RDF

Semantic Web

“The Semantic Web is an extension of the current web in which
information is given well-defined meaning, better enabling
computers and people to work in cooperation.”

[Tim Berners-Lee et al. 2001.]

Specific Goals:
» Build a description language with standard semantics
» Make semantics machine-processable and understandable
» Incorporate logical infrastructure to reason about resources

» W3C Proposal: Resource Description Framework (RDF)

RDF in a nutshell

> RDF is the W3C proposal framework for representing
information in the Web

» Abstract syntax based on directed labeled graph

» Schema definition language (RDFS): Define new vocabulary
(typing, inheritance of classes and properties)

» Extensible URI-based vocabulary

» Formal semantics

RDF formal model

U
4
- Predicate o U = set of Uris
t
- B = set of Blank nodes
JE, RN L = set of Literals

. o
u B u B L

RDF formal model

U
4
e 5 ool
t t
m—>ﬂ B = set of Blank nodes
N T L = set of Literals
U B U B L

(s,p,0) € (UUB) x Ux (UUBUL) is called an RDF triple

RDF formal model

U
4
e 5 ool
t t
m—>ﬂ B = set of Blank nodes
N T L = set of Literals
U B U B L

(s,p,0) € (UUB) x Ux (UUBUL) is called an RDF triple

A set of RDF triples is called an RDF graph

An example of an RDF graph: DBLP

: <http://dblp.
: <http://dblp.
: <http://dblp.
: <http://swrc.
: <http://purl.
: <http://purl.

[contipote]

conf :pods

swrc:series

inPods:2001

13s.de/d2r/resource/authors/>
13s.de/d2r/resource/conferences/>
13s.de/d2r/resource/publications/conf/pods/>
ontoware.org/ontology#>
org/dc/elements/1.1/>

org/dc/terms/>

"Optimal Aggregation ..."

dct:Part0f

:Ronald_Fagin

An example of a URI
http://dblp.13s.de/d2r/resource/conferences/pods

0606 PODS | D2R Server publishing the
| 4 | > ||+ |85'http:Hdpr.Bs.de.fdZrJ'page;'conferencesfpods
O ## <= Apple{l36)y Amazon Yahoo! News (Ellgiv

Resource URAL: http:/i

Home | Example Conferences

rdfs:label PODS (xsd:string)

rdfs:seeAlso <http:/idblp.|3s.de/Venues/PODS>

is swrc:series of <http://dblp.|3s.de/d2riresource/publications/conf/pods/00>

is swrc:series of <http://dblp.13s.de/d2nresource/publications/conf/pods/2001>
is swrc:series of <http://dblp.l3s.de/d2rresource/publications/conf/pods/2002>
is swro:series of <http:/{dblp.|3s.de/d2r/resource/publications/conf/pods/2003=>
is swrc:series of <http://dblp.l3s.de/d2rresource/publications/conf/pods/2004>
is swrc:series of <http://dblp.|3s.de/d2rresource/publications/conf/pods/2005>

URI can be used for any abstract resource

http://dblp.13s.de/d2r/page/authors/Ronald Fagin

alals

Ronald Fagin | D2R Server publishing the

| | | L3 | | Igghttp:Hdblp,Bs,deJdZerage{authors,fRona!d_Fagin

1 ¥ <= Apple(l36)v Amazon Yahoo! News (926)¥

Rol
Resource URI: http:/fdblp.13s

Home | Example Authors

is dc:creator of
is doicreator of
is do:creator of
is do:creator of
is dc:creator of
is dc:creator of
is do:creator of
is dc:creator of

<http://dblp.|3s.de/d2r/resource/publications/conf/aaai/FagiHVB6=>
=<http://dblp.|3s.de/d2r/resource/publications/conf/aaai/FaginHMV 94>
<http://dblp.|3s.de/d2r/resource/publications/conf/aaai/HalpernF90=
<http://dblp.|3s.de/d2r/resource/publications/conffapcem/Fagin08>
<http://dblp.|3s.de/d2riresource/publications/conf/birthday/FaginHHMP V09>
<http://dblp.|3s.de/d2r/resource/publications/conf/caap/FaginB3=
<http://dblp.|3s.de/d2rfresource/publications/conf/coco/FaginSVE3=
<http://dblp.|3s.de/d2r/resource/publications/conf/concur/HalpernFB8=>

RDF: Another example

rdf :dom i rdf :range
person works_in company
rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
soccer_player plays_in soccer_team
rdf :dom rdf :range
rdf:type rdf:type
-) plays_in (
Messi Barcelona
address lives-in

country

Some peculiarities of the RDF data model

» Existential variables as datavalues (null values)
» Built-in vocabulary with fixed semantics (RDFS)

» Graph model where nodes may also be edge labels

Previous example: A better representation

rdf :dom rdf :range

person works_in company

rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
soccer_player plays_in soccer_team
rdf :dom — rdf :range
_ — T
rdf:type rdf:type

