
RDF

Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific Goals:

◮ Build a description language with standard semantics

◮ Make semantics machine-processable and understandable

◮ Incorporate logical infrastructure to reason about resources

◮ W3C Proposal: Resource Description Framework (RDF)

RDF in a nutshell

◮ RDF is the W3C proposal framework for representing
information in the Web

◮ Abstract syntax based on directed labeled graph

◮ Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties)

◮ Extensible URI-based vocabulary

◮ Formal semantics

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

RDF formal model

Subject Object
Predicate

LB

U

U UB

U = set of Uris

B = set of Blank nodes

L = set of Literals

(s, p, o) ∈ (U ∪ B)× U × (U ∪ B ∪ L) is called an RDF triple

A set of RDF triples is called an RDF graph

An example of an RDF graph: DBLP

inPods:FaginLN01 :Moni Naor

:Amnon Lotem

:Ronald Fagin

inPods:2001

"Optimal Aggregation ..."

dc:creator
dc:creator

dc:
cre

ato
r

dct:PartOf

dc:title
swrc:series

conf:pods

<http://purl.org/dc/terms/>

: <http://dblp.l3s.de/d2r/resource/authors/>

conf: <http://dblp.l3s.de/d2r/resource/conferences/>

inPods: <http://dblp.l3s.de/d2r/resource/publications/conf/pods/>

swrc: <http://swrc.ontoware.org/ontology#>

dc:

dct:

<http://purl.org/dc/elements/1.1/>

An example of a URI
http://dblp.l3s.de/d2r/resource/conferences/pods

URI can be used for any abstract resource

http://dblp.l3s.de/d2r/page/authors/Ronald Fagin

RDF: Another example

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in

plays in

soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

Some peculiarities of the RDF data model

◮ Existential variables as datavalues (null values)

◮ Built-in vocabulary with fixed semantics (RDFS)

◮ Graph model where nodes may also be edge labels

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

Previous example: A better representation

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

SpainB

lives in

country

address

RDF + RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf:sp), subClassOf (rdf:sc), domain (rdf:dom), range
(rdf:range), type (rdf:type).

plus semantics for this vocabulary

RDFS: Messi is a Person

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

Spain

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G .

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G .

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G .

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

◮ For the case of RDFS, we need to check whether t is implied by G .

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

◮ As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

The closure of an RDFS graph G (cl(G)) is the graph obtained by
adding to G all the triples that are implied by G .

A basic property of the closure:

◮ G implies t iff t ∈ cl(G)

Example: (Messi, rdf:type, person) over the closure

Messi

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

rdf:type

rdf:sc

rdf:type

Spain

lives in

Does the blank node add some information?

country

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

address
lives in

What about now?

lives in

works in

rdf:sp

person

sportman

soccer player

rdf:sc

rdf:sc

rdf:dom

rdf:dom rdf:range

rdf:range

Barcelona

plays in soccer team

company

rdf:typerdf:type

rdf:sc

Messi

SpainB

lives in

SPARQL

Querying RDF: SPARQL

◮ SPARQL is the W3C recommendation query language for
RDF (January 2008).

◮ SPARQL is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language

◮ SPARQL is a graph-matching query language.

◮ A SPARQL query consists of three parts:

◮ Pattern matching: optional, union, filtering, . . .
◮ Solution modifiers: projection, distinct, order, limit, offset, . . .
◮ Output part: construction of new triples,

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

A SPARQL query consists of a:

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

A SPARQL query consists of a:

Head: Processing of the variables

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC

SELECT ?Author

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

}

A SPARQL query consists of a:

Head: Processing of the variables

Body: Pattern matching expression

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC, and their Web
pages if this information is available:

SELECT ?Author ?WebPage

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

OPTIONAL {

?Author foaf:homePage ?WebPage . }

}

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC, and their Web
pages if this information is available:

SELECT ?Author ?WebPage

WHERE

{

?Paper dc:creator ?Author .

?Paper dct:partOf ?Conf .

?Conf swrc:series conf:iswc .

OPTIONAL {

?Author foaf:homePage ?WebPage . }

}

But things can become more complex...

Interesting features of pattern
matching on graphs

SELECT ?X1 ?X2 ...

{ P1 .

P2 }

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping
SELECT ?X1 ?X2 ...

{{ P1 .

P2 }

{ P3 .

P4 }

}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

SELECT ?X1 ?X2 ...

{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7 } }

}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

SELECT ?X1 ?X2 ...

{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9 }}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

◮ ...

◮ + several new features in
the upcoming version:
federation, navigation

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }}

But things can become more complex...

Interesting features of pattern
matching on graphs

◮ Grouping

◮ Optional parts

◮ Nesting

◮ Union of patterns

◮ Filtering

◮ ...

