MA1101-7 Introducción al Álgebra Profesor: José Soto San Martín Auxiliar: Ilana Mergudich Thal Fecha: Miércoles 11 de Mayo del 2016

Auxiliar 9: Estructuras Algebraicas

Resumen:

Sea (A, *) una estructura algebraica.

- $\begin{tabular}{ll} \bullet & * \text{ es asociativa si:} \\ (\forall x,y,z \in A) \ (x*y)*z = x*(y*z). \\ \end{tabular}$
- Sea $e \in A$. Se dice que e es **elemento neutro** para * si $(\forall a \in A)$ e * a = a * e = a.
- Dado e neutro para * y $x \in A$. Diremos que x tiene
- inverso si $(\exists y \in A) \ y * x = x * y = e$.
- * es conmutativa si $(\forall x, y \in A) \ x * y = y * x$.
- $a \in A$ absorbente si $(\forall x \in A)$ a * x = x * a = a
- $a \in A$ idempotente si a * a = a
- P1. Estudie las propiedades (Existencia de neutro, absorbente, asociatividad y conmutatividad) de las siguientes estructuras algebraicas:
 - $a) (\mathcal{P}(E), \cap)$
 - b) $(\mathbb{N} \cup \{\infty\}, \text{máx})$, donde máx es la operación de máximo entre dos elementos.
 - c) ({Piedra, Papel, Tijera}, ⋆), donde ⋆, entrega la que gana o empata en el cachipún.
- **P2.** Se define en \mathbb{R}^2 la ley de composición interna * por

$$(a,b)*(c,d) = (ac,bc+d).$$

- a) Estudiar la conmutatividad y asociatividad de *.
- b) Determine el neutro en $(\mathbb{R}^2, *)$.
- c) Determine qué elementos son invertibles para * y calcule sus inversos.
- d) Determine los elementos idempotentes en $(\mathbb{R}^2, *)$.
- **P3.** Consideremos (A,*) una estructura algebraica asociativa en A. Sea $a \in A$ fijo, se define:

$$B = \{x \in A \mid a * x = x * a\}$$

Demuestre que:

- a) $(\forall x, y \in B) \ x * y \in B$.
- b) Si $e \in A$ es neutro, entonces $e \in B$.
- c) Si $x \in B$ tiene inverso x^{-1} , entonces $x^{-1} \in B$
- **P4.** a) Pruebe que todo intervalo de la forma (a,b) a < b cumple que $|(a,b)| = |\mathbb{R}|$
 - b) Sea $A \subseteq \mathbb{R}$ un conjunto infinito no numerable y sea $\{A_i\}_{i\in\mathbb{N}}$ una familia de conjuntos tales que $\cup_{i\in\mathbb{N}}A_i = A$. Demuestre que existe $k\in\mathbb{N}$ tal que A_k es infinito no numerable.
 - c) Pruebe que $\{0,1\}^{\mathbb{N}}$ no es numerable. Indicación: $\{0,1\}^{\mathbb{N}} = \{0,1\} \times \{0,1\} \times \{0,1\} \times \cdots \times \{0,1\}$ una cantidad numerable de veces. Además razone muuuuuy parecido a la demostración de [0,1) no numerable.