Barcelona

Messi
address W

country

©

Previous example: A better representation

rdf :dom i rdf :range
person works_in company
rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
@_player plays_in soccer@
rdf :dom rdf :range
rdf :type rdf:type
Messi Barcelona
address lives_in

country

Previous example: A better representation

rdf :dom i rdf :range
person works_in company
rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
@_player plays_in soccer@
rdf :dom rdf :range
rdf :type rdf:type
Messi Barcelona
address lives_in

country

RDF + RDFS

RDFS extends RDF with a schema vocabulary: subPropertyOf
(rdf :sp), subClassOf (rdf :sc), domain (rdf:dom), range
(rdf:range), type (rdf :type).

plus semantics for this vocabulary

RDFS: Messi is a Person

rdf :dom i rdf :range
person works_in company
rdf:sc
sportman rdf:sp rdf:sc
rdf:sc
soccer_player plays_in soccer_team
rdf :dom rdf :range
rdf:type rdf:type

Barcelona

lives_in

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G.

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G.

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

» As for the case of first-order logic

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G.

The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

» As for the case of first-order logic

This notion can also be characterized by a set of inference rules.

Semantics of RDFS

Checking whether a triple t is in a graph G is the basic step when
reasoning about RDF(S).

> For the case of RDFS, we need to check whether t is implied by G.
The notion of entailment in RDFS can be defined in terms of
classical notions such as model, interpretation, etc.

» As for the case of first-order logic

This notion can also be characterized by a set of inference rules.
The closure of an RDFS graph G (cl(G)) is the graph obtained by
adding to G all the triples that are implied by G.

A basic property of the closure:
» G implies t iff t € cl(G)

Example: (Messi, rdf :type, person) over the closure

rdf :dom rdf:range

person works_in company
rdf:sc | \ rdf:sp rdf:sc
|
| rdf:type
|
/ /
rdf:type | soccer_player <—,—M¢eam
\ rdf :dom rdf :range
rdf:type

Barcelona

lives_in

Does the blank node add some information?

rdf :dom

person

rdf:sc

sportman
rdf :dom rdf :range

rdf:sc

soccer.

H
a
=3
o
<
e
o

-

_player

lives_in

S
country

works_in

rdf:sp

rdf:range
company

rdf:sc

rdf:type

Barcelona

i

What about now?

rdf :dom

person

rdf:sc

sportman

rdf:sc

lives_in

i rdf :range
works_in

rdf:sp

soccer_player plays_in soccer_team
rdf :dom rdf :range

company

rdf:sc

rdf:type

Barcelona

SPARQL

Querying RDF: SPARQL

» SPARQL is the W3C recommendation query language for
RDF (January 2008).

» SPARQL is a recursive acronym that stands for SPARQL
Protocol and RDF Query Language

» SPARQL is a graph-matching query language.

» A SPARQL query consists of three parts:

» Pattern matching: optional, union, filtering, ...

» Solution modifiers: projection, distinct, order, limit, offset, ...

» Output part: construction of new triples,

SPARQL: A Simple RDF Query Language
Example: Authors that have published in ISWC

SPARQL: A Simple RDF Query Language
Example: Authors that have published in ISWC

SELECT 7Author

SPARQL: A Simple RDF Query Language
Example: Authors that have published in ISWC

SELECT 7Author
WHERE
{

SPARQL: A Simple RDF Query Language
Example: Authors that have published in ISWC

SELECT 7Author
WHERE
{

?Paper dc:creator ?Author .

SPARQL: A Simple RDF Query Language
Example: Authors that have published in ISWC

SELECT 7Author

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:part0f ?Conf .

SPARQL: A Simple RDF Query Language
Example: Authors that have published in ISWC

SELECT 7Author

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:part0f ?Conf .
?Conf sWwrc:series conf:iswc .

}

SPARQL: A Simple RDF Query Language
Example: Authors that have published in ISWC

SELECT 7Author

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:part0f ?Conf .
?Conf sWwrc:series conf:iswc .

}

A SPARQL query consists of a:

SPARQL: A Simple RDF Query Language
Example: Authors that have published in ISWC

SELECT 7Author

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:part0f ?Conf .
?Conf swrc:series conf:iswc .

}

A SPARQL query consists of a:

Head: Processing of the variables

SPARQL: A Simple RDF Query Language
Example: Authors that have published in ISWC

SELECT 7Author

WHERE

{
7Paper dc:creator ?Author .
7Paper dct:part0f ?Conf .
?Conf swrc:series conf:iswc .

b

A SPARQL query consists of a:
Head: Processing of the variables

Body: Pattern matching expression

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC, and their Web
pages if this information is available:

SELECT 7Author 7WebPage

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:partOf ?Conf .
?Conf swrc:series conf:iswc .
OPTIONAL {

7Author foaf:homePage 7WebPage . }

SPARQL: A Simple RDF Query Language

Example: Authors that have published in ISWC, and their Web
pages if this information is available:

SELECT 7Author 7WebPage

WHERE

{
?Paper dc:creator ?Author .
?Paper dct:partOf ?Conf .
?Conf swrc:series conf:iswc .
OPTIONAL {

7Author foaf:homePage 7WebPage . }

But things can become more complex...

