Sec. 1] Notations

Problems

The following set of problems is designed to illustrate the conventions of the main notations. Each group of problems uses only the material of the preceding groups.

A. FREE INDEX

1. Translate the following sets of equations into index notation by using the rule of the free index.

a.
$$u_1 + v_1 + w_1 = r_1$$

 $u_2 + v_2 + w_2 = r_2$
 $u_3 + v_3 + w_3 = r_3$
 $u_4 + v_4 + w_4 = r_4$
b. $u_1v_1 + w_1r_1 = A_{11}$
 $u_1v_2 + w_1r_2 = A_{12}$
 $u_2v_1 + w_2r_1 = A_{21}$
 $u_2v_2 + w_2r_2 = A_{22}$

- 2. For a range of four, write out all expressions contained in the condition of symmetry, $A_{ij} = A_{ji}$, and in the condition of skew-symmetry, $B_{ij} = -B_{ji}$.
- 3. Show that $A_{ij} = u_i u_j$ satisfies the condition of symmetry, whereas $B_{ij} = u_i v_j v_i u_j$ satisfies the condition of skew-symmetry. Obtain expressions for the symmetric and skew-symmetric parts of $C_{ij} = u_i v_j$.
- 4. If an expression contains M free indices with range from 1 to R, what is the number N of equations described by the expression?
- 5. Calculate the numerical values of $C_{ij} = u_i v_j$ if $u_1 = 1$, $u_2 = 2$, $u_3 = 3$, $v_1 = 5$, $v_2 = 10$, $v_3 = 4$.

B. SUMMATION INDEX

6. Translate the following sets of equations into index notation by using the rule of the summation index.

a.
$$ds^2 = g_{11}(dx_1)^2 + g_{12} dx_1 dx_2 + g_{13} dx_1 dx_3 + g_{21} dx_2 dx_1 + g_{22}(dx_2)^2 + g_{23} dx_2 dx_3 + g_{31} dx_3 dx_1 + g_{32} dx_3 dx_2 + g_{33}(dx_3)^2$$

b.
$$u_1v_1 + u_2v_2 + u_3v_3 + u_4v_4 = 0$$

c.
$$\phi = u_1 v_1 w_1 r_1 + u_1 v_1 w_2 r_2 + u_2 v_2 w_1 r_1 + u_2 v_2 w_2 r_2$$

d.
$$dS^2 = (dX_1)^2 + (dX_2)^2 + (dX_3)^2$$

e.
$$\phi = (u_1^2 + u_2^2 + u_3^2)(v_1^2 + v_2^2 + v_3^2)$$

7. Verify (1.12). Also show that $W_{ij}u_iu_j = W_{(ij)}u_iu_j$, $B_{[ij]}u_iu_j = 0$.

- 8. For a range of three, write out in scalar notation the expression $\phi = A_{ij}A_{ji}$.
- 9. For a range of two, write out in scalar notation the following:
 - $\mathbf{a.} \ \phi = u_k v_k A_{ii}$
- **b.** $\phi = u_i v_i + w_j r_j$ **c.** $A_{kk} = p_j r_j$

b. $A_{11} = B_{11}C_{11} + B_{12}C_{21}$

 $A_{12} = B_{11}C_{12} + B_{12}C_{22}$ $A_{21} = B_{21}C_{11} + B_{22}C_{21}$

 $A_{22} = B_{21}C_{12} + B_{22}C_{22}$

- $\mathbf{d.} \ u_i = v_i + A_{ikk}$
- $\mathbf{e.} \ u_i v_j w_j = B_{ik} r_k \qquad \mathbf{f.} \ A_{ij} = B_{ik} C_{kn} D_{nj}$
- **10.** Evaluate $\phi = u_i v_i + A_{kk}$ for $u_1 = 2$, $u_2 = 4$, $v_1 = 3$, $v_2 = 1$, $A_{11} = 5$, A_{12} $= 36, A_{21} = 10, A_{22} = 5.$
- 11. Translate the following sets of equations into index notation:
 - $\mathbf{a.} \ v_1 = A_{111} + A_{122} + A_{133}$
 - $v_2 = A_{211} + A_{222} + A_{233}$
 - $v_3 = A_{311} + A_{322} + A_{333}$

c.
$$u_1 = v_1^2 w_1 + v_2^2 w_1 + v_3^2 w_1$$

 $u_2 = v_1^2 w_2 + v_2^2 w_2 + v_3^2 w_2$

 $u_3 = v_1^2 w_3 + v_2^2 w_3 + v_3^2 w_3$

- 12. For a range of three, write out in scalar notation the following:
 - $\mathbf{a.} \ v_i = B_{ji}u_j$
- **b.** $u_i = B_{ik}A_{kii}$
- 13. For a range of three, obtain the scalar representations of $v_{i,j} = v_{i,j} + w_{kij}v_k$, where w_{kij} have the skew-symmetry property $w_{kij} = -w_{ikj}$. Work as though the commas and semicolons between indices were not there.

