MA1101-5 Introducción al Álgebra

Profesores: Maya Stein Auxiliares: Juan Pedro Ross Fecha: Jueves 18 de Agosto

Auxiliar Examen

La última :'(

P1. Sea $n \in \mathbb{N} \setminus \{0\}$ Calcule:

$$\sum_{k=1}^{2n} \frac{1}{(3+(-1)^k)^k}$$

- **P2.** Considere los conjuntos $S_1 = \{3k : k \in \mathbb{Z}\}$ y $S_2 = \{2k : k \in \mathbb{Z}\}$. ¿Son grupos $(S_1, +)$ y $(S_2, +)$? ¿Qué hay sobre $(S_1 \cup S_2, +)$?
- **P3.** Considere el polinomio $p(x) = x^4 + 2$. Determine las raíces de p y escriba su factorización tanto en $\mathbb{R}[x]$ como en $\mathbb{C}[x]$.
- **P4.** Considere los polinomios $q(x) = x^2 + x + 1$ y $p(x) = x^{3n_1} + x^{3n_2+1} + x^{3n_3+2}$ donde $n_1, n_2, n_3 \in \mathbb{N}$. Demuestre que p(x) es divisible por q(x) cualquiera sean los valores de n_1, n_2, n_3 .

P5. Si

$$\sum_{k=1}^{n} a_k = \frac{n^2 + 5n}{3}$$

Determinar a_n .

P6. Para $z \in \mathbb{C}$, $z \neq 0$, demustre que:

$$(z + \frac{1}{z}) \in \mathbb{R} \Leftrightarrow Im(z) = 0 \lor |z| = 1.$$

P7. Sea $f: \mathbb{C} \to \mathbb{C}$ con $f(z) = \overline{z}$. Demuestre que f es un isomorifismo entre $(C, +, \cdot)$ y $(C, +, \cdot)$.