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Chapter 5

The Principal-Agent Model

5.1 Setup

• 2 players: The principal, owner of the firm; and the agent, man-
ager/worker in the firm

• The principal hires the agent to perform a task

• The agent chooses an action, a ∈ A

• Each a ∈ A yields a distribution over payoffs (revenues) for the firm, q,
according to the function q = f(a, ε) where ε is some random variable
with known distribution (Note that the principal “owns” the rights to
the revenue q.)

• a ∈ A is not observable to the principal; q is observable and verifiable

(so q can be a basis for an enforceable contract)

Figure Here (time line)

Examples:
Principal Agent Action

1 Firm owner Manager choice of (risky) project
2 Employer/Manager employee/worker effort in job
3 Regulator Regulated firm cost reduction research
4 Insurer Insuree care effort

93



CHAPTER 5. THE PRINCIPAL-AGENT MODEL 94

Question: What makes the problem interesting?

A conflict of interest over a ∈ A between the principal and the agent.

5.1.1 Utilities

We assume that the principal is risk neutral, and the agent is risk averse.

This is the standard formulation of the P-A problem.

• Agent’s utility: The agent has a vNM utility function defined on his

action, a, and the income he receives, I,

U(a, I) = v(I)− g(a),

where v′ > 0, and v′′ < 0 guarantee risk aversion. (As for g(·), we
assume that effort is costly, g′ > 0, and we usually assume that the
marginal cost of effort increases with effort, g′′ > 0, which seems “rea-
sonable.”) Note that this utility function is additively separable. This
simplification is very helpful for the analysis and its implication is that
the agent’s preference over income lotteries is independent of his choice
of action Finally, assume that the agent’s reservation utility is given by
u (which is determined by some alternative option.)

• Principal’s utility: The principal’s utility is just revenue less costs,
and if we assume that the only cost is compensating the agent then
this is trivially given by q − I.

Question: Why is it reasonable to assume that the principal is risk neutral
while the agent is risk averse?

1. If the agent is risk neutral, and the agent has no limits on wealth, the
problem will be trivial (as we will later see why).

2. If both are risk averse the analysis is more complicated, but we get the
same general issues and results, so it is unnecessarily more complex.

3. An appealing rationale is that the principal is wealthy and has many
investments, so this firm is only a small fraction of his portfolio and risk
is idiosyncratic. (Caveat: usually shareholders don’t design incentive
schemes!)
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4. Anothermodelling possibility: Agent is risk neutral but has limited
wealth - say, in the form of limited liability - so that he cannot suffer
large losses. This gives a “kink” at an income level of zero, which gives
the necessary concavity of the agent’s utility function which yields the
same kind of results.

Further Assumptions

We begin our analysis by following the work of Grossman and Hart (1983)
(G-H hereafter), and later go back to the earlier formulations of the principal-
agent problem.

• q̃ (the random variable) is discrete: q ∈ {q1, q2, ..., qn}, and w.l.o.g.,
q1 < q2 < · · · < qn.

• A ⊂ �k is compact and nonempty.

• given a ∈ A, the mapping π : A → S maps actions into distributions

over outcomes, where S = {x ∈ �n
: xi ≥ 0 ∀i and

n∑

i=1

xi = 1} is

the n-dimensional simplex. πi(a) denotes the probability that qi will
be realized given that a ∈ A was chosen by the agent. As usual, we
assume that the distribution functions are common knowledge.

• v(·) is continuous, v′ > 0, v′′ < 0, and v(·) is defined over (I,∞) ∈ �

where lim
I→I

v(I) = −∞ (This guarantees that we need not worry about

corner solutions.) For example: v(·) = ln(·), in which case I = 0. (This
is Assumption A1 in G-H.)

• g(·) is only assumed to be continuous.

5.2 First Best Benchmark: Verifiable Actions

Assume that a ∈ A is observable and verifiable so that the principal can
basically “choose” the best a ∈ A, and contract on it while promising the
agent some compensation. Assume that the principal has all the bargaining
power. (This is a standard simplification, which can be relaxed without
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affecting the qualitative results.) She then solves:

F.B.




max
a∈A
I∈�

n∑
i=1

πi(a)qi − I

s.t. v(I)− g(a) ≥ u (IR)

where I ∈ � is the payoff to the agent. Note that we considered I to be
a fixed payoff, which brings us to the following question: Could a random
payment Ĩ be optimal? The answer is clearly no, which follows from the
agent’s risk aversion. We can replace any Ĩ with its Certainty Equivalent,
which will be less costly to principal since she is risk neutral.

Claim: (IR) binds at the solution

This claim is clearly trivial, for if (IR) would not bind we can reduce I,
and lower the principal’ss costs.

We can define
CFB(a) ≡ v

−1(u+ g(a))

to be the cost to the principal of compensating the agent for choosing a ∈ A.

This is the First-Best (FB) cost of implementing an action a, since risk is
optimally shared between the risk neutral principal and the risk averse agent.
Using this formalization, the principal solves:

max

a∈A

n∑

i=1

πi(q)qi − CFB(a)

The First-Best Solution yields a FB action, a∗
FB

∈ A (which may not
be unique), and this action is implemented by the FB contract: (a∗

FB
, I∗
FB

)
where I∗

FB
= CFB(a

∗

FB
).

5.3 Second Best: non-observable action

Once the action is not observable, we can no longer offer contracts of the

form (a∗
FB

, I∗
FB

). One can then ask, if it is not enough just to offer I∗
FB

and

anticipate the agent to perform a∗
FB

? The answer is no, since if I∗
FB

is

offered, then the agent will choose a ∈ A to minimize g(a), and it may not

be that “likely” that a∗
FB

will achieve the agent’s goal.
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Question: What can the principal do to implement an action a ∈ A?

The principal can resort to offering an Incentive Scheme which rewards

the agent according to the level of revenues, since these are assumed to

be observable and verifiable. That is, the agent’s compensation will be a

function, I(q).
By the finiteness of q̃, restrict attention to I ∈ {I1, ..., In}. The principal

will choose some a∗
SB

, together with an incentive scheme that implements
this action. (That is, an incentive scheme that causes the agent to choose
a∗
SB

as his “best response.”) Clearly, at the optimum it must be true that
a∗
SB

is implemented at the lowest possible cost to the principal. This implies
that we can decompose the principal’s problem to a two stage problem as
follows:

1. First, look at the lowest cost to implement any a ∈ A (i.e., for each
a ∈ A, find (I∗

1
(a), ..., I∗

n
(a)) which is the lowest cost incentive scheme

needed to implement a ∈ A)

2. Given {(I∗
1
(a), ..., I∗

n
(a))}a∈A choose a∗

SB
to maximize profits.