Interesting features of pattern
matching on graphs

{P1.
P2 }

SELECT 7X1 7X2 ...

But things can become more complex...

Interesting features of pattern

matching on graphs SELECT 7X1 7X2 ...
» Grouping {{Pr1.
P2 }
{P3.
P4 }

But things can become more

Interesting features of pattern
matching on graphs

» Grouping
» Optional parts

complex...

SELECT 7X1 7X2 ...

a8

P1
P2
OPTIONAL { P5 } 1}

P3 .
P4
OPTIONAL { P7 } 2}

But things can become more complex...

Interesting features of pattern
matching on graphs

» Grouping
» Optional parts
» Nesting

SELECT 7X1 7X2 ...
{{ P1 .
P2
OPTIONAL { P5 } 1}

{P3.
P4
OPTIONAL { P7
OPTIONAL { P8 } 1} }

But things can become more complex...

Interesting features of pattern

matching on graphs SELECT 7X1 7X2 ...

» Grouping {{{p1 .
» Optional parts P2
. OPTIONAL { P5 } }
» Nesting
» Union of patterns {P3.

P4
OPTIONAL { P7
OPTIONAL { P8 } 1} }
}
UNION
{ P9}

But things can become more complex...

Interesting features of pattern
matching on graphs

>

>

>

Grouping
Optional parts
Nesting

Union of patterns

Filtering

+ several new features in
the upcoming version:
federation, navigation

SELECT 7X1 7X2 ...
{{{P1.

P2

OPTIONAL { P5 } }

{P3.
P4
OPTIONAL { P7
OPTIONAL { P8 } 1} }
}
UNION
{ P9
FILTER (R) }}

But things can become more complex...

Interesting features of pattern

matching on graphs SELECT 7X1 7X2 ...

» Grouping {{{pr1.
P2

» Optional parts
OPTIONAL { P5 } }

» Nesting
» Union of patterns {P3.
. . P4
> Filterin
& OPTIONAL { P7

> . OPTIONAL { P8 } } }
» + several new features in by

the upcoming version: UNION

{ P9

federation, navigation FILTER (R) }}

What is the (formal) meaning of a general SPARQL query?

A standard algebraic syntax

» Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X, name, john)

A standard algebraic syntax

» Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X, name, john)

» Graph patterns: full parenthesized algebra

{ Pt . P2 } (P1 AND P»)

A standard algebraic syntax
» Triple patterns: just RDF triples + variables (from a set V)
?X :name "john" (?X, name, john)

» Graph patterns: full parenthesized algebra

{ Pt . P2 } (P1 AND P»)

{ P1 OPTIONAL { P2 }} (P. OPT Py)

A standard algebraic syntax

» Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X, name, john)

» Graph patterns: full parenthesized algebra

{ Pt . P2 } (P1 AND P»)
{ P1 OPTIONAL { P2 }} (P. OPT Py)

{ P1} UNION { P2 } (P1 UNION P»)

A standard algebraic syntax

v

Triple patterns: just RDF triples + variables (from a set V)

?X :name "john" (?X, name, john)

v

Graph patterns: full parenthesized algebra

{ Pt . P2 } (P1 AND P»)
{ P1 OPTIONAL { P2 }} (P. OPT Py)
{ P1} UNION { P2 } (P1 UNION P»)

{ P1 FILTER (R) } (P, FILTER R)

A standard algebraic syntax (cont.)

» Explicit precedence/association

Example

{t1
t2
OPTIONAL { t3 2}
OPTIONAL { t4
t5

((((t1 AND to) OPT t3) OPT ;) AND t5)

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

p: V> UUL

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

p: V> UUL

Given a mapping 1 and a triple pattern t:

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

p: V> UUL

Given a mapping 1 and a triple pattern t:

> u(t): triple obtained from t replacing variables according to

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

p: V> UUL

Given a mapping 1 and a triple pattern t:

> u(t): triple obtained from t replacing variables according to

Example

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

p: V> UUL

Given a mapping 1 and a triple pattern t:

> u(t): triple obtained from t replacing variables according to

Example

w=1{?X - R1,?Y — Ry,?Name — john}

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

p: V> UUL

Given a mapping 1 and a triple pattern t:

> u(t): triple obtained from t replacing variables according to
Example
w=1{?X - R1,?Y — Ry,?Name — john}

t = (?X, name, ?Name)

