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Abstract 

This paper summarizes a research to develop an optimization algorithm used to support 
short term planning decisions in an open pit operation. In particular, it is sought to use 
this algorithm to evaluate block models that have been computed using different 
geostatistical techniques. This leads to several production schedules, each representing 
the best production option for a given block model. Then, these schedules are compared 
against a most likely optimal schedule that uses blast hole grade information as a main 
input. This comparison provides sufficient information to decide upon the geostatistical 
method that better forecasts a given production schedule. 
 
The optimization algorithm is oriented to minimize production deviations with respect to 
the medium term plan (yearly budget) subject to uniform grade fed to the plant over a 
period of time (e.g. a week), minimum tonnage fed, shovels digability, among others. The 
algorithm will report the path that needs to be followed at different mining faces in order 
to reach optimality. The method proposed is of direct optimization, in which all the 
possible combinations in short time steps are evaluated explicitly hence allowing decision 
making regarding the path to be followed. Finally, the geoestatistical method that better 
predicts the actual mining outcome is determined. This path minimizes deviations 
regarding the medium term production targets. 
 
The method is implemented and validated with actual data: a reserves model is built from 
drillhole data using several geostatistical models, namely, ordinary kriging and Gaussian 
simulation. The models are compared with blasthole data that is effectively used to make 
the decision of sending the blocks to the processing plant or to the waste dump. The 
responses from different geostatistical models are compared with the optimized schedule 
determined with the optimization methodology described. 
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1. Introduction 

Estimating geological resources is one of the key aspects in any feasibility study. These 
resources must be converted to reserves once a mine design and plan have been defined 
and all considerations regarding metallurgical behaviour and selectivity, among others, 
have been taken into account. 
 
At an early stage, a long term plan is designed in order to define the sequence and 
expected grade and tonnage over large production periods, usually yearly. However, 
during production, the variability of the grade and tonnages of ore, waste and low-grade 
ore to be stocked has a significant impact in the project’s performance. Therefore, 
forecasting this short term variability at an early stage of the study and with limited 
information is required. Understanding the variability in ore and waste grade and tonnage 
is extremely relevant for defining the appropriate fleet of equipment (size and quantity), 
and to design the mineral processing facilities. Large variability in the grade and tonnage 
or in the metallurgical characteristics of the ore will hinder the processing plant 
performance and should be forecasted prior to further investments. 
 
Geostatistical estimation techniques are routinely applied in the mining industry to 
predict the resources and reserves. However, estimated block models are smooth and 
should not be used to assess the performance of different processes that involve several 
blocks at a time. Typical examples of these processes are the selection of blocks above a 
cutoff during a time period such as a shift or a day. The total tonnage and grade over that 
time period should be assessed with geostatistical simulation techniques, that allow the 
construction of numerical models of the deposit that honour the spatial variability of the 
true block grades. Furthermore, several such models can be built, allowing for the 
quantification of the uncertainty on any performance measure (Journel and Kyriakidis, 
2004).  
 
In this article, we discuss a methodology to assess the performance of different estimation 
and simulation techniques to predict the expected grade and tonnage variability of the ore 
fed to the processing plant over a time period. In order to provide a comparable and 
repeatable extraction sequence, an optimization approach has been devised to define the 
extraction order and classification of blocks as ore or waste, to facilitate the evaluation of 
the grade and tonnage variability at the primary crusher.  
 
Due to the size of the block model, a stepwise optimization over allowable paths of the 
shovels at several working faces is proposed and developed, in order to avoid the huge 
dimensionality of a full optimization.  
 
The proposed approach is based on a local optimization for the best shovel paths 
considering a given number of blocks. With these local optimum paths, a decision is 
made at each face to extract a given block. From these new starting points, a new local 
optimization is performed to decide upon the next blocks to be extracted. This allows 
defining a path to extract the blocks for each shovel, without solving the full optimization 
problem, but providing a result consisting of local short-term optimums. The 
optimization is done considering several criteria: constant average grade and tonnage to 
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the processing plant, maximum profit, geometrical constraints for the shovel 
displacement, etc. 
 
The paper is presented as follows. Section 2 describes the short term planning process. 
Section 3 presents the techniques currently used to calculate the resources and reserves 
for mine planning. Section 4 describes the optimization algorithm and its implementation. 
Section 5 shows a case study. Finally, some comments, recommendations and 
conclusions are provided in Section 6.  
 