The Second Stage

If the principal has decided to implement a∗, then it must be implemented

at the lowest cost. That is, (I1, ..., In) must solve




min
I1,...,In

I∑
i=1

πi(a∗)Ii

s.t.

n∑

i=1

πi(a
∗)v(Ii)− g(a∗) ≥ u (IR)

n∑

i=1

πi(a
∗)v(Ii)− g(a∗) ≥

∑

i

πi(a)v(Ii)− g(a) ∀a ∈ A (IC)

Note that we have a programwith a linear objective function, and concave
constraints. For mathematical convenience, we can transform the program
into one with a convex objective function and with linear constraints. To
do this, we work with “utils” instead of income: Let h(·) ≡ v−1(·) be the
inverse utility function with respect to the agent’s income, and consider the
principal’s choice of (v1, ..., vn), where Ii = h(vi). (The existence of such an
inverse function h(·) is guaranteed by G-H assumption A2.) We know that
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h(·) is convex since, v′ > 0 and v′′ < 0 imply that h′ > 0 and h′′ > 0, and
the assumption that lim

I→I

v(I) = −∞ implies that vi ∈ (−∞, v) where v can

be ∞. The program can therefore be written as,




min
v1,...,vn

I∑
i=1

πi(a∗)h(vi)

s.t.

n∑

i=1

πi(a∗)vi − g(a∗) ≥ u (IR)

n∑

i=1

πi(a
∗)vi − g(a∗) ≥

∑

i

πi(a)vi − g(a) ∀a ∈ A (IC)

(5.1)

which is a “well behaved” program. (If A is finite, we can use Kuhn-Tucker.)

Question: When will we have a solution?

If the constrained set is empty, we clearly won’t have one, so this is not an
interesting case. Assuming that the constrained set is non-empty, then if we
can show that it is closed and bounded, then a solution exists (Weirstrass).
The question is, therefore, when will it be true?

Assumption 4.1: (A3 in G-H) πi(a) > 0 for all i ∈ {1, ..., n} and for all

a ∈ A.

Proposition 4.1: Under the assumptions stated above, a solution is guar-

anteed.

Sketch of Proof: The idea is that we can bound the set of v’s, thus creating

a compact constrained set. Assume in negation that we cannot: ∃ an

unbounded sequence {vk
1
, ..., vk

n
}∞
k=1

such that some components go to

−∞. This implies that Ik

i
will also be unbounded for some i where

Ik
i
= h(vki ). Since πi(a) > 0 for all i, then if some vk

i → −∞ without

some vk
j → +∞ then the agent’s utility will be going to −∞. So, if

vi ∈ (−∞, v), where v < ∞ we are done since we cannot have some

vk
j → +∞. Assume, therefore, that vi ∈ (−∞,∞) so that we could

have some components going to −∞ and others going to +∞. Now

risk aversion will come into play: the variance of the incentive scheme

Ik goes to infinity, and to compensate the agent for this risk, the mean

must go to infinity as well. Thus, the principal’s expected payment to

agent goes to +∞, which is worse than not implementing the action
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at all. Therefore, we can put an upper bound on (−∞,∞), which is

calculated so that if payoffs reach the bound then the principal prefers

no action. But then we’re back in (−∞, v). �

Since we have guaranteed a solution, we can now state some facts about

the solution itself. Let CSB(a∗) be the value function of the program, i.e.,

the second best cost of implementing a∗. This function is well defined, and

has the following features:

1. CSB(a
∗) can be +∞ for some a

∗

∈ A (if the constrained set is empty
for this a∗)

2. CSB(a∗) is lower semi-continuous, which implies that it attains a mini-
mum in the constrained set. (A function f (·) is Lower Semi-Continuous
at x if lim infk→∞ f (xk) ≥ f(x).)

3. If v′′ < 0 then CSB(a
∗) has a unique minimizer.

We also have the following straightforward result:

Lemma 4.1: At the optimum IR binds.

Proof: Assume not. Then, we can reduce all vi’s by ε > 0 such that (IR)
is still satisfied. Notice that this does not affect the incentive con-
straint, and thus still implements a∗ at a lower cost to the principal -
a contradiction. Q.E.D.

Notes:

1. If U(a, I) = v(I)g(a) (multiplicative separability) then (IR) still binds
at a solution.. (If not, scale vi’s down by some proportion α < 1 and
the same logic goes through.)

2. If U (a, I) = g(a) + v(I)k(a) then (IR) may not bind and we may have
the agents expected utility exceeding u. (We can’t use any of the above
arguments.) In this case we get some “efficiency wage.”
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The First Stage

After finding CSB(a) the principal solves:

max
a∈A

B(a)− CSB(a) (5.2)

whereB(a) ≡
n∑

i=1

πi(a)qi is continuous and−CSB(a) is upper-semi-continuous

(because CSB(·) is lower semi-continuous). Thus, sinceA is compact, we have
a “well behaved” program. Let a∗

SB
solve (5.2) above, we call a∗

SB
the sec-

ond best optimal solution where {I∗
i
}n
i=1

is given by the solution to the first
program, (5.1) above.

Question: When is the SB solution also the FB solution?

Each one of the following is a sufficient condition (from parts of Proposi-
tion 3 in G-H):

1. v
′′
= 0 and the agent has unlimited wealth. In this case the principal

and agent share the same risk-attitude, and the principal can “sell” the
project (or firm) to the agent. Since the agent would then maximize

max

a∈A

n∑

i=1

πi(a)qi − v
−1(g(a) + u) ,

which is the expected profits less the cost of effort (and less the outside
option), then the principal can ask for a price equal to the value of the
agent’s maximization program. This results in the principal getting the
same profits as in a FB situation, and a

∗

FB
solves the agent’s problem

after he purchases the firm.

2. If a∗
FB

is also the solution to min
a∈A

g(a). In this case there is no “conflict

of interest” between the principal’s objectives and the agent’s cost-
minimizing action.

3. If A is finite, and there exists some a∗FB such that for some i, πi(a∗FB) =
0 and πi(a) > 0 for all a �= a

∗

FB
. In this case it happens to be that if a∗

FB

is chosen, then there is some outcome qi that cannot occur, and if the

agent chooses any other a ∈ A, then qi can happen with some positive
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probability. Thus, by letting Ii = −∞ and Ij = v
−i(g(a∗

FB
) + u)

for all j �= i, we implement a∗
FB

at the FB cost of v−i(g(a∗
FB
) + u).

