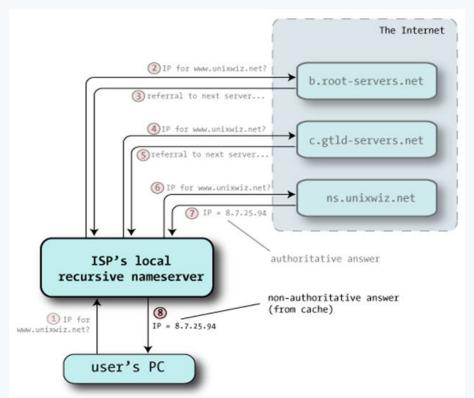

CC5303 – Sistemas Distribuidos

2.- Naming

Parte 2

Sebastián Blasco V.

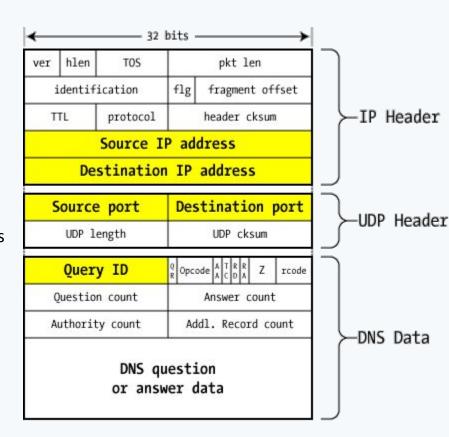
• El espacio de nombre DNS está organizado jerárquicamente como las raíces de un árbol de nombres estructurados.

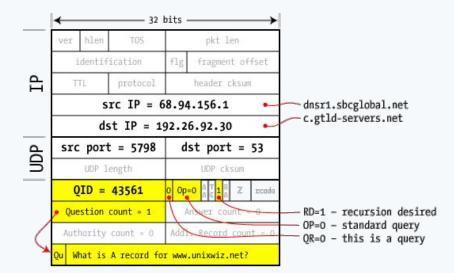

Tipo	Entidad asociada	Descripción
SOA	Zone	Contiene información de la zona representada, su administrador, el host donde se encuentra la raíz de esa zona, etc.
А	Host	Contiene la IP del nodo a quien representa, en caso de múltiples IP, se utilizarán múltiples registros A
MX	Domain	Referencia al mailserver del dominio (quien procesará todo el correo para un dominio determinado)
SRV	Domain	Nombre del servidor para un servicio específico (ejemplo: Web)
NS	Zone	El nombre del NameServer que implementa una zona específica
CNAME	Node	Canonical Name. Nombre primario de un nodo. Link simbólico.
PTR	Host	Contiene el nombre primario de un host para consultas por IP. Por ejemplo: dichato.dcc.uchile.cl es 192.80.24.4, por lo tanto PTR sería 4.24.80.192.in-addr.arpa
HINFO	Host	Información adicional del host
TXT	Any kind	Información adicional de la entidad representada por el nodo

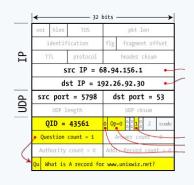
Ejemplo archivo de Zona

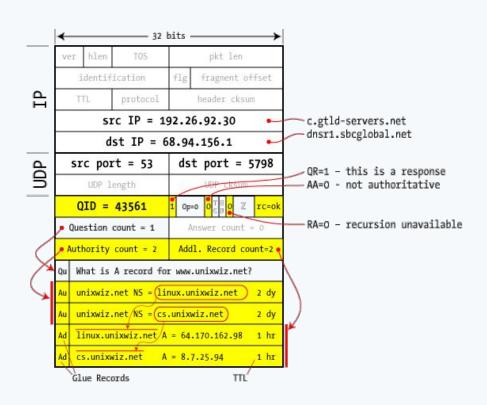
```
$ORIGIN example.com.
$TTL 86400
                    dns1.example.com.
                                           hostmaster.example.com. (
      ΙN
             SOA
                    2001062501 ; serial
                                ; refresh after 6 hours
                     21600
                    3600
                                ; retry after 1 hour
                    604800
                                ; expire after 1 week
                    86400 )
                                ; minimum TTL of 1 day
                    dns1.example.com.
             NS
      ΙN
                    dns2.example.com.
      ΙN
             NS
                    10
                            mail.example.com.
      ΙN
             MX
                            mail2.example.com.
                    20
      ΙN
             MX
                             10.0.1.5
             ΙN
                             10.0.1.5
server1
             ΙN
                    Α
                             10.0.1.7
server2
                    Α
             ΙN
                             10.0.1.2
dns1
                    Α
             ΙN
dns2
             ΙN
                             10.0.1.3
ftp
             ΙN
                    CNAME
                             server1
mail
                    CNAME
                             server1
             ΙN
mail2
                    CNAME
                             server2
             ΙN
WWW
             ΙN
                    CNAME
                             server2
```