Mappings: building block for the semantics

Definition
A mapping is a partial function from variables to RDF terms

p: V> UUL

Given a mapping 1 and a triple pattern t:

> u(t): triple obtained from t replacing variables according to
Example
w=1{?X - R1,?Y — Ry,?Name — john}
t = (?X, name, ?Name)

w(t) = (R, name, john)

The semantics of triple patterns

Definition
The evaluation of triple patter t over a graph G, denoted by [t]¢,
is the set of all mappings u such that:

The semantics of triple patterns

Definition
The evaluation of triple patter t over a graph G, denoted by [t]¢,
is the set of all mappings u such that:

» dom(p) is exactly the set of variables occurring in t

The semantics of triple patterns

Definition
The evaluation of triple patter t over a graph G, denoted by [t]¢,
is the set of all mappings u such that:

» dom(p) is exactly the set of variables occurring in t

» u(t) e G

Example

(R1, name, john)
(R1, email, JQ@ed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢

Example

(R1, name, john)
(R1, email, JQ@ed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢

1 = {?2X = Ry,?N — john}
Mo = {?X — R2,?N — paul}

Example

(R1, name, john)
(R1, email, JQ@ed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢
{ p1 = {?X — Ri,?N — john} }

Mo = {?X — R2,?N — paul}

[(?X, email, 7E)] ¢

Example

(R1, name, john)
(R1, email, JQ@ed.ex)
(R2, name, paul)

[(?X, name, ?N)]¢

1 = {?2X = Ry,?N — john}
Mo = {?X — R2,?N — paul}

[(?X, email, 7E)] ¢
{ w={"X— R,7E — JOed.ex} }

Example

| Ry | JOed.ex

(Ry, name, john)
(R1, email, J@ed.ex)
(R>, name, paul)

[(?X, name, ?N)]¢

XN
u1 | R1 | john
p2 | Ro | paul

[(?X, email, 7E)] ¢
X E

Example

(R1, name, john)
(R1, email, JQ@ed.ex)
(R2, name, paul)

[[(Rlv WebPagev ?W)]] G
[(Rs, name, ringo)] ¢

[(R2, name, paul)] ¢

Example

(R1, name, john)
(R1, email, JQ@ed.ex)
(R, name, paul)

[(Ry1, webPage, ?W)] ¢
{ } [(Rs, name, ringo)] ¢

[(R2, name, paul)] ¢

Example

(R1, name, john)
(R1, email, JQ@ed.ex)
(R, name, paul)

[(Ry1, webPage, ?W)] ¢
{} [(Rs, name, ringo)] ¢
[(R2, name, paul)] ¢ { }

Example

(R1, name, john)
(R1, email, JQ@ed.ex)
(R2, name, paul)

[(Ry1, webPage, ?W)] ¢
{ } [(Rs, name, ringo)] ¢
[(Rz, name, paul)] ¢ { }
{mw={}}

Compatible mappings: mappings that can be merged.

Definition
The mappings p1, o are compatibles iff they agree
in their shared variables:

Compatible mappings: mappings that can be merged.

Definition
The mappings p1, o are compatibles iff they agree
in their shared variables:

> 11(?X) = pu2(?X) for every 72X € dom(p1) N dom(pz).

Compatible mappings: mappings that can be merged.

Definition
The mappings p1, o are compatibles iff they agree
in their shared variables:

> 11(?X) = pu2(?X) for every 72X € dom(p1) N dom(pz).

w1 U po is also a mapping.

Compatible mappings: mappings that can be merged.

Definition
The mappings p1, o are compatibles iff they agree
in their shared variables:

> 11(?X) = pu2(?X) for every 72X € dom(p1) N dom(pz).

w1 U po is also a mapping.

Example
X | Y U v
M1 Rl john
2 Ry J@edu.ex

13 PQedu.ex | R»

Compatible mappings: mappings that can be merged.

Definition
The mappings p1, o are compatibles iff they agree
in their shared variables:

> 11(?X) = pu2(?X) for every 72X € dom(p1) N dom(pz).

w1 U po is also a mapping.

Example
X | Y U v
M1 Rl john
12 Ry JQedu.ex

13 PQedu.ex | R»

Compatible mappings: mappings that can be merged.

Definition
The mappings p1, o are compatibles iff they agree
in their shared variables:

> 11(?X) = pu2(?X) for every 72X € dom(p1) N dom(pz).

w1 U po is also a mapping.

Example
X | Y U v
M1 Rl john
12 Ry JQedu.ex
13 PQedu.ex | R»
purUps | Ry | john | JO@edu.ex

Compatible mappings: mappings that can be merged.

Definition
The mappings p1, o are compatibles iff they agree
in their shared variables:

> 11(?X) = pu2(?X) for every 72X € dom(p1) N dom(pz).

w1 U po is also a mapping.