This is called the case of “shifting support”, since the support of the
probability distribution changes with the chosen action.

In cases (1)-(3) above there is no trade-off between optimal risk-sharing
and giving the agent incentives to choose a∗

FB
. (There are 3 more cases in

proposition 3 of G-H). But in general, it turns out that we will have such a
trade-off, as the following result easily demonstrates, (part of proposition 3
in G-H)

Proposition 4.2: If πi(a) ≥ 0 for all i and for all a ∈ A, if v′′(·) < 0, and
if g(a∗

FB
) > min

a∈A

g(a) for all a∗
FB

, then the principal’s profits in the SB

solution are lower than in FB solution.

Proof: CSB(a∗
FB

) > CFB(a∗
FB

) because we need incentives (Ii �= Ij for some
i, j) for the agent to choose a∗FB �= arg mina∈A g(a). Therefore, we can-
not have optimal risk sharing, which implies that the solution to (5.2)
is worse than the FB solution. Q.E.D.

5.3.1 The Form of the Incentive Scheme

Assume for simplicity that A is finite and contains m elements, |A| = m, so
that the Lagrangian of program (5.1) (the cost-minimization program) is:

L =

n∑

i=1

πi(a
∗)h(vi)

−

∑

aj �=a∗

µj

[
n∑

i=1

πi(a
∗)vi − g(a∗)−

∑

i

πi(aj)vi + g(aj)

]

−λ

[
n∑

i=1

πi(a
∗)vi − g(a∗)− u

]

(Note that there are m−1 (IC) constraints and one (IR) constraint.) Assume
that the program is convex so that the FOCs are necessary & sufficient for a
solution, then we have,

πi(a
∗)h′(vi)−

∑

aj �=a∗

µj[πi(a
∗)− πi(aj)]− λπi(a

∗) = 0 ∀ i = 1, ..., n
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where µj ≥ 0 ∀ j �= a∗ and λ ≥ 0 (where µj > 0 implies that ICj binds.)
Since Assumption 4.1 guarantees that πi(a

∗) > 0, we can divide the FOC by
πi(a

∗) to obtain,

h′(vi) = λ+
∑

aj �=a∗

µj −

∑

aj �=a∗

µj

πi(aj)

πi(a∗)
∀ i = 1, ..., n

The following result is proposition 6 in G-H:

Proposition 4.3: If a
∗

SB
/∈ argmin

a∈A
g(a) and if v′′ < 0, then µj > 0 for some

j with g(aj) ≤ g(a∗

SB).

Proof: Assume not, i.e., the agent strictly prefers a∗SB to all aj which satisfy

g(aj) ≤ g(a∗SB). Define the set

A′ = A\{aj : aj �= a∗SB and g(aj) ≤ g(a∗SB)} ,

and solve the program for a ∈ A′. Since none of the elements in A\A′

were chosen when we solved for a ∈ A,we must still get a∗SB as the

solution when a ∈ A′. But observe that now a∗SB ∈ argmin
a∈A′

g(a), which

implies that I1 = I2 = · · · = I
n
at the solution (full insurance). But

this is the case for the FB solution, which contradicts proposition 4.2
above. Q.E.D.

This proposition implies that the agent will be indifferent between choos-
ing a∗ and choosing some aj such that g(aj) ≤ g(a∗SB). That is, will be
indifferent between working “optimally” and working “less”, if higher costs
of effort are associated with higher levels of effort. Thus, the main point of
Proposition is that we must have some “downward” binding incentive con-
straints.

1. The proof depends on the finiteness of A. In the infinite case this result
holds only locally.

2. This result does not rule out some “upward” binding IC’s which

will be somewhat “problematic” as we will see shortly.

Recall that h′ > 0, and h′′ > 0. Thus, we have,
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Corollary 4.1: If µj > 0 for only one aj �= a∗
SB

then Ii > Ik if and only if
πi(a∗SB)

πi(aj)
>

πk(a
∗

SB
)

πk(aj)
. That is, I is monotonic in the likelihood ratio.

This follows from the fact that h′(·) is increasing (h′′ > 0) and from the
FOC:

h′(vi) = λ+ µj − µj
πi(aj)

πi(a∗SB)
. (5.3)

If
πi(a

∗

SB
)

πi(aj)
>

πk(a
∗

SB
)

πk(aj)
, then clearly

πi(aj)

πi(a
∗

SB
)
<

πk(aj)

πk(a
∗

SB
)
, which implies that for i,

the last term in (5.3) becomes less negative compared to k. This implies that
h′(vi) > h

′(vk), which implies that vi > vk (since h
′′
> 0.)

We can relate this result to an appealing property of the probability
distributions induced by the different actions as follows:

Definition 4.1: Assume that πi(a) > 0 for all i ∈ {1, ..., n} and for all
a ∈ A. (This was assumption 4.1 above.) Themonotone likelihood ratio
condition (MLRC) is satisfied if ∀ a, a′

∈ A such that g(a′) ≤ g(a), we

have
πi(a)
πi(a′)

is nondecreasing in i.

Corollary 4.2: Assume MLRC. Then, Ii+1 ≥ Ii ∀ i = 1, ..., n− 1 if either,

1. µj > 0 for only one aj �= a∗SB (⇒ g(aj) < g(a∗SB) from Proposition
4.3)

2. A = {aL, aH}, g(aL) < g(aH) and a∗SB = aH

Case (1) follows immediately from Corollary 4.1. Case (2) does as well
but it is worth mentioning since this is the “simple” 2-action case. We focus
on this kind of “monotonicity” since it seems realistic in the sense that higher
output leads to higher payments. We are therefore interested in exploring
under what assumptions this kind of result prevails.

1. The solution to the principal-agent problem seems to have a flavor of a
statistical-inference problem (the MLRC result). Note, however,
that this is not a statistical inference problem, but rather an equi-

librium model for which we found a subgame-perfect equilibrium.
In equilibrium the principal has correct beliefs as to what the agent
chooses and does not need to infer it from the outcome.
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2. MLRC⇒FOSD but FOSD�MLRC: Recall that the distribution
π(a∗) First Order Stochastically Dominates the distribution π(a)
if

k∑

i=1

πi(a) ≥
k∑

i=1

πi(a
∗) ∀ k = 1, ..., n

i.e., lower output is more likely under a than it is under a∗.(Don’t
go through the following in class.)