2. Short term planning  

In most open pits on hard rock, short term planning is made based on the result of 
sampling blast holes or performing advanced drilling for sampling purposes. This 
information, usually in a dense pseudo-regular grid, is used for grade control (Kim, 
1987). The typical procedure is: 
 

• Map the blast hole or advanced drilling grades in plan view on a bench by bench 
basis. 

• Assign a block grade to a selective mining unit, usually through an estimation 
technique such as polygonal or ordinary kriging. The selective mining unit size is 
related to the mining equipment that will extract the ore and waste. 

• Define a practical dig limit based on these block grades, considering the 
operational constraints due to the size of the equipment. 

 
Based on this procedure, a variable ore grade and tonnage is delivered to the primary 
crusher and fed to the processing plant. These variations may affect significantly the 
plant’s performance, thus at early evaluation stages of the mining project a reliable 
prediction of this variability is required. However, prior to production, only long term 
drilling is available for forecasting. The challenge is to predict the variability accounting 
for the information effect, that is, considering that at the time of the decision, the 
information available will be much denser.  
 

3. Resources and reserves calculation for mine planning  

Mine planning addresses the estimation of the mineral inventory for different time spans. 
Depending on the stage, different information will be available and different goals sought 
after. Long-term mine planning requires a resources and reserves model for mine design 
and planning (Osanloo et al., 2007), usually calculated from drillhole data at a relatively 
wide spacing, with some denser (in-fill) drilling in the areas of forthcoming production.  
 
Medium-term planning uses the production data (usually from blast hole samples) to 
adjust the long term plan and fit a budget and target production for a quarter or a year. 
Short term planning deals mainly with the day-to-day scheduling to satisfy the 
requirements set in the long and medium-term plans. 
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Short-term performance is well understood once abundant information is available during 
production, but is difficult to forecast during the early stages of the project, when the 
advance exploration drilling grid is the only information available. At this stage, 
geostatistical simulation is used to create plausible representations of the grade 
distribution in the deposit, honoring the global histogram, the available data, and the 
spatial continuity of the grades, but without local accuracy. This means that the stochastic 
realizations should not be used to find the best estimate at every location, but rather, they 
can be used to evaluate the performance when faced to a particular process. In our 
application, the process is the definition of an extraction path and the classification of the 
blocks as ore or waste. This procedure is evaluated at the processing plant, by considering 
the tonnage of ore fed and its grade. 
 
Defining the extraction paths of a number of shovels at different faces of the mine should 
account for several considerations: 

• The extracted blocks should feed the plant with a regular tonnage and grade, over 
each shift. This will ensure the reasonable performance of the processing plant by 
avoiding large variations in head grade and tonnage.  

• Additionally, the metal quantity fed to the plant should be even in time, to ensure 
the budget is satisfied.  

• The total tonnage (ore + waste) should not change significantly. Abrupt changes 
would require availability of additional mining equipment. 

• The shovel must extract all the ore and waste from an area before moving to an 
adjacent area. This means that the extraction path must consider the operational 
constraints of the mining process. 

 
Any other consideration deemed necessary could be used when defining the extraction 
paths.  
 
In the next section, we describe an approach to define the extraction path of several 
shovels, considering multiple constraints. 
 

4. Optimizing the extraction paths subject to constraints  

Consider the case where s shovels are working on independent faces, and where each 
face consists of a model of N blocks. Each block is characterized by its grade and 
tonnage. If each shovel could extract n blocks freely following a path that can move to 
any of the four adjacent blocks to the current location of the shovel, then the possible 
number of combinations would be (4)n s. This number becomes quite large rapidly. For 
example, considering 3 shovels (s = 3) and trying to find the jointly optimum path of 10 
blocks (n = 10) for each of them would require the evaluation of over 1018 combinations. 
 
Because this number is so large, we propose the following approach for defining the 
optimum path of several shovels operating at independent faces: 

• Define a limited number of blocks for the path to optimize n’<<n 
• Compute all the possible paths within that limited combinatorial scenario: (4)n’ s 
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• Evaluate an objective function that accounts for departures from the target values 
for tonnage, grade, quantity of metal, revenue, etc., and also considers 
geometrical constraints about the order in which the blocks are visited along the 
path. 