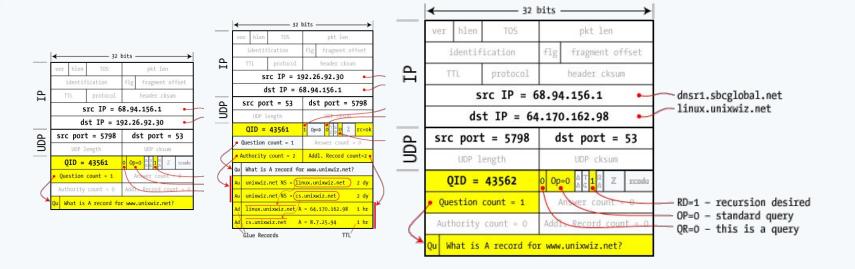
Consulta general

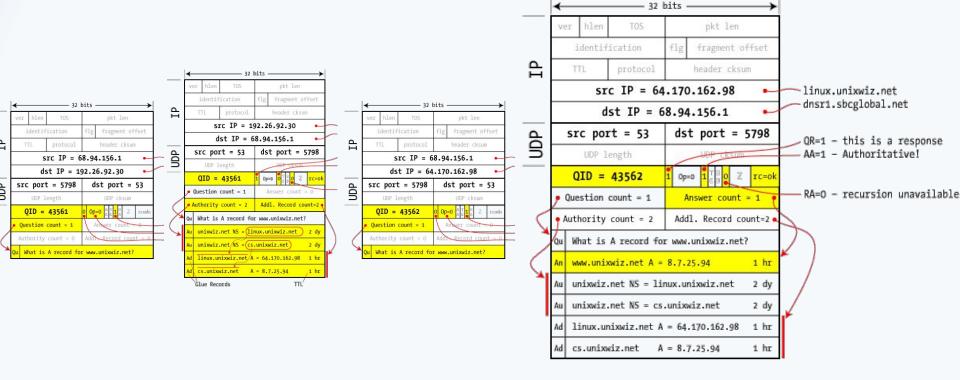

- Cliente pregunta recursivamente
- El ISP pregunta iterativamente

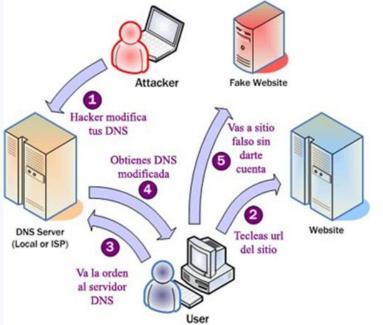



```
dcc.uchile.cl@8.8.8.8 (Google):
dig +noadditional +noquestion +nocomments +nocmd +nostats +trace dcc.uchile.cl. @8.8.8.8
                        5429
                                                 m.root-servers.net.
                        5429
                                 IN
                                                 k.root-servers.net.
                        5429
                                                 h.root-servers.net.
                        5429
                                IN
                                                 1.root-servers.net.
                        5429
                                                 i.root-servers.net.
                        5429
                                                 i.root-servers.net.
                        5429
                                IN
                                                 d.root-servers.net.
                        5429
                                                 a.root-servers.net.
                        5429
                                IN
                                                 b.root-servers.net.
                        5429
                                                 c.root-servers.net.
                        5429
                                IN
                                         NS
                                                 e.root-servers.net.
                        5429
                                 IN
                                         NS
                                                 f.root-servers.net.
                                                 g.root-servers.net.
                        5429
                                 IN
;; Received 228 bytes from 8.8.8.8#53(8.8.8.8) in 36 ms
cl.
                        172800 IN
                                         NS
                                                 a.nic.cl.
cl.
                                                 b.nic.cl.
                        172800 IN
                                                 c.nic.cl.
cl.
                        172800 IN
                                         NS
cl.
                        172800 IN
                                                 cl1.dnsnode.net.
cl.
                        172800 IN
                                         NS
                                                 cl-ns.anycast.pch.net.
cl.
                                         NS
                                                 sns-pb.isc.org.
                        172800 IN
;; Received 408 bytes from 193.0.14.129#53(193.0.14.129) in 46 ms
uchile.cl.
                                                 ns2.uchile.cl.
                        3600
uchile.cl.
                        3600
                                IN
                                         NS
                                                 ns4.uchile.cl.
uchile.cl.
                                IN
                                         NS
                                                 ns1.uchile.cl.
                        3600
;; Received 133 bytes from 200.7.4.7#53(200.7.4.7) in 63 ms
dcc.uchile.cl.
                                IN
                                         NS
                                                 ns1.dcc.uchile.cl.
                        10800
dcc.uchile.cl.
                                                 ns2.uchile.cl.
                        10800
                                IN
                                         NS
dcc.uchile.cl.
                                                 ns.dcc.uchile.cl.
                        10800
                                IN
;; Received 132 bytes from 146.83.185.209#53(146.83.185.209) in 159 ms
dcc.uchile.cl.
                        21600
                                IN
                                                 192.80.24.4
dcc.uchile.cl.
                        21600
                                                 ns2.dcc.uchile.cl.
                               IN
dcc.uchile.cl.
                        21600
                                IN
                                         NS
                                                 ns2.uchile.cl.
dcc.uchile.cl.
                        21600
                                IN
                                         NS
                                                 ns.dcc.uchile.cl.
                                                 ns1.dcc.uchile.cl.
dcc.uchile.cl.
                        21600
                                IN
;; Received 166 bytes from 192.80.24.2#53(192.80.24.2) in 162 ms
```