Claim: MLRC⇒FOSD. That is, πi(a
∗)

πi(a)
increases (weakly) in i im-

plies that

k∑

i=1

πi(a) ≥
k∑

i=1

πi(a
∗) ∀ k = 1, ..., n

Proof: (I) we can’t have πi(a∗)
πi(a)

> 1 ∀ i. To see this, assume in

negation that
πi(a

∗)
πi(a)

> 1 ∀ i. ⇒

1 =
∑

πi(a
∗) =
∑ πi(a

∗)

πi(a)
·πi(a) >

∑
πi(a) = 1 a contradiction.

(II) Let k∗ = max{i = 1, ..., n | πi(a
∗)

πi(a)
≤ 1}. Define

ϕ
k
=




0 for k = 0
k∑

i=1

πi(a)−
k∑

i=1

πi(a
∗) for k = 1, ..., n

note that ϕ0 = ϕ
n
= 0, for all k ≤ k∗ ϕk is increasing in k,

and for all k ≥ k∗ ϕ
k
is decreasing in k.⇒

k∑

i=1

πi(a)−
k∑

i=1

πi(a∗)

≥ 0∀k = 1, ..., n. Q.E.D.

Claim: FOSD �MLRC.

Example: 3 outcomes: q1, q2, q3, two actions: a, a
∗

, with proba-

bilities
π1(a) = 0.4 π1(a∗) = 0.2
π2(a) = 0.4 π2(a∗) = 0.6
π3(a) = 0.2 π3(a

∗) = 0.2

Figure Here
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π(a∗) FOSD’s π(a) by taking some probability from q1 to q2

without changing the probability of q3. However, MLRC is
violated:

π1(a
∗)

π1(a)
=

1

2
<

π2(a
∗)

π2(a)
=

3

2
>

π3(a
∗)

π3(a)
= 1

(Again, this follows the intuition of an inference problem -
trying to verify that a∗ was chosen is by identifying which
outcome has a higher likelihood ratio.)

3. If µj > 0 for more than one j then MLRC is not enough for
monotonicity. In this case the IC’s can bind in different direc-
tions and this causes “trouble” in the analysis. G-H use the Span-
ning Condition as a sufficient condition for monotonicity (see G-H
proposition 7.)

4. Robustness of Monotonicity: Without MLRC or the Spanning
condition, G-H are still are able to show that some monotonicity
exists:

Proposition 5 (G-H): In the SB solution without MLRC and
without the Spanning condition, when the SB solution is worse
than the FB, then:

(i) ∃ i, 1 ≤ i < n such that Ii+1 > Ii ,

(ii) ∃ j, 1 ≤ j < n s.t. qj − Ij < qj+1 − Ij+1

Idea: (i) I is monotonic somewhere (that is, we can’t have “per-
verse” incentive schemes.) (ii) “I ′(·) < 1” somewhere: There
is some increase in output that induces an increase in the prin-
cipal’s share (again, can’t have “perverse” profit sharing).

5. Enriching the agent’s action space restricts the set of incentive

schemes:

(I) First, allowing for free disposal: implies that the slope of the

incentive scheme must be non-negative. That is, if the agent

can “destroy” output q, then we must have I ′(·) ≥ 1. This
implies monotonicity.

(II) Second, allowing the agent to borrow q with no restrictions
(from a third party, say a bank) implies that I ′(·) ≤ 1 (or
else, the agent will borrow, present a higher output to the
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principal, get more than his loan and repay the loan at a
profit, assuming negligible interest rates for very short loans.)
Therefore, the principal’s share must increase in i.

So, in remark 3 we saw that I
′(·) ≥ 0, and I ′(·) ≤ 1 must hold

somewhere, and with a realistic enrichment of the agent’s ac-

tion space we get these conditions holding everywhere.

6. Random incentive schemes don’t help. This is straightforward: If

Ĩi is the random income that the agent faces after qi is realized,

define ṽi = v(Ĩi) and vi = Eṽi so that I i = h(vi) is the certainty

equivalent of Ĩi. Now have the principal offer {I1, ..., In} instead
of {Ĩ1, ..., Ĩn}. This contract has no effect on (IC) or (IR), and
since Ii = h(vi) < Eh(ṽi) = EĨi , then the principal implements
the same action at a lower cost.

5.4 The Continuous Model

Let the utilities be specified as before, but now assume that a ∈ [a, a] is a
continuous, one-dimensional effort choice, and assume that q is continuous
with density f(q|a). (That is, the density function is conditional on the choice
of a.) The principal’s problem is now:




max
a,I(·)

∫

q

[q − I(q)]f(q|a)dq

s.t.

∫

q

v(I(q))f(q, a)dq − g(a) ≥ u (IR)

a ∈ argmax



∫

q

v(I(q))f (q, a′)dq − g(a′), a′
∈ A


 (IC)

This is the general (and correct) way of writing the problem. However,
this is not a form that we can do much with. As we will see, there is a
simple way of reducing this problem to a “manageable” program, but this
will require some extra assumptions for the solution to be correct. We begin
by analyzing the first-best benchmark.
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5.4.1 First Best Benchmark: Verifiable Actions

As before, in this case we only have (IR), which will bind at a solution, so
the Lagrangian is,

L =

∫

q

[q − I(q) + λv(I(q))]f(q|a)dq − λg(a) − λu

Assuming interior solution, the (point-wise) FOC with respect to I(·) yields,

1

v′(I(q))
= λ ∀ q. (5.4)

Denote by f
a
≡

∂f(q|a)
∂a

, then the FOC with respect to a yields,

∫

q

[q − I(q) + λv(I(q))]f
a
(q|a)dq = λg′(a) (5.5)

and the (IR) constraint will bind (the usual argument.)

1. The first FOC with respect to. I(·) is known as the Borch rule where
optimal risk sharing occurs. If the principal were not risk neutral
but would rather have some risk averse utility function u(·), then
the numerator of the LHS of the FOC (5.4) above would be u′(q−
I(q)].

2. Notice that the Borch rule is satisfied for all q and not on average
since this is what risk sharing is all about.

5.4.2 Second Best: non-observable action

The First Order Approach:

In the hidden information framework we saw that under some conditions we
can replace global incentive compatibility with local incentive compatibility.
The question is, can we restrict attention to local incentive compatibility in
the moral hazard framework?

This is known as the first order approach, an approach that was popular
in the 70’s until Mirrlees (1975) showed that it is flawed, unless we impose ad-
ditional restrictions on f(·|·). The first order approach simplifies the problem
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by replacing (IC) above with the agent’s FOC of his optimization problem,
that is, of choosing his optimal action a ∈ A. The agents FOC condition is,

∫

q

v(I(q))fa(q|a)dq − g′(a) = 0 ((ICF ))

We proceed to solve the principal’s problem subject to (ICF ) and (IR),
and later we will check to see if the agents SOC is satisfied, that is, if

∫

q

v(I(q))faa(q|a)dq − g′′(a) ≤ 0 .