◮ + several new features in
the upcoming version:
federation, navigation

SELECT ?X1 ?X2 ...

{{{ P1 .

P2

OPTIONAL { P5 } }

{ P3 .

P4

OPTIONAL { P7

OPTIONAL { P8 } } }

}

UNION

{ P9

FILTER (R) }}

What is the (formal) meaning of a general SPARQL query?

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

{ P1 . P2 } (P1 AND P2)

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

A standard algebraic syntax

◮ Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X , name, john)

◮ Graph patterns: full parenthesized algebra

{ P1 . P2 } (P1 AND P2)

{ P1 OPTIONAL { P2 }} (P1 OPT P2)

{ P1 } UNION { P2 } (P1 UNION P2)

{ P1 FILTER (R) } (P1 FILTER R)

A standard algebraic syntax (cont.)

◮ Explicit precedence/association

Example

{ t1

t2

OPTIONAL { t3 }

OPTIONAL { t4 }

t5

}

((((t1 AND t2) OPT t3) OPT t4) AND t5)

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Name → john}

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Name → john}

t = (?X , name, ?Name)

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

µ : V → U ∪ L

Given a mapping µ and a triple pattern t:

◮ µ(t): triple obtained from t replacing variables according to µ

Example

µ = {?X → R1, ?Y → R2, ?Name → john}

t = (?X , name, ?Name)

µ(t) = (R1, name, john)

The semantics of triple patterns

Definition
The evaluation of triple patter t over a graph G , denoted by JtKG ,
is the set of all mappings µ such that:

The semantics of triple patterns

Definition
The evaluation of triple patter t over a graph G , denoted by JtKG ,
is the set of all mappings µ such that:

◮ dom(µ) is exactly the set of variables occurring in t

The semantics of triple patterns

Definition
The evaluation of triple patter t over a graph G , denoted by JtKG ,
is the set of all mappings µ such that:

◮ dom(µ) is exactly the set of variables occurring in t

◮ µ(t) ∈ G

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG
{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG
{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

J(?X , email, ?E)KG

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG
{

µ1 = {?X → R1, ?N → john}
µ2 = {?X → R2, ?N → paul}

}

J(?X , email, ?E)KG
{

µ = {?X → R1, ?E → J@ed.ex}
}

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(?X , name, ?N)KG

?X ?N
µ1 R1 john
µ2 R2 paul

J(?X , email, ?E)KG

?X ?E
µ R1 J@ed.ex

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W)KG

J(R2, name, paul)KG

J(R3, name, ringo)KG

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W)KG
{ }

J(R2, name, paul)KG

J(R3, name, ringo)KG

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W)KG
{ }

J(R2, name, paul)KG

J(R3, name, ringo)KG
{ }

Example

G
(R1, name, john)

(R1, email, J@ed.ex)
(R2, name, paul)

J(R1,webPage, ?W)KG
{ }

J(R2, name, paul)KG
{

µ∅ = { }
}

J(R3, name, ringo)KG
{ }

Compatible mappings: mappings that can be merged.

Definition
The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

Compatible mappings: mappings that can be merged.

Definition
The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

Compatible mappings: mappings that can be merged.

Definition
The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Compatible mappings: mappings that can be merged.

Definition
The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

Compatible mappings: mappings that can be merged.

Definition
The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

Compatible mappings: mappings that can be merged.

Definition
The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

µ1 ∪ µ2 R1 john J@edu.ex

Compatible mappings: mappings that can be merged.

Definition
The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

µ1 ∪ µ2 R1 john J@edu.ex

Compatible mappings: mappings that can be merged.

Definition
The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

µ1 ∪ µ2 R1 john J@edu.ex
µ1 ∪ µ3 R1 john P@edu.ex R2

Compatible mappings: mappings that can be merged.

Definition
The mappings µ1, µ2 are compatibles iff they agree
in their shared variables:

◮ µ1(?X) = µ2(?X) for every ?X ∈ dom(µ1) ∩ dom(µ2).

µ1 ∪ µ2 is also a mapping.

Example

?X ?Y ?U ?V
µ1 R1 john
µ2 R1 J@edu.ex
µ3 P@edu.ex R2

µ1 ∪ µ2 R1 john J@edu.ex
µ1 ∪ µ3 R1 john P@edu.ex R2

µ∅ = { } is compatible with every mapping.

