MA1002-6 Cálculo Diferencial e Integral

Profesor : Juan Dávila B.Auxiliar : Diego García S.

Resumen series

- 1. Una serie es un par ordenado $(A,(a_n))$ donde A es un subconjunto de \mathbb{R} numerable y $(a_n)_{n\geq 0}$ es una numeración (ordenamiento) del conjunto A. La sucesión (a_n) se llama el término general de la serie. A partir de (a_n) definimos la sucesión (s_n) de las sumas parciales por $s_n = \sum_{k=0}^n a_k$. El valor de la serie existe cuando la sucesión (s_n) posee límite. En tal caso decimos que la serie es convergente y su valor es el límite de (s_n) .
- 2. Teorema (criterio de Cauchy). Sea (a_n) una sucesión y (s_n) la sucesión de sus sumas parciales. La serie $\sum a_k$ converge si y sólo si:

$$\forall \epsilon > 0, \exists N \in \mathbb{N}, \forall n, m \ge N, m > n \Longrightarrow |\sum_{k=n+1}^{m} a_k| < \epsilon$$

- 3. Teorema: Si la serie $\sum a_k$ converge entonces $(a_n) \to 0$.
- 4. Teorema: Sean $\sum a_k$ y $\sum b_k$ dos series convergentes. Entonces:
 - a) $\sum (a_k + b_k)$ es convergente y su valor $(\sum a_k) + (\sum b_k)$.
 - b) Para todo $\lambda \in \mathbb{R}$, $\sum (\lambda a_k)$ es convergente y su valor es $\lambda(\sum a_k)$.
- 5. Teorema: Una series de términos no negativos converge si y sólo si las sumas parciales son acotadas superiormente.
- 6. Teorema: Sean (a_n) y (b_n) dos sucesiones no negativas de modo que existen n_0 y $\alpha > 0$ tales que, para todo $n \ge n_0$, $a_n \le \alpha b_n$. Se tiene que si $\sum b_k < \infty$ entonces $\sum a_k < \infty$.
- 7. Teorema: Sean (a_n) y (b_n) dos sucesiones tales que, para todo $n \ge 0$, 0 a_n , b_n y supongamos que $c := Lim \frac{a_n}{b_n}$ existe. Se tienen las siguientes afirmaciones dependiendo del valor de c.
 - a) Caso c=0. Si $\sum b_k < \infty$ entonces $\sum a_k < \infty$.
 - b) Caso c > 0. Se tiene que $\sum b_k < \infty$ si y sólo si $\sum a_k < \infty$.
- 8. Teorema: Sea (a_n) una sucesión de términos positivos y supongamos que $r := \lim \frac{a_{n+1}}{a_n}$ existe. Dependiendo del valor se tienen las siguientes conclusiones.
 - a) Si r < 1 entonces $\sum a_k$ converge.
 - b) Si r > 1 entonces $\sum a_k$ diverge.
 - c) Si r=1 entonces $\sum a_k$ puede converger o divergir, es decir, en este caso el criterio no nos ayuda a determinar la convergencia de la serie.
- 9. Teorema: Sea (a_n) una sucesión de términos no negativos y supongamos que $r := \lim_{n \to \infty} (a_n)^{\frac{1}{n}}$ existe. Dependiendo del valor se tienen las siguientes conclusiones.
 - a) Si r < 1 entonces $\sum a_k$ converge.
 - b) Si r > 1 entonces $\sum a_k$ diverge.
 - c) Si r = 1 entonces $\sum a_k$ puede converger o divergir, es decir, en este caso el criterio no nos ayuda a determinar la convergencia de la serie.
- 10. Sea $f:[1,\infty)\to\mathbb{R}^+$ una función decreciente. Se tiene que $\sum_{n\geq 1}f(n)<\infty$ equivale a $\int_1^\infty f(x)dx<\infty$.
- 11. Teorema: Sea (a_n) una sucesión de términos no negativos y $u_n = (a_n)^{\frac{1}{n}}$. Sea $r := \limsup u_n$.
 - a) Si r < 1 entonces $\sum a_k$ converge.

- b) Si r > 1 entonces $\sum a_k$ diverge.
- c) Si r=1 entonces $\sum a_k$ puede converger o divergir.
- 12. Toda serie absolutamente convergente es convergente. Además, una serie es absolutamente convergente si y sólo si las series de sus términos negativos y la de sus términos positivos son convergentes.
- 13. Sea (a_n) una sucesión decreciente y convergente a cero (luego a_n es no negativa). Entonces la serie $\sum (-1)^n a_n$ es convergente.
- 14. Si la serie $\sum a_k$ es absolutamente convergente entonces toda serie $\sum b_k$ donde (b_k) es un reordenamiento de (a_k) es absolutamente convergente y su valor es igual a $\sum a_k$.
- 15. Si $\sum a_k$ es condicionalmente convergente entonces para cualquier número $\alpha \in \mathbb{R}$ existe $f : \mathbb{N} \to \mathbb{N}$ es biyectiva tal que $\sum a_{f(k)} = \alpha$
- 16. Sean $\sum a_k$ y $\sum b_k$ dos series absolutamente convergentes entonces $(\sum a_k)(\sum b_k)$ es igual a $\sum c_k$ donde (c_k) es cualquier sucesión que contiene exactamente una vez cada uno de los productos a_ib_j , por ejemplo $c_k = \sum_{l=0}^k a_lb_{k-l}$.
- 17. Si la serie $\sum a_k x_0^k$ converge, se tiene que para cada $a \in (0, |x_0|)$ y para todo $x \in [-a, a]$ la serie $\sum a_k x^k$ converge absolutamente.

Dada la serie de potencias $\sum a_k x^k$ con intervalo de convergencia I, es posible definir naturalmente la función:

$$f(x) = \lim_{n \to \infty} \sum_{k=0}^{n} a_k x^k \tag{1}$$

- 18. Teorema: Sea $\sum a_k x^k$ una serie de potencias con radio de convergencia mayor que cero. Definiendo la función f como en (1), se tiene que ella es continua en int(Dom f).
- 19. Sea $\sum a_k x^k$ una serie de potencias de radio de convergencia R > 0. Entonces para todo $p \in \mathbb{Z}$, la serie $\sum k^p a_k x^k$ tiene radio de convergencia R.
- 20. Teorema: Sea $\sum a_k x^k$ una serie de potencias, con radio de convergencia R > 0. Entonces la función definida como en (1), es integrable en (-R, R) y

$$\forall x \in (-R, R) \quad \int_0^x f(t)dt = \int_0^x (\sum a_k t^k)dt = \sum \frac{a_k x^{k+1}}{k+1}$$

21. Sea $\sum a_k x^k$ una serie de potencias, con radio de convergencia R > 0. Entonces la función f definida como en (1), es derivable en (-R, R) y

$$\forall x \in (-R, R) \quad f'(x) = \sum_{k>1} k a_k x^{k-1}$$

22. Dadas dos series de potencia $\sum a_k x^k$ y $\sum b_k x^k$ convergentes para x_0 . Entonces la serie $\sum (a_k + b_k) x^k$ convergente para todo $x \in (-|x_0|, |x_0|)$ y se tiene que $\sum (a_k + b_k) x^k = \sum a_k x^k + \sum b_k x^k$. Además, si $c_k = \sum^k a_j b_{k-j}$ la serie $\sum c_k x^k$ converge para todo $x \in (-|x_0|, |x_0|)$ y se tiene que $\sum c_k x^k = (\sum a_k x^k)(\sum b_k x^k)$