Also, we will have to check for global IC, a condition for which the FOC and

SOC of the agent are neither necessary nor sufficient.

The Lagrangian of the principal’s problem is,

L =

∫

q

[q − I(q)]f(q|a)dq + λ

[∫
v(I(q))f (q|a)dq − g(a)− u

]

+µ

[∫
v(I(q))fa(q|a)dq − g ′(a)

]

and maximizing with respect to I(·) point-wise yields the FOC,

1

v′(I(q))
= λ+ µ

fa(q|a)

f (q|a)
a.e. (5.6)

Notice that this looks very similar to the FOC for the case of A being
finite, with only one (downward) binding IC. (This is also like the 2-action
case with a∗

SB
= aH.) In the previous formulation we had h

′(·) = 1

v′(·)
, and fa

f

is “similar” to the continuous version of the likelihood ratio for small changes

in a, which is
f(q|a+δ)
f(q|a)

. This can be seen as follows: Notice that
f(q|a+δ)
f(q|a)

− 1 is

a monotonic transformation of
f(q|a+δ)
f(q|a)

, and dividing this by δ is yet another

monotonic transformation, which then yields,

lim
δ→0

f(q|a+ δ)− f(q|a)

δf(q|a)
=

f
a
(q|a)

f(q|a)
.

Definition 4.2: f(q|a) satisfies MLRC if
fa(q|a)
f(q|a)

increases in q.
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Proposition 4.4: Assume that the first order approach is valid, that MLRC

is satisfied, and that µ > 0. Then I ′(q) ≥ 0.

Proof: Follows directly from the FOC (??) that we derived above and from
v′′ < 0: As q increases, µfa

f
increases, ⇒ 1

v′
increases, ⇒ v

′ decreases,

⇒ I(q) increases. Q.E.D.

Therefore, in addition to assuming MLRC, and that the first order ap-
proach is valid, we need to ask ourselves when is µ > 0 guaranteed? This is
answer is that if the first order approach is valid, then we must have µ > 0.
This is demonstrated in the following proposition (Holmstrom (1979) propo-
sition 1):

Proposition 4.5: If the first order approach is valid, then at the optimum,
µ > 0.

Proof: (i) Assume in negation that µ < 0. If the first order approach is
valid, then from the FOC (??) above, we get the solution I∗(q) which

is decreasing in fa

f
. Define ̂I = I(q) for those q which satisfy

fa(q|a)
f(q|a)

= 0.

That is, since I is a function of q, and given a each q determines
fa(q|a)
f(q|a)

,

then we can think of I as a function of
fa(q|a)
f(q|a)

, s shown in the following

figure:

Figure Here

Now consider the first term of the agent’s FOC (ICF ) above:

∫

q

v(I(q))fa(q|a)dq

=

∫

{q:fa≥0}

v(I(q))fa(q|a)dq +

∫

{q: fa<0}

v(I(q))fa(q|a)dq

<

∫

{q|fa≥0}

v(Î)fa(q|a)dq +

∫

{q:fa<0}

v(Î)fa(q|a)dq

= v(Î)

∫

q

fa(q|a)dq

= 0
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(The last equality follows from
∫
q

f(q|a)dq = 1 ∀ a.) But this contra-

dicts ∫

q

v(I(q))fa(q|a)dq = g ′(a) > 0.

(ii) Assume in negation that µ = 0. From the FOC (??) above we get,

1

v′(I(q))
= λ ∀ q ,

which implies that the agent is not exposed to risk. This in turn implies
that the agent chooses his action to minimize his cost g(a), which is
generally not the solution to the principal’s program. Q.E.D.

Caveat: It turns out that we could have µ = 0 and the FB is almost
achieved. The following example is due to Mirrlees (1974):

Example 4.1: Assume that output is distributed according to q = a + ε,

where ε ∼ N(0, σ2). That is, for two distinct actions a1 < a2, we get

the distributions of q to “shift” as shown in the following figure:

Figure Here

Assume also that a ∈ [a, a], and that the agents utility is given by

U (I, a) = �nI − a .

This looks like a “well behaved” problem but it turns out that the

principal can achieve profits that are arbitrarily close to the FB profits:

Let a∗
FB

∈ (a, a), and calculated I such that

�nI − a∗
FB

= u.

Set q to be “very” negative, and let the incentive scheme be

I(q) =

{
I > q

δ ≤ q

where δ is “very” small. Mirrlees showed that

lim
q→−∞

F (q) = lim
q→−∞

Pr{q < q} = 0,
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but that

lim
q→−∞

Fa(q) = lim
q→−∞

d

da
(Pr{q < q}) �= 0,

which implies that the agent will not “slack,” his expected utility is
close to u, and he is almost not exposed to risk (To get (IR) satisfied,
we need to add ε to I , which measures the departure from FB costs
to the principal.) This example is a continuous approximation of the
“shifting support” discrete case.

1. Again, this looks like a statistical inference problem but it is not.
(Notice that fa

a
is the derivative of the log-likelihood function,

�nf(q, a), with respect to a. This turns out to be the gradient for
the Maximum Likelihood Estimator of a given q, which is the best
way to infer a from the “data” q, if this were a statistical inference
problem.)

2. Holmstrom (1979, section 6) shows that this approach is valid
when the agent has private information (i.e., a type) as in the
hidden-informationmodels. The wage schedule will then be I(q, θ),
where θ ∈ Θ is the agent’s type. Now the multiplier will be µ(θ̂)
and it may be negative at a solution.

3. Intuitively we may think that a∗
SB

< a∗
FB

. This is not a generic

property.

Validity of the First Order Approach

Mirrlees (1974) observed that the solution to the “Relaxed program,” i.e.,
using the first order approach, may not be the true SB solution to the correct
unrelaxed program. The problem is more serious than the standard one, in
which case the FOC’s (of the principal’s program, not of the agent’s program)
being necessary but not sufficient. It turns out that the first order approach
suffers from a much deeper problem; it may be the case that when the first
order approach is used, then the principal’s FOC is not only insufficient, but
it may not be necessary.

This can be seen using the following graphical interpretation of incentive
schemes.

2 figures here
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Given I(·), the agent maximizes

EU (a|I) =

∫

q

v(I(q))f(q|a)dq − g(a) .

