MA1101-7 Introducción al Álgebra

Profesores: Maya Stein

Auxiliares: Juan Pedro Ross (Ilana Mergudich)

Fecha: Jueves 11 de Agosto

Auxiliar 14: Polinomios - Examen

P1. Determinar $p \in \mathbb{R}[x]$ un polinomio mónico de grado 3, que satisfaga las siguientes condiciones.

- p(0) = p(2) = 0
- El resto de dividir p(x) por (x-1) es el mismo que el resto obtenido al dividir p(x) por (x-3)
- **P2.** Resolver en \mathbb{C} la ecuación $z^6 2iz^3 1 = 0$ indicando la multiplicidad de cada raíz.
- **P3.** Sea $p(x) = 6x^5 25x^4 + 16x^3 + 21x^2 18x$. Sabiendo que p admite 3 raíces enteras no negativas, factorice p.
- P4. Pruebe que:

$$p(x) = \sum_{j=1}^{6} \frac{(-1)^j}{(j+1)^2} \left(\sum_{k=1}^{j} 4k^3 x^{j-1}\right) = 36x^5 - 25x^4 + 16x^3 - 9x^2 + 4x - 1$$

Además averigüe si tiene raíces enteras.

P5. Se define en $\mathbb{C} \setminus \{0\}$ la relación \mathcal{R} dada por $z_1 \mathcal{R} z_2 \Leftrightarrow z_1 \cdot \overline{z_2} \in \mathbb{R}$.

- a) Demuestre que \mathcal{R} es una relación de equivalencia.
- b) Muestre que $[z]_{\mathcal{R}} = \{a \cdot z | a \in \mathbb{R} \setminus \{0\}\}.$

P6. a) Sean $m, n \in \mathbb{N}$, $m, n \ge 2$. Pruebe que si z es raíz n-ésima de la unidad y w es raíz m-ésima de la unidad, entonces existe $k \in \mathbb{N}$, $k \ge 2$ tal que $z \cdot w$ es raíz k-ésima de la unidad.

b) Sea $G = \{w \in \mathbb{C} | \exists n \in \mathbb{N}, n \geq 2, w^n = 1\}$, es decir G es la unión para $n \geq 2$ de las raíces n-ésimas de la unidad. Pruebe que (G, \cdot) es subgrupo de $(\mathbb{C} \setminus \{0\}, \cdot)$ donde \cdot es la multiplicación habitual de \mathbb{C} .

c) Pruebe que $\varphi:(G,\cdot)\to (G,\cdot),$ tal que $\varphi(w)=\frac{1}{w}$ es un isomorfismo.

Traten bien a la Ilana:)