

PROGRAMA DE CURSO

Código	Nomb	ore			
MA5801	Análisis Convexo y Dualidad				
Nombre en	Inglés				
Convex Ar	Convex Analysis and Duality				
SCT		Unidades Docentes	Horas de Cátedra	Horas Docencia Auxiliar	Horas de Trabajo Personal
		10	4	2	4
Requisitos			Carácter del Curso		
MA4801			Obligatorio d	e specialidad	
Resultados de Aprendizaje					

Se busca la comprensión de las distintas herramientas del análisis convexo y su aplicación a distintos ámbitos de la optimización continua, entre ellos, la dualidad, el estudio de esquemas de penalización, los principios variacionales, entre otros.

También se estudian resultados clásicos en el área como son los Teoremas de Bishops-Phelps y de Bronsted-Rockafellar.

Metodología Docente	Evaluación General
Se realizan dos clases de cátedra por semana donde se enseñan los contenidos principales del curso. Estas se complementan con una clase auxiliar semanal donde se ven aplicaciones de los contenidos. Además, se motiva a que los estudiantes realicen exposiciones sobre temas complementarios a los enseñados en las cátedras.	Los alumnos deben rendir tres controles donde se mide el adquisición de los conocimientos enseñados en cátedra. Estas evaluaciones se complementan con una o dos tareas durante el semestre y el examen a fin de semestre. También se consideran exposiciones donde se presentan temas complementarios a los enseñados en las cátedras, más cercanos a la investigación.

Unidades Temáticas

Número	Nombre de la Unidad		Duración en Semanas	
1	Introducción al Análisis Variacional			3
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía
 Funciones a valores en R ∪ {-∞, +∞} Semicontinuidad inferior y minimización Principio Variacional de Ekeland 		Se realizan las definiciones of permiten plantear los prime principios variacionales. La unidad termina con el princi variacional de Ekeland y se muestran algunas de sus aplicaciones.	ros	4, 5, 6, 7, 8, 11

Número	Noi	mbre de la Unidad	[Ouración en Semanas
2	Fundamentos del	análisis convexo		4
Contenidos		Resultados de Aprendizajes de Unidad	· la	Referencias a la Bibliografía
 Funciones convexas Espacios en dualidad Conjugada de Fenchel Subdiferencial 		Se introducen conceptos claves o curso como la convexidad, los espacios en dualidad, la conjuga de Fenchel, el subdiferencial, etc estudian sus principales propiedades.	da	4, 6, 7, 8, 10, 11

Número Non		mbre de la Unidad		Duración en	
				Semanas	
3	Dualidad en optim	nización convexa		2	
Contenidos		Resultados de Aprendizajes de la		Referencias a	
		Unidad		la Bibliografía	
1. Dualidad Lagrangeana				6, 8, 10, 11	
		Las herramientas aprendidas e	n las		

	1
unidades anteriores se usan para	
estudiar la dualidad de problemas	
de optimización con restricciones. Se	
discuten calificaciones de	
restricciones, se comparan distintas	
nociones de dualidad para	
problemas donde los datos son	
convexos y se aplican a problemas	
clásicos en optimización, entre ellos,	
•	
	estudiar la dualidad de problemas de optimización con restricciones. Se discuten calificaciones de restricciones, se comparan distintas nociones de dualidad para

Número		Nombre de la Unidad		Duración en Semanas	
4	Penalización	en optimización convexa		2	
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a la Bibliografía	
Convergencia primal Convergencia dual		Se proponen esquemas generales penalización para problemas optimización convexa. Bajo hipó débiles se prueba que estos esque están bien definidos y que converger solución del problema estudiado estudia tanto la convergencia esquemas para el primal como pa dual. En ambos casos, se aseg asumiendo hipótesis complementa la convergencia a un único punto econjunto solución. Se caracterizan e punto límites para el primal y el dual	de otesis emas n a la . Se de ra el gura, arias, en el estos	2	

Número		Nombre de la Unidad		Duración en	
				Semanas	
5	Tópicos adicionales			2	
Contenidos		Resultados de Aprendizajes de la Unidad		Referencias a	
Contenidos		Resultados de Aprendizajes de la Offi	luau	la Bibliografía	
Posibles contenidos:				1, 3, 4, 5, 9,	
		Se propone abordar tóp	oicos	12	
1. Programación convexa		complementarios al análisis conv	exo.		
moderna: Programación		Entre ellos, podemos mencio	onar		
SemiDefinida,		herramientas de programación conv	vexa		

Programación sobre
Conos de Segundo Orden
y sus aplicaciones.

- 2. Funciones de valores propios: funciones simétricas y espectrales, el teorema de Davis
- 2. Introducción al análisis no-diferenciable, no convexo.

moderna, el cual tiene el foco en las aplicaciones de ciertas formulaciones particulares como son la Programación SemiDefinida y la programación sobre Conos de Segundo Orden, y una introducción a la teoría y aplicación de herramientas del análisis no-diferencial para funciones y conjuntos que no son necesariamente convexos.

Bibliografía General

- 1. F. Alizadeh and D. Goldfarb. Second-Order Cone Programming. Mathematical Programming, 95:Ser. B, pp. 3–51, 2003.
- 2. Auslender, Alfred; Teboulle, Marc Asymptotic cones and functions in optimization and variational inequalities. Springer Monographs in Mathematics. *Springer-Verlag, New York,* 2003.
- 3. A. Ben-Tal and A. Nemirovski. Lectures on Modern Convex Optimization. MPS-SIAM, Series on Optimization. SIAM Philadelphia, 2001.
- 4. J. Borwein & A. S. Lewis, Convex Analysis and Nonlinear Optimization: Theory and Examples (CMS Books in Mathematics, 2nd Edition, 2006).
- 5. Clarke, F. H. Optimization and nonsmooth analysis. Second edition. Classics in Applied Mathematics, 5. *Society for Industrial and Applied Mathematics* (*SIAM*), *Philadelphia*, *PA*, 1990.
- 6. I. Ekeland and R. Temann. Convex Analysis and Variational Problems. North Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976.
- 7. J.-B. Hiriart-Urruty, Optimisation et Analyse convexe (Cours, exercices et problèmes corrigés). Collection Enseignement SUP Mathématiques, Editions EDP SCIENCES.
- 8. J. B. Hiriart-Urruty and C. Lemaréchal. Convex Analysis and Minimization Algorithms I. Fundamentals. Springer-Verlag, Berlin, 1993.
- 9. B. Mordukhovich. Variational Analysis and Generalized Differentiation I. Basic theory. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 330. Springer-Verlag, Berlin, 2006
- 10. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, NJ, 1970.
- 11. R. T. Rockafellar and R. J-B. Wets. Variational Analysis. Springer-Verlag, Berlin, 1998. 🛽
- 12. L. Vandenberghe and S. Boyd. Semidefinite Programming. SIAM Review, 38(1):pp. 49–95, 1996.

Vigencia desde:	2013
Elaborado por:	Héctor Ramírez
Revisado por:	Jefe Docente – Iván Rapaport