Then, using the first order approach, we maximize the principal’s profits

subject to the constraint,

dEU(a|I(·))

da
= 0 ,

that is, given an incentive scheme I(·), the agent’s FOC determines his choice

of a. But notice that EU(a|I(·)) need not be concave in a, which implies that
there may be more than one local maximizer to the agent’s problem (we
ignore the problem of no solutions.) To see the problem, imagine that we
can “order” the space of incentive schemes I(·) using the ordering “<”as
follows: Consider a scheme Ĩ such that for all schemes I < Ĩ, there is only
one local maximizer for Eu(a|I). Also consider a scheme Î such that for all
schemes I > Î there is only one local maximizer. Assume that Ĩ and Î have
one inflection point, (a point which is not a local maximizer or minimizer, but
has the FOC of the agent satisfied,) so that all schemes I such that Ĩ < I < Î

have two local maximizers, and one local minimizer. In particular, consider
some scheme I(·), Î(·) < I(·) < I , such that the agent is indifferent between
the two local maximizers a0 and a1, but the principal prefers a1. Then, it may
be optimal for principal to move to 〈I∗(·), a∗

1
〉 at which both the principal’s

and agent’s FOC’s are satisfied. But under I
∗(·), the action a∗

1
is a local

maximizer, while a
∗

0
is the global maximizer, in which case 〈I∗(·), a∗

1
〉 is not

implementable. When we solve the true program we maximize the principal’s

profits subject to the agents true choices, so given the graphical description,〈
I(·), a1

〉
is the solution to the true program, and at this point the principal’s

FOC in the reduced first order approach program is not even satisfied.

There are two ways of dealing with this problem. The first, is to ignore

it and check if the solution to the first order approach is a true solution to

the SB problem, and if it is not, then the true problem needs to be solved.

The second, is to find cases for which the first order approach is valid. We

will explore two such cases:

Case 1: LDFC: Let a ∈ A = [0, 1]. We say that the Linear Distribution

Function Condition (LDFC) is satisfied if there exist two density func-
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tions, fH(q), and fL(q), such that

f(q|a) = afH(q) + (1 − a)fL(q)

(this is also called the Spanning Condition - see G-H 1983.) In this
case

EU(a|I(·)) =

∫
v(I(q))f(q|a)dq − g(a)

= a

∫
v(I(q))fH(q)dq + (1 − a)

∫
v(I(q))fL(q)dq − g(a)

= ak1 + (1− a)k2 − g(a)

where k1 and k2 are constants (given the incentive scheme I(·),)and
since g′ > 0 and g′′ > 0, this is a well behaved concave function which
guarantees that there is no problem, and LDFC is a sufficient condition
for the first order approach to work.

Case 1: MLRC + CDFC:We say that the cumulative distribution func-
tion F (q|a) satisfies the Convexity of the Distribution Function Condi-
tion (CDFC) if it is convex in a; that is, for all λ ∈ [0, 1],

F (q|λa+ (1− λ)a′) ≤ λF (q|a) + (1 − λ)F (q|a′) .

Recall that MLRC implies that
fa(q|a)
f(q|a)

increases in q. Take the agent’s

expected utility and integrate it by parts:

EU(a|I(·)) =

q∫

q

v(I(q))f(q|a)dq

= [v(I(q)) · F (q|a)|q
q
−

q∫

q

v′(I(q))I ′(q)F (q|a)dq

= v(I(q))−

q∫

q

v′(I(q))I ′(q)F (q|a)dq − g(a)

where the last equality follows from F (q|a) = 1 and F (q|a) = 0 (note
that q or q need not be bounded.) Now consider the second derivative
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of EU (a|I(·)) with respect to a:

[EU(a|I(·))]′′ = −

q∫

q

v
′(I(q))Faa(q|a)dq − g′′(a) < 0

which follows from v
′ > 0, I ′(q) > 0 (which is implied by MLRC,)

F
aa

> 0 (which is implied by CDFC,) and finally g′′ > 0. Thus, MLRC
and CDFC together are sufficient for the first order approach to be
valid.

1. Recall that in our proof that MLRC ⇒ I ′(·) > 0 we used the fact
that µ > 0. But this fact is true only if the first order approach
is valid. Thus, the proof we have given (for MLRC and CDFC
together to be sufficient for the first order approach to be valid)
contains a “circular” mistake. See Rogerson (1985) for a complete
and correct proof.

2. Jewitt (1988) provides alternative sufficient conditions for valid-
ity of the first order approach which avoids CDFC (CDFC turns
out to be very restrictive), and puts conditions on v(·), namely

that − v
′′(·)

[v′(·)]3
is non-decreasing, that is, risk aversion does not de-

crease too quickly. CARA is an example that works with various

“commonly used” distributions.

5.5 The Value of Information: The Sufficient-

Statistic Result

Assume now that there are more signals above and beyond q. For example,
let y denote some other parameter of the project (say, some intermediate
measure of success) and assume that q and y are jointly distributed given
the agent’s action a.

Question: When should y be part of the contract in addition to q?

This question was answered independently by Holmstrom (1979) and
Shavel (1979). Rewrite the Lagrangian (assuming that the first order ap-
proach is valid) by taking (q, y) to be the two-dimensional signal, and I(q, y)
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is the incentive scheme:

L =

∫

y

∫

q

[q − I(q, y)]f (q, y|a)dqdy

+λ



∫
y

∫
q

v(I(q, y))f (q, y|a)dqdy − g(a)− u




+µ



∫
y

∫
q

v(I(q, y)fa(q, y|a)dqdy − g′(a)




and the FOC with respect to (I·, ·) is:

1

v′(I(q, y))
= λ+ µ

f
a
(q, y|a)

f(q, y|a)

Now, to answer the question, we can modify it and ask, “When can we

ignore y?” The answer is clearly that we can ignore y and have I(q) if and
only if the first order condition is independent of y, which gives us the same

FOC as in our analysis without the y signal. This will be satisfied if
fa(q,y|a)
f(q,y|a)

is independent of y.

Definition 4.3: q is a Sufficient Statistic for (q , y) with respect to a ∈ A if
and only if the conditional density of (q, y) is multiplicative separable
in y and a:

f (q, y|a) = g(q, y) · h(q|a) .

We say that y is informative about a if q is not a sufficient statistic as
defined above.