• Decide upon the optimum paths for each shovel in order to minimize the 
variability of the ore fed to the processing plant 

• Move each shovel to the first block in its optimum path 
• Optimize the following n’ blocks from the new starting position and repeat the 

entire procedure 
 

5. Application to evaluate different resources models for short term mine planning 

The construction of numerical models of the deposit for planning purposes is subject to 
many modeling decisions that may significantly affect the forecasting capacity of these 
models. As mentioned in the introduction, depending on the goals of the study, 
interpolated models should not be used, but it is still a fairly common practice in industry 
to see kriged models used for mine planning. In this section, we present a case study 
where using real data from a porphyry copper mine in Chile, we compare the 
performance of three models constructed with different techniques: 

1. Ordinary kriging 
2. Sequential Gaussian simulation of point values representing blast hole samples 

used for grade control and short term mine planning 
3. Sequential Gaussian simulation incorporating multiple-point statistics by 

updating conditional probabilities (Ortiz and Emery, 2005). 
 
These models are compared considering their capacity to predict the grade and tonnage 
variability at the primary crusher of the processing plant. For comparison purposes, 
production (blast holes) data are available. These data represent the truth and are used 
along with the optimizer of the extraction path to simulate the variability of the material 
sent to the plant. 
 
The extraction path optimizer was implemented considering the following parameters: 

• Number of faces: s = 2 
• Number of blocks in optimized path: n’ = 6 
• Number of blocks in each model: n = 625 

 
The optimization of the paths was done considering the following restrictions: 

• Revenue of the path should be maximized. This allows optimizing the path in 
order to obtain the best possible product. 

• Difference with respect to the target head grade at the processing plant should be 
minimized. This constraint accounts for systematic bias in the grade of the ore fed 
to the plant. 

• Variability of the head grade to plant should be minimized. This constraint 
accounts for the variability of the material fed to the plant. High variability will 
have a negative impact in plant performance.  
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All of these constraints may be modified to account for variable rock types, recoveries, 
detrimental elements, and could also be implemented in a multivariate framework. 
 
In addition to these constraints, a condition was defined to impose the extraction of all 
blocks within a region before moving to an adjacent area, by defining a maximum 
allowable distance of a block in the path to a reference block extracted a number of steps 
back in the path. This ensures the shovels extract all blocks in an area before continuing. 
As an example of the effect of this constraint, Figure 1 shows the optimized path for the 
unconstrained case and for the operative case. 
 

 
Figure 1: Optimized path without the geometrical constraint (left) and with the constraint (right). 

The colour scale indicates the step in the path. It is clear that this restriction imposes a more realistic 
operative extraction of the material. 

 
 
Let us define the following notation: the grade of each block is , its associated profit is 

, which depends on the mining and metallurgical recoveries, metal price, density, 
block grade, mine, plant and smelter costs. 
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The algorithm minimizes an objective function that combines all three constraints: 
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where  is the maximum profit found in any of the paths and is the target grade 
expected by the processing plant. 

maxP targetZ

 
Three free parameters 321 ,, λλλ  allow modifying the relative importance of these three 
competing objectives. Additionally, only paths that satisfy a geometric constraint are 
allowed by imposing the extraction of a number of blocks before letting the shovel move 
to location that are farther from the starting point.  
 
The objective function is minimized simultaneously in two faces providing the optimum 
solution for the combined case. It must be emphasized that once the paths of length 6 
blocks have been optimized, shovels are moved only one block in the model, and the 
optimum paths are calculated again from the new starting points, in order to include a 
new block in the evaluation horizon. 
 
The algorithm was implemented to assess the forecasting capacity of three geological 
models. 

1. Ordinary kriging using long term data from the drillhole advanced exploration 
campaign (Isaaks and Srivastava, 1989). At every location, the block grade is 
estimated as: 
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In these equations  stands for the spatial covariance function evaluated 

for the vector that separates locations  and , 

)( ij u,uC

ju iu )( u,ujC  is the average 
covariance between location  and the volume of the block located at u , and ju μ  
is a Lagrange parameter to impose the unbiasedness constraint on the weights.  
 