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings:

Definition
Join: Ω1 Ω2

◮ {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1, µ2 are compatibles}

◮ extending mappings in Ω1 with compatible mappings in Ω2

will be used to define AND

Sets of mappings and operations

Let Ω1 and Ω2 be sets of mappings:

Definition
Join: Ω1 Ω2

◮ {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1, µ2 are compatibles}

◮ extending mappings in Ω1 with compatible mappings in Ω2

will be used to define AND

Definition
Union: Ω1 ∪ Ω2

◮ {µ | µ ∈ Ω1 or µ ∈ Ω2}

◮ mappings in Ω1 plus mappings in Ω2 (the usual set union)

will be used to define UNION

Sets of mappings and operations

Definition
Difference: Ω1 r Ω2

◮ {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ
′ are not compatibles}

◮ mappings in Ω1 that cannot be extended with mappings in Ω2

Sets of mappings and operations

Definition
Difference: Ω1 r Ω2

◮ {µ ∈ Ω1 | for all µ′ ∈ Ω2, µ and µ
′ are not compatibles}

◮ mappings in Ω1 that cannot be extended with mappings in Ω2

Definition
Left outer join: Ω1 Ω2 = (Ω1 Ω2) ∪ (Ω1 r Ω2)

◮ extension of mappings in Ω1 with compatible mappings in Ω2

◮ plus the mappings in Ω1 that cannot be extended.

will be used to define OPT

Semantics of general graph patterns

Definition
Given a graph G the evaluation of a pattern is recursively defined

the base case is the evaluation of a triple pattern.

Semantics of general graph patterns

Definition
Given a graph G the evaluation of a pattern is recursively defined

◮ J(P1 AND P2)KG = JP1KG JP2KG

the base case is the evaluation of a triple pattern.

Semantics of general graph patterns

Definition
Given a graph G the evaluation of a pattern is recursively defined

◮ J(P1 AND P2)KG = JP1KG JP2KG

◮ J(P1 UNION P2)KG = JP1KG ∪ JP2KG

the base case is the evaluation of a triple pattern.

Semantics of general graph patterns

Definition
Given a graph G the evaluation of a pattern is recursively defined

◮ J(P1 AND P2)KG = JP1KG JP2KG

◮ J(P1 UNION P2)KG = JP1KG ∪ JP2KG

◮ J(P1 OPT P2)KG = JP1KG JP2KG

the base case is the evaluation of a triple pattern.

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

Example (AND)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) AND (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

Example (OPT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) OPT (?X , email, ?E))KG

J(?X , name, ?N)KG J(?X , email, ?E)KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?X ?E
µ4 R1 J@ed.ex
µ5 R3 R@ed.ex

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

?X ?Info
µ3 R3 www.ringo.com

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

∪
?X ?Info

µ3 R3 www.ringo.com

Example (UNION)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , email, ?Info) UNION (?X , webPage, ?Info))KG

J(?X , email, ?Info)KG ∪ J(?X , webPage, ?Info)KG

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex

∪
?X ?Info

µ3 R3 www.ringo.com

?X ?Info
µ1 R1 J@ed.ex
µ2 R3 R@ed.ex
µ3 R3 www.ringo.com

Boolean filter expressions (value constraints)

In filter expressions we consider

◮ the equality = among variables and RDF terms

◮ a unary predicate bound

◮ boolean combinations (∧, ∨, ¬)

A mapping µ satisfies

◮ ?X = c if µ(?X) = c

◮ ?X =?Y if µ(?X) = µ(?Y)

◮ bound(?X) if µ is defined in ?X , i.e. ?X ∈ dom(µ)

Satisfaction of value constraints

◮ If P is a graph pattern and R is a value constraint then
(P FILTER R) is also a graph pattern.

Satisfaction of value constraints

◮ If P is a graph pattern and R is a value constraint then
(P FILTER R) is also a graph pattern.

Definition
Given a graph G

◮ J(P FILTER R)KG = {µ ∈ JPKG | µ satisfies R}
i.e. mappings in the evaluation of P that satisfy R .

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?N = ringo ∨ ?N = paul

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J((?X , name, ?N) FILTER (?N = ringo ∨ ?N = paul))KG

?X ?N
µ1 R1 john
µ2 R2 paul
µ3 R3 ringo

?N = ringo ∨ ?N = paul

?X ?N
µ2 R2 paul
µ3 R3 ringo

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E)

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E)

?X ?N
µ2 R2 paul

Example (FILTER)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(((?X , name, ?N) OPT (?X , email, ?E)) FILTER ¬ bound(?E))KG

?X ?N ?E
µ1 ∪ µ4 R1 john J@ed.ex
µ3 ∪ µ5 R3 ringo R@ed.ex

µ2 R2 paul

¬ bound(?E)

?X ?N
µ2 R2 paul

(a non-monotonic query)

Why do we need/want to formalize SPARQL

A formalization is beneficial

◮ clarifying corner cases

◮ helping in the implementation process

◮ providing solid foundations (we can actually prove properties!)

