MA1101-7 Introducción al Álgebra Profesor: José Soto San Martín. Auxiliar: Ilana Mergudich Thal.

Fecha: Jueves 7 de Abril.

Auxiliar Extra: Repaso Control 2

P1. Sea \mathcal{U} un universo y $f: \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$ la función definida por:

$$f(X) = X^c$$

Demuestre que f es biyectiva.

- **P2.** Sean $A, B \neq C$ tres conjuntos no vacíos. Sean $f: A \to B, g: B \to C \neq h: C \to A$. Además se tiene que:
 - $h \circ g \circ f$ es inyectiva
 - $f \circ h \circ g$ es inyectiva
 - $q \circ f \circ h$ es sobrevectiva

Demuestre que f, g, h son biyectivas.

P3. Considere el conjunto $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ es biyectiva }\}$, es decir, el conjunto de todas las funciones biyectivas de \mathbb{R} en \mathbb{R} . Se define la función $\Psi : \mathcal{F} \times \mathcal{F} \to \mathcal{F}$ dada por:

$$\Psi(f,g) = (f \circ g)^{-1}$$

- (a) Justifique por qué $\forall (f,g) \in \mathcal{F} \times \mathcal{F}, \ \Psi(f,g) \in \mathcal{F}.$
- (b) Pruebe que Ψ es sobryectiva, pero **no** inyectiva.
- (c) Demuestre que para todo par $(f, g) \in \mathcal{F} \times \mathcal{F}$,

$$\Psi(\Psi(f,g), \Psi(g^{-1}, f^{-1})) = \mathrm{Id}_{\mathbb{R}}.$$

(d) [Propuesto] Sean $f, g \in \mathcal{F}$ definidas por f(x) = 2x + 3 y $g(x) = \frac{x}{2}$. Además considere el conjunto $A = \{f, g\}$.

Encuentre explícitamente $\Psi(A \times A)$.

- **P4.** Sea \mathcal{U} el conjunto universo y $A, B \subseteq \mathcal{U}$. Sea $f: A \to B$ y $C \subseteq A$. Se define $g: C \to B$ tal que $g(x) = f(x) \ \forall x \in C$. Demuestre que $\forall D \subseteq B, g^{-1}(D) = C \cap f^{-1}(D)$.
- P5. Una función se dice estrictamente creciente si y sólo si

$$(\forall x, y \in Dom(f)), x < y \Rightarrow f(x) < f(y).$$

- (a) Pruebe que toda función estrictamente creciente es inyectiva
- (b) Si $f: \mathbb{N} \to \mathbb{N}$ es estrictamente creciente, ¿es sobreyectiva?
- (c) Pruebe que si $f: \mathbb{N} \to \mathbb{N}$ estrictamente creciente es sobreyectiva, entonces $f = \mathrm{Id}_{\mathbb{N}}$