C. DIRECT NOTATION

14. If C is of rank two, write out in index notation the following:

$$-\mathbf{C}^3 + \mathbf{I_C}\mathbf{C}^2 - \mathbf{II_C}\mathbf{C} + \mathbf{III_C}\mathbf{1} = \mathbf{0}.$$

Here $C^2 \equiv CC$, $C^3 \equiv CCC$, and I_C , II_C , III_C are special designations of scalar coefficients (i.e. these symbols are to be left as they are).

- 15. Translate the following expressions into direct notation:
 - **a.** $(A^2)_{ij} = A_{ik}A_{kj}$
- **b.** $(A^3)_{ij} = A_{ik}A_{km}A_{mj}$
- $\mathbf{c.} \ B_{ij} = A_{ki}A_{kj}$
- **d.** $C_{ij} = A_{ik}A_{jk}$
- e. $D_{ij} = A_{ik}A_{mk}A_{im}$

- $\mathbf{f.} \ E_{kk} = A_{im}A_{jm}A_{ij}$
- g. For a range of two,

write out (a) and (b).

- **16.** Change the following into index notation:
 - $\mathbf{a.} \ \mathbf{G} = \mathbf{A}^T \mathbf{A} \mathbf{A}^T$
- b. $A^4 = AAAA$
- c. FB = BG

- $\mathbf{d.} \ \mathbf{D} = \mathbf{A}\mathbf{B}^{T}\mathbf{C}$
- $\mathbf{e.} \ \mathbf{B} = \mathbf{F}\mathbf{F}^T$
- $\mathbf{f.} \quad \mathbf{C} = \mathbf{F}^T \mathbf{F}$

- g. $\phi = tr(AB)$
- $\mu = tr(A^TB)$
- i. $\bar{\mathbf{A}} = \mathbf{Q}\mathbf{A}\mathbf{Q}^T$

- i. $AB \neq BA$
- k. tr(AB) = tr(BA)

17. Let C = AB, $D = A^TB$, $E = AB^T$, $F = A^TB^T$, where

$$\|\mathbf{A}\| = \begin{vmatrix} 1 & 1 & 5 \\ 6 & 2 & 3 \\ 2 & 4 & 3 \end{vmatrix}, \qquad \|\mathbf{B}\| = \begin{vmatrix} 3 & 3 & 1 \\ 4 & 2 & 5 \\ 2 & 6 & 1 \end{vmatrix}$$

Calculate the arrays of C, D, E, F.

- 18. Let $\|\mathbf{x}^T\| = \|1, 2, 3\|$; if **A** and **B** are as in Problem 17, calculate $\mathbf{c}^T = \mathbf{x}^T \mathbf{A}^T$, $\mathbf{e} = \mathbf{B} \mathbf{x}$.
- 19. Let A and B be as in Problem 17. Calculate tr(AB).

D. ARITHMETIC OF FORMS

- 20. Substitute $u_i = B_{ij}v_j$ and $C_{ij} = p_iq_j$ into $w_m = C_{mn}u_n$.
- 21. Substitute $u_i = A_{ik}n_k$ into $\phi = u_k v_k$.
- 22. Substitute $v_i = B_{ij}A_{jkk}$ into $\phi = v_iC_{jij}$.
- 23. Substitute $A_{ij} = B_{ik}C_{kj}$ into $\phi = A_{mk}C_{mk}$.

E. EXCEPTIONAL CASES

- 24. For a range of three, write the explicit form of $f = f(A_{ij})$.
- 25. Write out the explicit forms of $v_i = f_i(u_i)$ for a range of three.
- 26. Write out the components of A_{iikk} for a range of two.
- 27. Write out $A_{ii} = 0$ for a range of three.