Example
X | Y U v
M1 Rl john
2 Ry J@edu.ex
143 PQedu.ex | R»
purUps | Ry | john | JO@edu.ex

Compatible mappings: mappings that can be merged.

Definition
The mappings p1, o are compatibles iff they agree
in their shared variables:

> 11(?X) = pu2(?X) for every 72X € dom(p1) N dom(pz).

w1 U po is also a mapping.

Example
X | Y U %
M1 Rl john
2 Ry J@edu.ex
143 PQedu.ex | R»
purUps | Ry | john | JO@edu.ex
w1 U ps Ry | john | P@edu.ex | R»

Compatible mappings: mappings that can be merged.

Definition
The mappings p1, o are compatibles iff they agree
in their shared variables:

> 11(?X) = pu2(?X) for every 72X € dom(p1) N dom(pz).

w1 U po is also a mapping.

Example
X | Y U %
M1 Rl john
2 Ry J@edu.ex
13 PQedu.ex | R»
purUps | Ry | john | JO@edu.ex
w1 U ps Ry | john | P@edu.ex | R»

g = { } is compatible with every mapping.

Sets of mappings and operations

Let Q; and €5 be sets of mappings:

Definition

Join: Q1 X Q5
» {p1Upo | p1 € Qq,u2 € Qp, and g, up are compatibles}
» extending mappings in €1 with compatible mappings in €2

will be used to define AND

Sets of mappings and operations

Let Q; and €5 be sets of mappings:
Definition
Join: Q1 X Q5
» {p1Upo | p1 € Qq,u2 € Qp, and g, up are compatibles}
» extending mappings in €1 with compatible mappings in €2
will be used to define AND
Definition
Union: Q1 U,
» {u|peQorpue}

» mappings in Q3 plus mappings in Q, (the usual set union)

will be used to define UNION

Sets of mappings and operations

Definition
Difference: Q1 \ Q>
» {n e Q| forall u € Qy, uand i are not compatibles}
» mappings in ©; that cannot be extended with mappings in Q,

Sets of mappings and operations

Definition
Difference: Q1 \ Q>
» {n e Q| forall u € Qy, uand i are not compatibles}
» mappings in ©; that cannot be extended with mappings in Q,

Definition
Left outer join: Q1 X Qo = (21 X Q) U (1 \ Q)
» extension of mappings in €; with compatible mappings in €25

» plus the mappings in ; that cannot be extended.

will be used to define OPT

Semantics of general graph patterns

Definition
Given a graph G the evaluation of a pattern is recursively defined

the base case is the evaluation of a triple pattern.

Semantics of general graph patterns

Definition
Given a graph G the evaluation of a pattern is recursively defined

> [(P1 AND P2)]g = [Pi]¢ X [P2]6

the base case is the evaluation of a triple pattern.

Semantics of general graph patterns

Definition
Given a graph G the evaluation of a pattern is recursively defined

> [(P1 AND P2)]g = [Pi]¢ X [P2]6
> [(P1 UNION Py)]g = [Pi]¢ U [P2]c

the base case is the evaluation of a triple pattern.

Semantics of general graph patterns

Definition
Given a graph G the evaluation of a pattern is recursively defined

> [(P1 AND P2)]g = [Pi]¢ X [P2]6
> [(P1 UNION Py)]g = [Pi]¢ U [P2]c
» [(PL OPT Po)]¢ = [Pi]c X [Pa]c

the base case is the evaluation of a triple pattern.

Example (AND)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ry, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢

Example (AND)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ri, email, J@ed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢ X [(?X, email, ?E)]¢

Example (AND)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)

G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢ X [(?X, email, ?E)]¢

X | N
p1 | R | john
p2 | Ro | paul
us | Rs | ringo

Example (AND)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)

G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢ X [(?X, email, ?E)]¢

X | N
; X 7E
Z; g; JI;)ahunl pa | Ry | J@ed.ex
3 R3 ri ngo M5 R3 R@ed.ex

Example (AND)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)

G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢ X [(?X, email, ?E)]¢

X 7N

; X 7E
Z; g; JI;)ahunl M pa | Ry | J@ed.ex
3 R3 ringo M5 R3 R@ed.ex

Example (AND)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)
[((?X, name, ?N) AND (?X, email, 7E))]¢
[(?X, name, ?N)]¢ X [(?X, email, ?E)]¢

X N

7 7
i [Ry [John X
p2 | Ro | paul
us | Rs | ringo

X Ha Rl J@ed.ex
us | R3 | R@ed.ex

X | ?N ’E
1 Upg | Ry | john | J@ed.ex
u3Ups | Rs | ringo | R@ed.ex

Example (OPT)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ri, email, J@ed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, 7E))]¢

Example (OPT)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ri, email, J@ed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, 7E))]¢
[(?X, name, ?N)]¢c K [(?X, email, ?E)]¢

Example (OPT)
(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
(R3, email, R@ed.ex)