SELECT (a.k.a. projection)

Besides graph patterns, SPARQL 1.0 allow result forms
the most simple is SELECT

Definition
A SELECT query is an expression

(SELECT W P)

where P is a graph pattern and W is a set of variables, or *

SELECT (a.k.a. projection)

Besides graph patterns, SPARQL 1.0 allow result forms
the most simple is SELECT

Definition
A SELECT query is an expression

(SELECT W P)

where P is a graph pattern and W is a set of variables, or *

The evaluation of a SELECT query against G is

◮ J(SELECT W P)KG = {µ|W | µ ∈ JPKG}
where µ|W is the restriction of µ to domain W .

◮ J(SELECT * P)KG = JPKG

Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E)))KG

Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E)))KG

SELECT{?N , ?E}
?X ?N ?E

µ1 R1 john J@ed.ex
µ2 R3 ringo R@ed.ex

Example (SELECT)

G :
(R1, name, john) (R2, name, paul) (R3, name, ringo)
(R1, email, J@ed.ex) (R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

J(SELECT {?N , ?E} ((?X , name, ?N) AND (?X , email, ?E)))KG

SELECT{?N , ?E}
?X ?N ?E

µ1 R1 john J@ed.ex
µ2 R3 ringo R@ed.ex

?N ?E
µ1|{?N,?E}

john J@ed.ex

µ2|{?N,?E}
ringo R@ed.ex

SPARQL 1.1 introduces several new features

In SPARQL 1.1:

◮ (SELECT W P) can be used as any other graph pattern
⇒ sub-queries

◮ Aggregations via ORDER-BY plus COUNT, SUM, etc.

◮ Most interesting features: Federation and Navigation

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

◮ Known fact: SPARQL 1.0 cannot express this query!

◮ Follows easily from locality of FO-logic

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(C1, connected,C2)

query: is city B reachable from A by a sequence of connections?

◮ Known fact: SPARQL 1.0 cannot express this query!

◮ Follows easily from locality of FO-logic

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X :friendOf ?Y .

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X :friendOf ?Y .

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X (:friendOf)* ?Y .

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X (:friendOf)* ?Y .

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X (:friendOf)* ?Y . ← SPARQL 1.1 property path

?Y :name "Maria" .

}

SPARQL 1.1 provides an alternative way for navigating

URI 2
:email

seba@puc.cl
:name

:email

:phone

:name

:friendOf juan@utexas.edu

URI 1

Seba
446928888

Juan

Claudio
:name

:name
Maria

URI 0

:friendOf

URI 3

:friendOf

SELECT ?X

WHERE

{

?X (:friendOf)* ?Y . ← SPARQL 1.1 property path

?Y :name "Maria" .

}

Idea: navigate RDF graphs using regular expressions

General navigation using regular expressions

Regular expressions define sets of strings using

◮ concatenation: /

◮ disjunction: |

◮ Kleene star: *

Example

Consider strings composed of symbols a and b

a/(b)*/a

defines strings of the form abbb · · · bbba.

General navigation using regular expressions

Regular expressions define sets of strings using

◮ concatenation: /

◮ disjunction: |

◮ Kleene star: *

Example

Consider strings composed of symbols a and b

a/(b)*/a

defines strings of the form abbb · · · bbba.

Idea: use regular expressions to define paths

◮ a path p satisfies a regular expression r if the string composed
of the sequence of edges of p satisfies expression r

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X Paris }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)* Paris }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus Paris }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an even number of
connections

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an even number of
connections

Mixing regular expressions and SPARQL operators
gives interesting expressive power:

Persons in my professional network that attended the same school

Interesting navigational queries

◮ RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* ?X }

◮ Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an even number of
connections

Mixing regular expressions and SPARQL operators
gives interesting expressive power:

Persons in my professional network that attended the same school

{ ?X (:conn)* ?Y .

?X (:conn)* ?Z .

?Y :sameSchool ?Z }

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

◮ Early 2011: first formal semantics by the W3C

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

◮ Early 2011: first formal semantics by the W3C

◮ Late 2011: empirical and theoretical study on SPARQL 1.1
property paths showing unfeasibility of evaluation

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

◮ Early 2011: first formal semantics by the W3C

◮ Late 2011: empirical and theoretical study on SPARQL 1.1
property paths showing unfeasibility of evaluation

◮ Mid 2012: semantics change to overcome the raised issues

As always, we need a (formal) semantics

◮ Regular expressions in SPARQL queries seem reasonable

◮ We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

◮ Mid 2010: W3C defines an informal semantics for paths

◮ Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

◮ Early 2011: first formal semantics by the W3C

◮ Late 2011: empirical and theoretical study on SPARQL 1.1
property paths showing unfeasibility of evaluation

◮ Mid 2012: semantics change to overcome the raised issues

The following experimental study is based on [ACP12].