This is a statistical property which says that when we want to make an
inference about the random variable. ã, if q is a sufficient statistic as above
then we can ignore y. (Again, remember that here a is known in equilibrium,
but we have the same flavor of a statistical inference problem.) We thus have
the following proposition:

Proposition 4.6: Assume that the first order approach is valid. y should

be included in the incentive scheme if and only if y is informative about

a.
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Consider the case where q is a sufficient statistic for (q, y) as defined

above. We can interpret this result as follows. Given a choice a ∈ A, we can
think of q being a r.v. whose distribution is dependent on a, and then, once q

is realized (but maybe not yet revealed,) then y is a r.v. whose distribution is
dependent on q. This can be depicted using the following “causality” diagram,

a
ε̃

→ q
η̃

→ y ,

that is, given a, some random shock ε̃ determines q, and given the realized
value of q, some random shock η̃, which is independent of a, determines y.
Thus, y is a noisier signal of a compared to q, or we say that y is a garbling

of q.

Corollary 4.3: If q is a sufficient statistic then, if the principal is restricted
to contract on one signal then I(q) is better than I(y) for the principal.

Corollary 4.4: Random compensation schemes are not optimal (for the sep-
arable utility case.)

The second corollary follows since a random incentive scheme ˜I(x) is a
payment based on a r.v. y which is independent of a, making q a sufficient
statistic. (If the agent’s utility isn’t separable in q and a, then the agent’s
risk attitude depends on a, and randomizations of the incentive scheme may
be beneficial for the principal.)

5.6 Incentives in Teams: Group Production

We now explore the situation in which several agents together produce some
output. The following model is based on section 2 in Holmstrom (1982a):

• Consider a group of n agents, each choosing an action ai ∈ Ai ⊂ �, for
i ∈ {1,2, ..., n}.

• Output is given by x(a1, a2, ..., an, ε) ∈ �, where ε is some random

noise. For now we will perform the analysis with no noise, that is, set

ε = 0. We assume that ∂x

∂ai

> 0 ∀i, and ∀ai, that is, output is increasing
in each agent’s action (effort.) Finally, assume that x(·) is concave so
that we can restrict attention to interior solutions.



CHAPTER 5. THE PRINCIPAL-AGENT MODEL 117

• Agent’s utilities are given by ui(mi, ai) = mi− gi(ai) where mi denotes

monetary income, and gi(ai) is the private cost of effort, with g′

i
> 0,

and g
′′

i
> 0. (Note that agents are risk neutral in money.) Let ui be

outside option (which determines each agent’s IR).

5.6.1 First Best: The Planner’s Problem

Assume that there are no incentive problems, and that a planner can force
agents to choose a particular action (so we are also ignoring IR constraints.)
The first best solution maximizes total surplus, and solves,

max

a1,...,an

x(a1, ..., an)−
n∑

i=1

gi(ai)

which yields the FOCs,

∂x(a)

∂ai

= g′

i
(ai) ∀ i = 1, ..., n . (5.7)

That is, the marginal benefit from agent i’s action equals the marginal private
cost of agent i.

5.6.2 Second Best: The “Partnership” Problem

Consider the partnership problem where the agents jointly own the output.

Assume that the actions are not contractible and the agents must resort to

an incentive scheme {si(x)}
n

i=1
under the restriction of a balanced budget

(“split-the-pie”) rule:
n∑

i=1

si(x) = x ∀x , (5.8)

and we also impose a “limited liability” restriction,

si(x) ≥ 0 ∀x . (5.9)

(We will also assume that the si(x) functions are differentiable in x. This is
not necessary and we will comment on this later.)

We solve the partnership problem using Nash Equilibrium (NE), and it
is easy to see that given an incentive scheme {si(x)}

n

i=1
,any NE must satisfy,

s
′

i
(x) ·

∂x

∂ai

= g′

i
(ai)
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Question: Can the Partnership achieve FB.?

For the partnership to achieve FB efficiency, we must find an incentive
scheme for which the NE coincides with the FB solution. That is, from the
FOC of the FB problem, (5.7) above, we must have s

′

i
(x) ≡ 1 ∀x, and ∀ i,

which implies that
n∑

i=1

s
′

i
(x) = n.

But from (5.8) we have
n∑

i=1

s
′

i
(x) = 1 ∀x ,

which implies that a budget balanced partnership cannot achieve FB effi-
ciency. The intuition is standard, and is related to the “Free riding” problem
common to such problems of externalities.

Question: How can we solve this? (in the deterministic case)

One solution is to violate the budget balanced constraint, (5.8) above, by
letting

∑
si(x) < x for some levels of output x.

Example 4.1 Consider the following incentive scheme:

si(x) =

{
s
∗

i
if x = x

∗

FB

0 if x �= x
∗

FB

where s
∗

i
is arbitrarily chosen to satisfy:

∑
n

i=1
s
∗

i
= x

∗

FB
, and s

∗

i
>

gi(a
∗

i
) ∀ i. (This can be done if we assume that ui = 0 ∀i .) It is easy

to see that this scheme will yield the FB as a NE for the case where
gi(0) = 0 ∀ i, x(0, ...,0) = 0, and

∑
n

i=1 g
′

i(0) <
∑n

i=1
∂x(0,...,0)

∂ai

. (these
are just Inada conditions that guarantee the solution.) �

1. One problem with the scheme above is that there are multiple NE.
For example, ai = 0 ∀ i is also a NE given the scheme above.

2. A second problem is that this scheme is not credible (or, more pre-
cisely, not renegotiation proof.) If one agent “slacks” and x < x

∗

is realized, then all agents have an incentive to renegotiate. That
is, in the scheme above,

∑
n

i=1
si < 0 is not ex-post efficient off the

equilibrium path. Thus, with renegotiation we cannot achieve FB

efficiency for partnerships.
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3. As mentioned above, we do not need si(x) to be differentiable in
x. See the appendix in Holmstrom 1982a. (That is, the inability
to achieve FB is more general.)

5.6.3 A solution: Budget-Breaker Principal

We now introduce a new, (n+1)th agent to the partnership who will play the
role of the “Budget-Breaker.” This is a theoretical foundation for the famous
paper by Alchian and Demsetz (1972). The idea in Alchian and Demsetz is
that if we introduce a monitor to the partnership problem, then this monitor
(or “principal”) will make sure that the agents do not free ride. The question
then is, who monitors the monitor? Alchian and Demsetz argue that if the
monitor has residual claims, then there will be no need to monitor him.
One should note, however, that there is no monitoring here in Holmstrom’s
model. This is just another case of an “unproductive” principal who helps
to solve the partnership problem.

