MA1001-2 Introducción al Cálculo

Profesora: Natacha Astromujoff

Auxiliar: Felipe Salas.

Auxiliar 10

Resumen:

- Definición de convergencia: $x_n \to l \Leftrightarrow \lim_{n \to \infty} x_n = l \Leftrightarrow (\forall \varepsilon > 0) (\exists n_0 \in \mathbb{N}) \text{ tal que } |x_n l| < \varepsilon.$
- Propiedades útiles:
 - 1. Álgebra de sucesiones.
 - 2. Teorema del sandwich:

Sean $(u_n),(v_n)$ y (w_n) sucesiones tales que (u_n) y (w_n) convergen a $l \in \mathbb{R}$ y además existe $n_0 \in \mathbb{N}$ tal que $(\forall n \geq n_0)$ $u_n \leq v_n \leq w_n$, entonces (v_n) converge a l.

- 3. Teorema de sucesiones monótonas:
 - Si (s_n) es una sucesión creciente (a partir de un $n_0 \in \mathbb{N}$) y acotada superiormente, entonces es convergente.
 - Si (s_n) es una sucesión decreciente (a partir de un $n_0 \in \mathbb{N}$) y acotada inferiormente, entonces es convergente.
- 4. Límites conocidos:
 - $\lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e$.
 - Si lím $q_n = q$, entonces lím $(q_n)^n = \begin{cases} 0, & \text{si } |q| < 1. \\ 1, & \text{si } q = 1. \\ \text{diverge}, & \text{si } |q| > 1. \end{cases}$

Nota: note que en particular funciona cuando $q_n = q \ (\forall n \in \mathbb{N}).$

- Si lím $a_n = a > 0$, entonces lím $(a_n)^{\frac{1}{n}} = 1$. Nota: note que en particular funciona cuando $a_n = a \ (\forall n \in \mathbb{N})$.
- $\lim \sqrt[n]{n^k} = 1, (\forall k \in \mathbb{N}).$
- Si |q| < 1 y $k \in \mathbb{N}$, lím $n^k q^n = 0$.

- (P1) Sea (x_n) una sucesión convergente a $l \in \mathbb{R}$, y sea $f : \mathbb{N} \to \mathbb{N}$ una función estrictamente creciente.
 - (a) Pruebe que la sucesión $(x_{f(n)})$ es convergente a l.

(b) Calcule lím
$$\left(\frac{n^2+2}{n^2+1}\right)^{n^2}$$

(P2) Considere la sucesión definida mediante la recurrencia:

$$a_{n+1} = \frac{a_n}{2}(1 + a_{n-1}^2), \text{ con } a_0, a_1 \in (0, 1)$$

- (I) Demuestre que $(\forall n \in \mathbb{N}, n \ge 2)$ $a_n \in (0, 1)$
- (II) Muestre que (a_n) es convergente.
- (III) Calcule el límite.
- (P3) Sean (u_n) una sucesión creciente y (v_n) una sucesión decreciente tales que lím $(u_n v_n) = 0$. Pruebe que (u_n) y (v_n) convergen y tienen el mismo límite.
- (P4) Calcular cuando existan los siguientes límites:

(I)
$$\lim \left(\frac{3n-1}{2n+4}\right)^n$$
.

(II) lím
$$\sqrt[n]{\frac{2^n+1}{n^23^{n+1}}}$$
.

(III) lím
$$\sqrt[n]{n^3 + 100n^2 + 3}$$

(IV)
$$\lim \left(\frac{n+1}{n+2}\right)^{n+1}$$

(V)
$$\lim \sqrt[n]{a^n + b^n}$$
, $a, b > 0$

(VI)
$$\lim \frac{a^n + b^n}{a^{n+1} + b^{n+1}}, \ a \neq b$$