2. Sequential Gaussian simulation models built considering long term data from the 
drillhole advanced exploration campaign (Deutsch and Journel, 1997). Several 
realizations are built that reproduce the spatial continuity of the variable, its 
histogram and return the data values at sample locations. The simulation 
algorithm works by considering the normal scores of the data, that is, the original 
distribution must be transformed to a standard Gaussian distribution. The domain 
is discretized by a grid of nodes that are visited randomly. At every node, a 
simulated value is drawn from the conditional distribution, which is computed as 
a Gaussian distribution with mean and variance defined by the simple kriging 
estimate and variance of the available information in a search neighbourhood. 
This information can be sample data (transformed to normal scores) or previously 
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simulated values. Once all nodes in the grid have been visited, the values are back 
transformed to original grade units. The grid values represent blast hole samples 
that are then used for grade control. Several such models are built by changing the 
visiting order of the nodes and the drawn values in the conditional distributions. 

 
3. Sequential Gaussian simulation models accounting for multiple-point statistics are 

built using data from the drillhole advanced exploration campaign for 
conditioning and blast hole data from previously extracted benches to infer 
pattern (multiple-point) statistics (Ortiz and Deutsch, 2004; Ortiz and Emery, 
2005). The algorithm proceeds similarly to the previous one, but at every node, 
the conditional distribution is updated using the conditional probability extracted 
from the blast hole data base, and depending on the information available at the 
four adjacent nodes in the simulation grid, as shown in Figure 2. From the blast 
hole information, the following conditional probability can be obtained for )(u  
to be less than or equal to a cutoff: 

Z
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Gaussian simulation, the conditional probability can be calculated as: 
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Figure 3 shows plan views of the same bench. The first model (Figure 3a) represents the 
truth, since it is the block model that was finally mined out and it was constructed by 
performing ordinary kriging of block grades with the blast hole sample data of the bench. 
Figure 3b shows the kriged models using only the drillhole sample data, that is, only the 
long term information. Figure 3c shows one particular realization built with sequential 
Gaussian simulation. Figure 3d displays one realization that accounts for multiple point 
statistics.    
 

 
Figure 2: Patterns used for updating the conditional probabilities at every grid node 
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a)   b)   

c)   d)   
Figure 3: Models used for the analysis. a) True block grades; b) Ordinary kriging; c) Sequential 
Gaussian simulation; d) Sequential Gaussian simulation accounting for multiple-point statistics. 

 
Figure 4 shows some of the output charts obtained by processing each model. Figure 4a 
presents the grades of blocks extracted at each one of the two faces, their average and the 
target grade required by the processing plant. Figure 4b shows the tonnage of ore sent to 
the plant.  

 

 
Figure 4: Output charts after the definition of the optimum paths. 



730 
 

 
Model performance was compared by statistical means for different time steps. 
Comparisons on a block by block basis, shift basis and weekly basis were performed. 
Table 1 shows the results for a block by block comparison. It can be seen that the block 
model estimated with ordinary kriging performed poorly, while the simulated models 
improved significantly the forecasting of the grades and tonnages sent to the plant. 
Similar results (not shown) were obtained for shift and weekly averages, although, the 
differences in performance diminish due to the effect of averaging over those time 
horizons.  
 

  OK SGS SGS-MP 
Grade to the plant 
Mean Error 0.25 -0.05 -0.03 
Error Variance 0.47 0.11 0.1 
MAE 0.42 0.2 0.18 
MSE 0.53 0.11 0.1 
Tonnage to the plant 
Mean Error 719 -541 -551 
Error Variance 5,481,077 2,488,128 2,646,070
MAE 1,419 1,047 1,057 
MSE 5,971,035 2,768,595 2,936,578

Table 1: Statistical performance comparison for the block by block output. 
 

6. Conclusions 

In this article we have shown a practical tool to define the optimum extraction path when 
multiple constraints must be met and shovels operating at different faces must be 
simultaneously taken into account when programming the short term operation. The 
algorithm provides a fairly simple framework for incorporating additional constraints and 
could be calibrated to the practice of each mining operation. It could be easily extended 
to account for multiple variables.  
 
The proposed optimization algorithm was used to provide a repeatable and comparable 
definition of the short term planning procedures to assess the forecasting capacity of three 
reserves block models. Results showed that using an estimated model will underestimate 
the true variability of grades fed to the processing plant, impeding the proper actions to 
handle these variations in grade, tonnage and ore types. By using simulated models, the 
variability in these parameters can be anticipated and proper actions taken to avoid 
significant difficulties at the plant, with the consequent reductions in recovery, increases 
in costs, and operational complications. The model that incorporates multiple-point 
statistics performs marginally better in some cases than the standard simulation approach, 
which can be due to the small pattern size used. A larger pattern might improve its 
performance. 
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