G : (R1, email, J@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, 7E))]¢
[(?X, name, ?N)]¢c K [(?X, email, ?E)]¢

X | IN
p1 | Ry | john
p2 | R | paul
us | Rs | ringo

Example (OPT)

(R1, name, john)
G : (R1, email, J@ed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, 7E))]¢
[(?X, name, ?N)]¢c K [(?X, email, ?E)]¢

X | IN
p1 | Ry | john
p2 | R | paul
us | Rs | ringo

X 7E
ta | Ry | JOed.ex
s R3 R@ed.ex

Example (OPT)

(R1, name, john)
G : (R1, email, J@ed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, 7E))]¢
[(?X, name, ?N)]¢c K [(?X, email, ?E)]¢

X | IN
p1 | Ry | john
p2 | R | paul
us | Rs | ringo

X 7E
ta | Ry | JOed.ex
s R3 R@ed.ex

Example (OPT)

(R1, name, john)
G : (R1, email, J@ed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)

(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, 7E))]¢

[(?X, name, ?N)]¢c K [(?X, email, ?E)]¢

?RX .?LV X 7E
Zl = J;aunl ™ ps | Ry | JQed.ex
2 2
L3 R3 ringo M5 R3 R@ed.ex

X | ?N ’E
w1 Upg | Ry | john | J@ed.ex
u3Ups | Rs | ringo | R@ed.ex

p2 | Re | paul

Example (OPT)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)

G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) OPT (?X, email, 7E))]¢
[(?X, name, ?N)]¢c K [(?X, email, ?E)]¢

X | N
; X 7E
Z; g; JI;)ahunl N pa | Ri | J@ed.ex
3 R3 ringo Hs Rs3 R@ed.ex

X | ?N ’E

w1 Upg | Ry | john | J@ed.ex

u3Ups | Rs | ringo | R@ed.ex
2 R | paul

Example (UNION)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ry, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?info) UNION (?X, webPage, ?Info))]¢

Example (UNION)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ry, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?info) UNION (?X, webPage, ?Info))]¢
[(?X, email, ?Info)]c U [(?X, webPage, ?Info)]¢

Example (UNION)

(R1, name, john) (R2, name, paul) (Rs3, name, ringo)
G : (Ri, email, J@ed.ex) (Rs3, email, RQ@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?info) UNION (?X, webPage, ?Info))]¢
[(?X, email, ?Info)]c U [(?X, webPage, ?Info)]¢

?X | ?Info
M1 Rl JOed.ex
2 R3 R@ed.ex

Example (UNION)

(R1, name, john)
G : (Ri, email, J@ed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[((?X, email, ?info) UNION (?X, webPage, ?Info))]¢
[(?X, email, ?Info)]c U [(?X, webPage, ?Info)]¢

M1
M2

?X | ?info
Ry | JOed.ex
R3 | R@ed.ex

H3

X

?Info

Rs3

WWW.ringo.com

Example (UNION)

(R1, name, john)
G : (Ri, email, J@ed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[((?X, email, ?info) UNION (?X, webPage, ?Info))]¢
[(?X, email, ?Info)]c U [(?X, webPage, ?Info)]¢

M1
M2

?X | ?info
Ry | JOed.ex
R3 | R@ed.ex

H3

X

?Info

Rs3

WWW.ringo.com

Example (UNION)

(R1, name, john)
G : (Ri, email, J@ed.ex)

(R2, name, paul)

(R3, name, ringo)
(R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, email, ?info) UNION (?X, webPage, ?Info))]¢
[(?X, email, ?Info)]c U [(?X, webPage, ?Info)]¢

;
*X | ?info -~ o
p1 | Ry | JOed.ex U /
p2 | R | R@ed.ex ps | Rz | www.ringo.com
X ?Info
pr | R JOed.ex
o | Rz R@ed.ex
13 | Rz | www.ringo.com

Boolean filter expressions (value constraints)

In filter expressions we consider
» the equality = among variables and RDF terms
» a unary predicate bound

» boolean combinations (A, V,)

A mapping u satisfies
» X =cif u(?X)=c
> X =Y 0 p(PX) = p(?Y)
» bound(?X) if 4 is defined in 7.X, i.e. 7X € dom(u)

Satisfaction of value constraints

» If Pis a graph pattern and R is a value constraint then
(P FILTER R) is also a graph pattern.

Satisfaction of value constraints

» If Pis a graph pattern and R is a value constraint then
(P FILTER R) is also a graph pattern.

Definition
Given a graph G
» [(P FILTER R)]¢ = {w € [P] ¢ | 1 satisfies R}
i.e. mappings in the evaluation of P that satisfy R.

