirical and theoretical study on SPARQL 1.1 property paths showing unfeasibility of evaluation
 - Mid 2012: semantics change to overcome the raised issues

The following experimental study is based on [ACP12].