II) $\lim \frac{n^{20}}{e^{n}}$

Notar que este es un límite de la forma

$$
\lim n^{k} q^{n}, \quad q=\frac{1}{e}<1
$$

levego es conocido que si $|q|<1 \Rightarrow \lim n^{k} q^{n}=0$
Otra forma: usemos sandwich con las desiguabdades de la exponencial.

Notemos que $\frac{n^{20}}{e^{n}}=\left(\frac{\sqrt{n}}{e^{\frac{n}{40}}}\right)^{40}$

$$
\begin{array}{ll}
\Rightarrow & \frac{\sqrt{n}}{e^{\frac{n}{40}}} \leqslant \frac{\sqrt{n}}{1+\frac{n}{40}}=\frac{\frac{\sqrt{n}}{n}}{\frac{1}{n}+\frac{1}{40}} \\
\Rightarrow & 0 \leqslant\left(\frac{\sqrt{n}}{e^{\frac{n}{40}}}\right)^{40} \leqslant\left(\frac{\frac{1}{\sqrt{n}}}{\frac{1}{n}+\frac{1}{40}}\right)^{40} \\
& \int_{\text {Teo }}^{\text {Sandrich. }} \\
0 & 0
\end{array}
$$

III

$$
\begin{aligned}
& \lim \frac{\ln (n)}{n} \\
&= \lim \frac{1}{n} \ln n \\
&= \lim \ln _{n^{\frac{1}{n}}}^{\ln } \underbrace{\lim \sqrt[n]{n}}_{1} \\
&=\ln \\
&= \ln (1)=0
\end{aligned}
$$

$$
=\lim \ln n^{\frac{1}{n}} / \text { de existir } \lim \ln n^{\frac{1}{n}}
$$ podemos intercaubiar $\lim y \ln$

IV

$$
\begin{aligned}
& \lim \frac{\ln \left(1+e^{n}\right)}{n} \\
& \frac{\ln \left(1+e^{n}\right)}{n}=\ln \left(1+e^{n}\right)^{1 / n} \\
& e^{n} \leqslant\left(1+e^{n}\right)^{1 / n} \leqslant e^{n}+e^{n} /()^{1 / n} \\
& \sqrt[n]{e^{n}} \leqslant\left(1+e^{n}\right)^{1 / n} \leqslant \sqrt[n]{2} \cdot \sqrt[n]{e^{n}}
\end{aligned}
$$

Vargo $\lim \ln \left(1+e^{n}\right)^{1 / n}$

$$
\begin{aligned}
& -\ln \left(\lim \left(1+e^{n}\right)^{1 / n}\right) \\
& =\ln (e)=1
\end{aligned}
$$

v) $\lim \log _{1+\frac{1}{n}}(\sqrt[n]{e})$

Misomos cambio de base:

$$
\lim \log _{1+\frac{1}{n}} \sqrt[n]{e}=\lim \frac{\ln \sqrt[n]{e}}{\ln \left(1+\frac{1}{n}\right)}
$$

$$
=\lim \frac{\frac{1}{n} \ln e}{\ln \left(1+\frac{1}{n}\right)}
$$

$$
=\ln e \underbrace{\lim \left(\frac{\frac{1}{n}}{\ln \left(1+\frac{1}{n}\right)}\right)}_{\text {conocido }=1}
$$

$$
=\ln (e)=1
$$

vi) $\lim n \cdot\left\{n^{2}(\sqrt[n^{2}]{e}-1)-1\right\}$.
nsemos sandwich:
primero: $\sqrt[n^{2}]{e}=e^{\frac{1}{n^{2}}}$

$$
\begin{aligned}
& \Rightarrow \quad e^{\frac{1}{n^{2}}} \leqslant \frac{1}{1-\frac{1}{n^{2}}} \quad /-1 \\
& e^{\frac{1}{n^{2}}}-1 \leqslant \frac{x^{2}}{n^{2}} \frac{n^{2}}{n^{2}-1}-1=\frac{n^{2}-x^{2}+1}{n^{2}-1} \\
& \Rightarrow \quad-e^{\frac{1}{n^{2}}}-1 \leqslant \frac{1}{n^{2}-1} / \cdot n^{2} \\
& n^{2}\left(e^{\frac{1}{n^{2}}}-1\right) \leqslant \frac{n^{2}}{n^{2}-1} \quad /-1 \\
& n^{2}\left(e^{\frac{1}{n^{2}}-1}\right)-1 \leqslant \frac{n^{2}}{n^{2}-1}-1=\frac{n^{2}-n^{2}+1}{n^{2}-1} / n \\
& n\left\{n^{2}\left(e^{\frac{1}{n^{2}}}-1\right)-1\right\} \leqslant \underbrace{\frac{n}{n^{2}}}_{\substack{ \\
n^{2}-1}}
\end{aligned}
$$

Falta acotar por abajo

$$
\begin{aligned}
\frac{1}{n^{2}}+1 & \leqslant e^{\frac{1}{n^{2}}} /-1 \\
\frac{1}{n^{2}} & \leqslant e^{\frac{1}{n^{2}}}-1 / n^{2} \\
1 & \leqslant n^{2}\left(e^{\frac{1}{n^{2}}}-1\right) /-1 \\
0 & \leqslant n^{2}\left(e^{\frac{1}{n^{2}}}-1\right)-1 / n \\
0 & \leqslant n\left\{n^{2}\left(e^{\frac{1}{n^{2}}}-1\right)-1\right\} \quad(t *)
\end{aligned}
$$

Juntando (A) y (Δ) se concluye que

$$
\lim n\left\{n^{2}\left(e^{\frac{1}{n^{2}}}-1\right)-1\right\}=0
$$