Example (FILTER)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V 7N = paul))]¢

Example (FILTER)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V 7N = paul))]¢

X | N
M1 Rl john
p2 | Ro | paul
us | Rs | ringo

Example (FILTER)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V 7N = paul))]¢

X | N
M1 Rl john N — 2 o
1> [Ry | paul !N = ringo V ?N = paul
us | Rs | ringo

Example (FILTER)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (Ri, email, J@ed.ex) (R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[((?X, name, ?N) FILTER (?N = ringo V 7N = paul))]¢

X | N
M1 Rl john N — 2 o
1> [Ry | paul !N = ringo V ?N = paul
us | Rs | ringo
X | IN
p2 | Rz | paul
us | Rs | ringo

Example (FILTER)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER = bound(?E))]¢

Example (FILTER)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, J@ed.ex) (R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER = bound(?E))]¢

X | N ?E

w1 Upg | Ry | john | J@ed.ex

u3Ups | Rs | ringo | R@ed.ex
2 Rx | paul

Example (FILTER)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, J@ed.ex) (R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER = bound(?E))]¢

X | N ?E

w1 Upg | Ry | john | J@ed.ex

u3Ups | Rs | ringo | R@ed.ex
2 Rx | paul

—bound(?E)

Example (FILTER)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, J@ed.ex) (R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER = bound(?E))]¢

X | N ?E

w1 Upg | Ry | john | J@ed.ex

u3Ups | Rs | ringo | R@ed.ex
2 Rx | paul

—bound(?E)

X | N
p2 | R | paul

Example (FILTER)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, J@ed.ex) (R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[(((?X, name, ?N) OPT (?X, email, ?E)) FILTER = bound(?E))]¢

X | N ?E

w1 Upg | Ry | john | J@ed.ex

u3Ups | Rs | ringo | R@ed.ex
2 Rx | paul

—bound(?E)

X | N
p2 | R | paul

(a non-monotonic query)

Why do we need/want to formalize SPARQL

A formalization is beneficial
» clarifying corner cases
> helping in the implementation process

» providing solid foundations (we can actually prove properties!)

SELECT (a.k.a. projection)
Besides graph patterns, SPARQL 1.0 allow result forms
the most simple is SELECT

Definition
A SELECT query is an expression

(SELECT W P)

where P is a graph pattern and W is a set of variables, or *

SELECT (a.k.a. projection)

Besides graph patterns, SPARQL 1.0 allow result forms
the most simple is SELECT

Definition
A SELECT query is an expression

(SELECT W P)

where P is a graph pattern and W is a set of variables, or *
The evaluation of a SELECT query against G is
> [(SELECT W P)lc ={w,, | 1 € [Plc}
where 1, is the restriction of 1 to domain W.

> [(SELECT * P)]c = [Plc

Example (SELECT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(SELECT {?N,?E} ((?X, name, V) AND (2X, email, ?E)))] ¢

Example (SELECT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, J@ed.ex) (R3, email, R@ed.ex)
(R3, webPage, www.ringo.com)

[(SELECT {?N,?E} ((?X, name, V) AND (2X, email, ?E)))] ¢

X | N ?E
SELECT{?N,?E} 1| Ri | john | JQ@ed.ex
t2 | R3 | ringo | R@ed.ex

Example (SELECT)

(R1, name, john) (R2, name, paul) (R3, name, ringo)
G : (R, email, J@ed.ex) (R3, email, R@ed.ex)
(Rs3, webPage, www.ringo.com)

[(SELECT {?N,?E} ((?X, name, V) AND (2X, email, ?E)))] ¢

X | N ?E
SELECT{?N,?E} 1| Ri | john | JQ@ed.ex
t2 | R3 | ringo | R@ed.ex

N E
john | J@ed.ex
ringo | R@ed.ex

'ul\{?/v.?f}

M2\{?N.?E}

SPARQL 1.1 introduces several new features

In SPARQL 1.1:

» (SELECT W P) can be used as any other graph pattern
= sub-queries

» Aggregations via ORDER-BY plus COUNT, SUM, etc.

> Most interesting features: Federation and Navigation

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:

(Cy, connected, Gy)

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:
(Cy, connected, Cy)

query: is city B reachable from A by a sequence of connections?

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:
(Cy, connected, Cy)

query: is city B reachable from A by a sequence of connections?

» Known fact: SPARQL 1.0 cannot express this query!

> Follows easily from locality of FO-logic

SPARQL 1.0 has very limited navigational capabilities

Assume a graph with cities and connections with RDF triples like:
(Cy, connected, Cy)

query: is city B reachable from A by a sequence of connections?

» Known fact: SPARQL 1.0 cannot express this query!