F. ALTERNATOR AND THE KRONECKER DELTA

28. Continue and simplify wherever possible:

a.
$$\delta_{3k}p_k =$$

b.
$$\delta_{3i}\delta_{ji} =$$
 c. $\delta_{2i}A_{ji} =$ **e.** $\delta_{i2}\delta_{i2} =$ **f.** $\delta_{i2}\delta_{j3}A_{ij}$

d.
$$\delta_{i2}\delta_{ik}\delta_{3k} =$$

$$e = \delta_{i0}\delta_{i0} =$$

f.
$$\delta_{i2}\delta_{i3}A_{ii} =$$

29. For a range of three, write out in scalar notation the equations represented by

$$A_{ij} = -\varepsilon_{ijk}^{+}A_{k}, \quad {}^{+}A_{k} = -\frac{1}{2}\varepsilon_{kij}A_{ij}.$$

30. Continue and simplify if possible:

$$\mathbf{a}. \ \delta_{ij} \varepsilon_{ijk} =$$

b.
$$\delta_{ij}v_iv_j =$$

b.
$$\delta_{ij}v_iv_j =$$
 c. $\varepsilon_{ijk}u_iv_jv_k =$

d.
$$\varepsilon_{ijk}a_ia_ja_k =$$

- 31. Translate into index notation the following:
 - a. $00^T = 1$

$$b. A = 1A$$

$$\mathbf{c.} \ \mathbf{Q}^T \mathbf{Q} = \mathbf{1}$$

d.
$$\phi = tr(1 + A)$$
 e. $\phi = tr(1 + 1)$

e.
$$\phi = tr(1 + 1)$$

32. Translate into index notation the following:

- 33. Verify (1.24). Is there a reasonably systematic way of doing it?
- **34.** Verify (1.30) by carrying out the summations in (1.29).
- **35.** What are the counterparts of (1.28)–(1.30) for the alternator ε_{ij} ?
- **36.** In direct notation we denote $\varepsilon_{ijk}u_iv_jw_k$ by [uvw]. Show that

$$[uvw] = [vwu] = [wuv] = -[vuw] = -[wvu] = -[uwv].$$

37. Write out in scalar notation $\phi = \varepsilon_{ijk} u_i v_j w_k$.

G. PARTIAL DERIVATIVES

- **38.** Change $d\phi = \frac{\partial \phi}{\partial x} dx + \frac{\partial \phi}{\partial y} dy + \frac{\partial \phi}{\partial z} dz$ into index notation.
- 39. For a range of three, write out in scalar notation the following:

a.
$$\phi_{,ii} = 0$$

b.
$$\phi_{iikk} = 0$$

c. divv
$$\equiv v_{i,i}$$

d. (curly)_i
$$\equiv \varepsilon_{ijk}v_{k,i}$$

40. Find
$$u_{i,i}$$
, $v_{j,j}$, $u_{i,j} - u_{j,i}$, $v_{i,j}$ if $u_1 = 5x_1$, $u_2 = -3x_2$. $u_3 = 7x_3$, $v_1 = 3x_1x_2$, $v_2 = 4x_2x_3$, $v_3 = 6x_3x_1$.

- **41.** Find ϕ_{i} if $\phi(\mathbf{x}) = x_1^2 x_2 x_3^2$.
- 42. Continue, and simplify wherever possible, the following:

a.
$$x_{k,k} =$$

$$(x_i x_j)_{,i} =$$

b.
$$(x_i x_j)_{,i} =$$
 c. $(x_i x_i)_{,k} =$ **d.** $(x_i x_j)_{,k} =$

e.
$$(\varepsilon_{ijk}x_jv_k)_{,m} = \mathbf{f}. (x_mx_mx_iA_{ij})_{,k} =$$

$$(x, x, x, A..) =$$

g.
$$x_{i,j} - x_{j,i} =$$

43. For a range of three, write out in scalar notation the following:

$$\mathbf{a.} \ \ x_{i,m} = \delta_{im} + u_{i,m}$$

b.
$$X_{i,n} = \delta_{in} - u_{i,n}$$

c. $B_{ij} = x_{i,m}x_{j,m}$

d.
$$C_{ij} = x_{m,i}x_{m,j}$$

e. $2E_{ij} = u_{i,j} + u_{j,i} + u_{m,i}u_{m,j}$

$$2E = C - 1$$
 by using (d) and (a).

44. For a range of three, write out in scalar notation the following:

$$\mathbf{a.} \ \dot{\rho} + \rho v_{i,i} = 0$$

b.
$$a_i = \partial v_i/\partial t + v_k v_{i,k}$$

c.
$$T_{ji,j} + \rho b_i = \rho a_i$$

d.
$$\rho \dot{u} + q_{i,i} = T_{ij}D_{ij}$$