MA1101-7 Introducción al Álgebra Profesor: José Soto San Martín. Auxiliar: Ilana Mergudich Thal. Fecha: Miércoles 6 de Abril.

Auxiliar 4: Funciones

Imagen y Preimagen

Resumen:

Sea $f:A\to B$ una función:

- Dado $A' \subseteq A$, de define el conjunto **imagen de** A' como $f(A') = \{y \in B \mid (\exists x \in A') f(x) = y\}.$
- Dado $B' \subseteq B$, de define el conjunto **preimagen de** B' como $f^{-1}(B') = \{x \in A \mid f(x) \in B'\}$
- $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- **P1.** Sea $f: E \to F$ una función. Demuestre que:
 - (a) $(\forall A, B \subseteq E) f(A) \setminus f(B) \subseteq f(A \setminus B)$.
 - (b) $[(\forall A, B \subseteq E) \ f(A) \setminus f(B) = f(A \setminus B)] \Leftrightarrow f$ es inyectiva.
 - (c) $(\forall Y \subseteq F) f(f^{-1}(Y)) \subseteq Y$.
 - (d) $[(\forall Y \subseteq F) \ Y = f(f^{-1}(Y))] \Leftrightarrow f$ es sobreyectiva.
 - (e) $(\forall Y \subseteq F) f^{-1}(Y^c) = (f^{-1}(Y))^c$.
- **P2.** Sea $f: \mathbb{Z} \to \mathbb{Z}$ una función con la siguiente propiedad f(m+n) = f(m) + f(n) para cada par $m, n \in \mathbb{Z}$
 - (a) Probar que f(0) = 0.
 - (b) Probar que f(-m) = -f(m) para cada $m \in \mathbb{Z}$.
 - (c) Probar que f es invectiva si y solo si $f^{-1}(\{0\}) = \{0\}$.
- **P3.** Sea $\mathcal{U} \neq \emptyset$ un conjunto universo. Se define la función:

$$F: \mathcal{P}(\mathcal{U}) \times \mathcal{P}(\mathcal{U}) \to \mathcal{P}(\mathcal{U})$$
$$(X,Y) \mapsto F((X,Y)) = X \setminus Y$$

- (a) Demuestre que $F^{-1}(\{\mathcal{U},\emptyset\}) = \{(\mathcal{U},\emptyset)\} \cup \{(X,Y) \mid X \subseteq Y\}.$
- (b) Determine, justificando, F(D) (imagen de D), donde $D = \{(X, X) \mid X \in \mathcal{P}(\mathcal{U})\}$.
- (c) Demuestre que F es sobrevectiva.
- (d) $Es\ F$ biyectiva? Justifique.
- **P4.** Sean A y B dos conjuntos y $f: A \to B$ una función. Se define la función:

$$G: \mathcal{P}(B) \to \mathcal{P}(A)$$

 $Y \mapsto G(Y) = f^{-1}(Y)$

Pruebe que G es inyectiva si y solo si f es sobreyectiva.