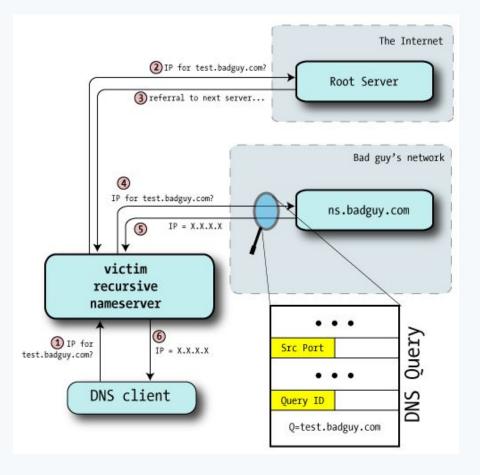

Estructura paquete DNS

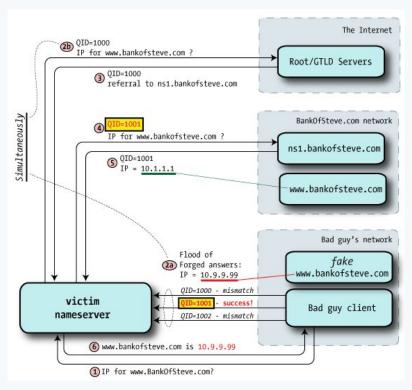

- QueryID: #query
- QR: 0 Query / 1 Response
- QPCODE: 0 para Queries Standard
- AA: Respuesta Autoritativa
- TC: Truncado, si no cabe en 1 solo paquete
- RD: Recursion Desired
- RA: Recursion Available
- Z: zeros... 0
- rcode: Código de respuesta, success o failure
- Question/Answer/Authority/Aditional count:
 Indica número de elementos de dicho tipo enviados





Problemas DNS

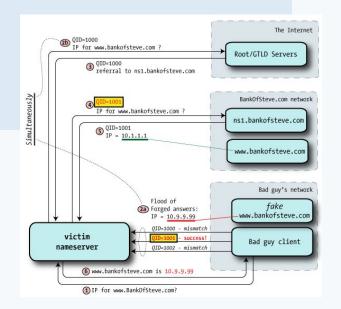

- El envenenamiento DNS es uno de los problemas más importantes en Internet.
- · No es como el phishing... es mucho más grave!


Problemas DNS: DNS Poisoning

- Adivinando QueryID
 - Al final de este proceso se obtiene:
 - QueryID Actual
 - Puerto de comm.
 - Hasta aquí no se ha envenenado nada...(aún)

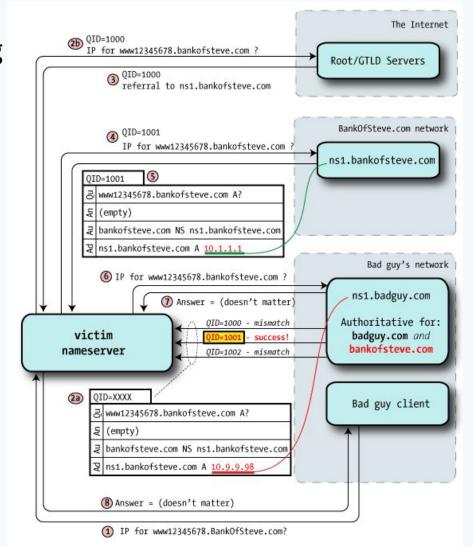
Problemas DNS: DNS Poisoning

- Envenenando por el principio DNS
 - "La primera respuesta buena sirve!".



Problemas DNS: DNS Poisoning

- Envenenando por el principio DNS
 - Consideraciones:
 - Atacante debe poder adivinar el QID
 - El registro a envenenar no debe estar en caché
 - Atacante debe ser más veloz que el servidor real.