> Follows easily from locality of FO-logic

SPARQL 1.1 provides an alternative way for navigating

446928888

:friend0f

:friend0f

SPARQL 1.1 provides an alternative way for navigating

446928888

:friend0f

:friend0f

SELECT 7X

WHERE

{
?X :friendOf 7Y .
?Y :name "Maria"

SPARQL 1.1 provides an alternative way for navigating

446928888

:friend0f

:friend0f

SELECT 7X

WHERE

{
?X :friendOf 7Y .
?Y :name "Maria"

SPARQL 1.1 provides an alternative way for navigating

446928888

:friend0f

:friend0f

SELECT 7X

WHERE

{
?X (:friendOf)* ?Y .
?Y :name "Maria"

SPARQL 1.1 provides an alternative way for navigating

446928888

remail

URI4
_ -

:friend0f

:friend0f

SELECT 7X

WHERE

{
?X (:friendOf)* ?Y .
?Y :name "Maria"

SPARQL 1.1 provides an alternative way for navigating

:friend0f

:friendOf

SELECT 7X

WHERE

{
?X (:friend0f)* 7Y . <+ SPARQL 1.1 property path
?Y :name "Maria" .

SPARQL 1.1 provides an alternative way for navigating

446928888

:friend0f

:friend0f

SELECT ?7X

WHERE

{
?X (:friend0f)* ?Y . <+ SPARQL 1.1 property path
?Y :name "Maria" .

}

Idea: navigate RDF graphs using regular expressions

General navigation using regular expressions

Regular expressions define sets of strings using
» concatenation: /
» disjunction: |
> Kleene star: *

Example
Consider strings composed of symbols a and b

a/(b)*/a

defines strings of the form abbb- - - bbba.

General navigation using regular expressions

Regular expressions define sets of strings using
» concatenation: /
» disjunction: |

» Kleene star: *

Example
Consider strings composed of symbols a and b

a/(b)*/a

defines strings of the form abbb- - - bbba.
Idea: use regular expressions to define paths

» a path p satisfies a regular expression r if the string composed
of the sequence of edges of p satisfies expression r

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* 7X }

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* 7X }

» Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* 7X }

» Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ 7x Paris }

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* 7X }

» Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)x* Paris }

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* 7X }

» Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:train|:plane)*/:bus Paris }

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* 7X }

» Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:trainl|:plane)*/:bus/(:train|:plane)* Paris }

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* 7X }

» Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:trainl|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an even number of
connections

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* 7X }

» Connections between cities via :train, :bus, :plane

Cities that reach Paris with exactly one :bus connection
{ ?X (:trainl|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an even number of
connections

Mixing regular expressions and SPARQL operators
gives interesting expressive power:

Persons in my professional network that attended the same school

Interesting navigational queries

» RDF graph with :father, :mother edges:

ancestors of John
{ John (:father|:mother)* 7X }

» Connections between cities via :train, :bus, :plane
Cities that reach Paris with exactly one :bus connection
{ ?X (:trainl|:plane)*/:bus/(:train|:plane)* Paris }

Exercise: cities that reach Paris with an even number of
connections

Mixing regular expressions and SPARQL operators
gives interesting expressive power:

Persons in my professional network that attended the same school
{ ?X (:conn)* 7Y .

?X (:conn)* 7Z .
?Y :sameSchool ?7Z }

As always, we need a (formal) semantics

» Regular expressions in SPARQL queries seem reasonable

» We need to agree in the meaning of these new queries

As always, we need a (formal) semantics

» Regular expressions in SPARQL queries seem reasonable

» We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:
» Mid 2010: W3C defines an informal semantics for paths

As always, we need a (formal) semantics

» Regular expressions in SPARQL queries seem reasonable

» We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:
» Mid 2010: W3C defines an informal semantics for paths

> Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

As always, we need a (formal) semantics

» Regular expressions in SPARQL queries seem reasonable

» We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:
» Mid 2010: W3C defines an informal semantics for paths

> Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

» Early 2011: first formal semantics by the W3C

As always, we need a (formal) semantics

» Regular expressions in SPARQL queries seem reasonable

» We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:
» Mid 2010: W3C defines an informal semantics for paths

> Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

» Early 2011: first formal semantics by the W3C

» Late 2011: empirical and theoretical study on SPARQL 1.1
property paths showing unfeasibility of evaluation

As always, we need a (formal) semantics

>

Regular expressions in SPARQL queries seem reasonable

» We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:

>

>

Mid 2010: W3C defines an informal semantics for paths

Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

Early 2011: first formal semantics by the W3C

Late 2011: empirical and theoretical study on SPARQL 1.1
property paths showing unfeasibility of evaluation

Mid 2012: semantics change to overcome the raised issues

As always, we need a (formal) semantics

» Regular expressions in SPARQL queries seem reasonable

» We need to agree in the meaning of these new queries

A bit of history on W3C standardization of property paths:
» Mid 2010: W3C defines an informal semantics for paths

> Late 2010: several discussions on possible drawbacks on the
non-standard definition by the W3C

» Early 2011: first formal semantics by the W3C

» Late 2011: empirical and theoretical study on SPARQL 1.1
property paths showing unfeasibility of evaluation

» Mid 2012: semantics change to overcome the raised issues

The following experimental study is based on [ACP12].

