MA1002-7 Cálculo Diferencial e Integral

Profesor: Hector Olivero.

Auxiliar: Felipe olivares, Sebastián Urzúa B.

Auxiliar 13

04 de Diciembre de 2015

1. Resumen

Definición 1 (Velocidad, rapidez, vector tangente). Consideremos $\vec{r}:[a,b]\to\mathbb{R}^n$ una parametrización regular de una curva simple Γ , y $\vec{\sigma}(s)$ su parametrización natural. Definamos el vector velocidad, la rapidez y el vector tangente respectivamente como:

$$\vec{v} = \frac{d\vec{r}}{dt}(t), \ v(t) = \left| \left| \frac{d\vec{r}}{dt}(t) \right| \right| = \frac{ds}{dt}(t), \ T(t) = \frac{\vec{v}(t)}{v(t)} = \frac{\frac{d\vec{r}}{dt}(t)}{\left| \left| \frac{d\vec{r}}{dt}(t) \right| \right|}, \text{ donde } s : [a, b] \to [0, L(\Gamma)] \text{ representa la}$$

función de longitud de arco.

	En longitud de arco s	Parámetro t cualquiera
Vector tangente	$T(s) = \frac{d\vec{\sigma}}{ds}(s)$	$T(t) = \frac{\frac{d\vec{r}}{dt}(t)}{\left \left \frac{d\vec{r}}{dt}(t)\right \right }$
Vector Normal	$N(s) = \frac{\frac{dT}{ds}(s)}{\left \left \frac{dT}{ds}(s)\right \right }$	$N(t) = \frac{\frac{dT}{dt}(t)}{\left \left \frac{dT}{dt}(t)\right \right }$
Curvatura	$\kappa(s) = \left \left \frac{dT}{ds}(s) \right \right $	$\kappa(t) = rac{rac{dT}{dt}(t)}{\left \left rac{dec{r}}{dt}(t) ight ight }$
Radio de Curvatura	$R(s) = \frac{1}{\kappa(s)}$	$R(t) = \frac{1}{\kappa(t)}$
Vector Binormal	$B = T \times N$	$B = T \times N$
Torsión	$\tau(s) = -N(s) \cdot \frac{dB}{ds}(s).$	$\kappa(t) = -N(t) \cdot \left(\frac{\frac{dB}{dt}(t)}{\left \left \frac{d\vec{r}}{dt}(t) \right \right } \right)$

Teorema 1 (Fórmulas de Frenet).

$$\frac{dT}{ds} = \kappa N,\tag{1}$$

$$\frac{dT}{ds} = \kappa N, \tag{1}$$

$$\frac{dN}{ds} = -\kappa T + \tau B, \tag{2}$$

$$\frac{dB}{ds} = -\tau N. (3)$$

Proposición 1. Una curva con curvatura nula es una recta. Además, una curva sin torsión es una curva plana.

Definición 2 (Integral de una función sobre una curva). Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función continua definida en $\Omega \subseteq \Gamma$. Se define la integral de f sobre la curva Γ mediante:

$$\int_{\Gamma} f dl = \int_{a}^{b} f(r(\vec{t})) \left| \left| \frac{d\vec{r}}{dt}(t) \right| \right| dt$$

2. Problemas

- **P1.** Sea una función $g:[0,\infty)\to (0,\infty)$, tal que para $t\geq 0,$ g'(t)>0 y $\lim_{t\to\infty}g(t)=M>0$. Considere la curva $\Gamma\subset\mathbb{R}^3$ parametrizada por $r(t)=(\cos(g(t)),\sin(g(t)),1)$.
 - (I) Encuentre el largo total de la curva Γ y la parametrización natural.
 - (II) Encuentre los vectores T(t), N(t) y B(t).
 - (III) Encuentre $\kappa(t)$ y $\tau(t)$.
- **P2.** Sea r(s) la parametrización natural de una curva Γ. Demuestre que $\frac{dr}{ds}\left(\frac{d^2r}{ds^2}\times\frac{d^3r}{ds^3}\right)=\tau\kappa^2$.
- **P3.** Encuentre la masa total del alambre parametrizado por $r(t) = (\cos(t), \sin(t), \cos(t)), \cos(t) \in [0, \frac{\pi}{2}],$ cuya densidad de masa está dada por $\rho(x, y, z) = yz$.