– Efecto:

- Se ha cambiado la ip de respuesta de un registro en particular.
- Mitigaciones:
 - Randomizar QID
 - Pero... el campo QID es sólo de 16 bit ~64k posibilidades

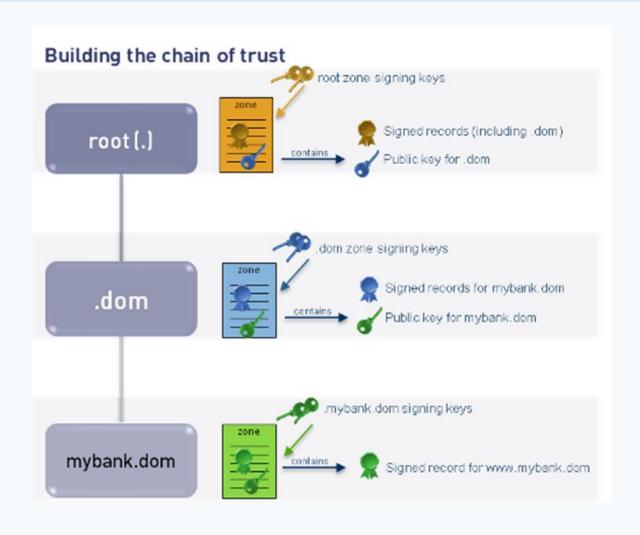
Problemas DNS: DNS Poisoning

- Dan Kaminsky
 - Permite hacerse con el
 envenenamiento de toda
 una zona completa al
 intervenir con una resp.
 autoritativa con TTL tan
 duradero como quiera
 el atacante
 - Se ha reportado que este tipo de ataques toma alrededor de 10 segundos en adivinar el QueryID.

Problemas DNS: DNS Poisoning

- Dan Kaminsky
 - Terrible!!!
 - El problema es que los 16 bits del QID parecen no ser suficientes... Modificarlo? inviable
 - Idea
 - Aleatorizar puertos de comm.
 - ej. Microsoft habilitó 2500 puertos por defecto para la labor randomizada

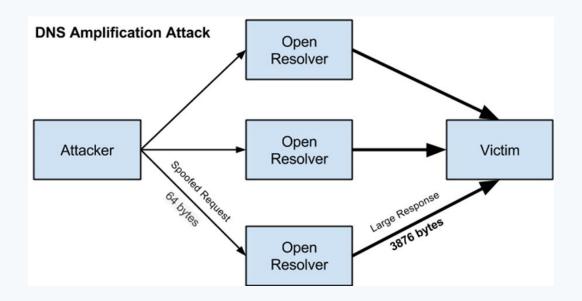
$$\frac{2^{16} \times 2^{11}}{L} = 2^{27} = 134 \text{ million}$$
Source ports
Query ID


DNSSEC

Firma digital de los datos a fin de tener la seguridad de que son válidos.

Se basa en un sistema de firmado con clave público/privada y una cadena de confianza.

No cifra los datos. Tan solo certifica la validez de la dirección del sitio que se visita.


DNSSEC

DNSSEC

Dificultades?

- Para que DNSSEC tenga sentido, debe ser implementado íntegramente por los niveles de dominios.
- Comunicación más pesada

Tipos de nombres

La pregunta clave es:

¿Cómo resolver nombres e identificadores de direcciones?

Existen distintas maneras de implementar nombres en un sistema de naming:

- Nombres planos
- Nombres estructurados
- Nombres basados en atributos

Nombres basados en Atributos

- Es muy importante tener la mayor información disponible para realizar una búsqueda efectiva de entidades. Este método requiere del usuario que pueda proporcionar una descripción simple de lo que busca.
- Describir a una entidad en términos de pares:
 - <atributo, valor>
- Ej. un sistema de correo electrónico
 - <remitente, correo>
 - <destinatario, correo>
 - <asunto, correo>

Nombres basados en Atributos

- RDF (Resource Description Framework)
 - Modelo de datos para metadatos.
 - Método general para la descripción conceptual o modelado de la información
 - Los recursos se describen como tríos que constan de un sujeto, un predicado, y un objeto.
 - Ej. (Persona, nombre, Alice) describe un recurso **Persona** cuyo **nombre** es **Alice**. En RDF, cada sujeto, predicado y objeto puede ser un recurso por sí mismo
 - **Ej** <a href="http:

Nombres basados en Atributos

- RDF (Resource Description Framework)
 - A diferencia de los sistemas de nombre estructurados, buscar valores en un sistema de nombre basados en atributos básicamente requiere una búsqueda exhaustiva a través de todos los descriptores.
 - Uso de RDF no tuvo el auge esperado :(