Example 4.2: Consider a modification of Example 4.1 where we add a prin-
cipal (budget breaker), denoted by n + 1, and modify the incentive
scheme as follows:

si(x) =

{
s
∗

i
if x ≥ x

∗

FB

0 if x < x∗
FB

for i = 1, ..., n;

sn+1(x) =

{
x− x

∗

FB
if x ≥ x

∗

x if x < x
∗

In equilibrium,
n+1∑

i=1

si(x) = x
∗

FB
,

and sn+1(x∗

FB
) = 0.�

Add Uncertainty: ε �= 0

If agents are risk neutral, then it is easy to extend the previous analysis
to see that a partnership cannot achieve FB efficiency in a NE. (As before,
we will get under-provision of effort in any NE.) It turns out that adding
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a Budget-Breaker will help achieve FB efficiency as the following analysis

shows. Denoted the principal by n+ 1, and consider the incentive scheme,

si(x) = x− k ∀ i = 1, ..., n

sn+1(x) = nk − (n− 1)x

where k is chosen so that

(n− 1)

∫

x

xf(x, a∗
FB

)dx = nk ,

which guarantees that at the FB solution, the (n+1)th agent breaks even in

expectation. Under this scheme, each agent i = 1, ..., n solves,

max
ai

E[x(a1, ..., an)]− k − g(ai) ,

which yields the FOC,

∂Ex(a1, ..., an)

∂ai

= g′

i
(ai) ,

which is precisely the FB solution.

The intuition is simple: This is exactly like a Groves Mechanism. Each

agent captures the full extent of the externality since the principal “sells”

the entire firm to each agent for the price k.

1. If the principal is risk-averse we cannot achieve FB efficiency as demon-

strated above in the case with uncertainty. This follows since the

principal will be exposed to some risk, and since he breaks even

in the sense of expected utility then there is a reduction in total

expected social surplus.

2. A problem in this setup is collusion: Agent i can go to the princi-

pal and say: “If I choose a
∗

i
you get zero, so we can split x after I

choose ai = 0.” This is very different from the problem of renego-
tiation proofness in the partnership problem. For collusion to be
a problem we must have “secret” side-contracts between the prin-
cipal and some agent. These issues are dealt with in the collusion
literature.
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3. Legros-Matthew (1993) extended Holmstrom’s results, and they
established necessary and sufficient conditions for a Partnership
(with no budget-breaker) to achieve FB. Some interesting cases in
their analysis are:

Case 1: Ai finite and x(·) being a generic function. In this case
if only one agent deviates then it will be clear who it was,
so we can achieve FB without then problem of renegotiation.
For example, consider the incentive scheme (ignoring IR con-
straints,)

si(x) =




x

n
if x = x

∗

1

n−1
(F + x) if x �= x

∗ and j �= i deviated
−F if x �= x∗ and i deviated

(In fact, it is enough to know who didn’t deviate to do some-
thing similar.)

Case 2: Ai = [ai, ai] ⊂ � is compact, and a∗ ∈ (ai, ai) (i.e., an
interior FB solution). In this case we can have one agent, say
i, randomize between choosing a∗

i
with high probability and

some other action with low probability, and all other agents
will a∗j for sure. We can now achieve actions that are ar-
bitrarily close to the FB solution with appropriate schemes.
As Pr{ai = a∗i } → 1, we approach the FB solution. Note,
however, that there are two criticisms to this case: First, as
Pr{ai = a∗i } → 1, we need fines for “bad” outcomes that ap-
proach −∞ to support the FB choice of actions, and second,
do we really think that agents randomize?

5.6.4 Relative Performance Evaluations

This is the second part of Holmstrom (1982a). The model is setup as follows:

• Risk neutral principal

• n risk averse agents, each with utility over income/action as before,
ui(mi, ai) = ui(mi)− gi(ai), with u

′
> 0, u′′

< 0, g ′
> 0, and g

′′
> 0.

• y = (y1(a), y2(a), ..., ym(a)) is a vector of random variables (e.g., out-
puts, or other signals) which is dependent on the vector of actions,
a = (a1, a2, ..., an).
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• E(x|y, a) denotes the principal’s expected profit given the actions and
the signals. (Thus, we can think of y as signals which are interdepen-
dent through the ai’s and some noise, and x maybe part of y.)

• G(y, a) denotes the distribution of y as a function of a with g(y, a)
being the density.

The principal’s problem is therefore,




max
a,s1(y),...,sn(y)

∫

y

[
E(x|y, a)−

n∑

i=1

si(y)

]
dG(y, a)

s.t.

∫

y

ui(si(y))dG(y, a)− gi(ai) ≥ ui ∀ i (IR)

ai ∈ arg max
a′

i
∈Ai

∫

y

ui(si(y))dG(y, (a′

i
, a−i))− gi(a

′

i
) ∀ i (IC)

(Note that if x is part of y then E(x|y, a) ≡ x.)

Definition 4.4: A function Ti(y) is a sufficient statistic for y with respect

to ai if there exist functions hi(·) ≥ 0 and pi(·) ≥ 0 such that,

g(y, a) = hi(y, a−i)pi(Ti(y), a) ∀ (y, a) ∈ support(g(·, ·))

The vector T (y) = (T1(y), ..., Tn(y)) is sufficient for y with respect to a

if each Ti(y) is sufficient for y with respect to ai.

This is just an extended version of the sufficient statistic definition we

saw for the case of one agent. For example, if each Ti(y) is sufficient for y

with respect to ai, we can intuitively think of this situation as one where each

ai generates a random variable Ti(y), and y is just a garbling of the vector

of random variables, T (y) = (T1(y), ..., Tn(y)), or as the figure describes the

process,

a1
noise

→ T1(y)
...

...

an
noise

→ Tn(y)




noise

→ y
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Proposition 4.7: (Holmstrom, Theorem 5) Assume T (y) = (T1(y), ..., Tn(y))
is sufficient for y with respect to a. Then, given any collection of incen-
tive schemes {si(y)}

n

i=1
, there exists a set of schemes {s̃i(Ti(y))}

n

i=1
,

that weakly Pareto dominates {si(y)}
n

i=1

Proof: Let {si(y)}
n

i=1
implement the Nash equilibrium (a1, ..., an), and con-

sider changing i’s scheme from si(y) to s̃i(Ti) as defined by:

ui(s̃i(Ti)) ≡

∫

{y:Ti(y)=Ti}

ui(si(y))
1

pi(Ti, a)
· g(y, a)dy

=

∫

{y:Ti(y)=Ti}

ui(si(y))hi(y, a−i)dy

By definition, (ICi) and (IRi) are not changed since agent i’s expected

utility given his choice ai is unchanged. Also,

s̃i(Ti) ≤

∫

{y:Ti(y)=Ti

si(y) · hi(y, a−i)dy ,

because u′′ < 0, and Ti is constant whereas si(y) is random given Ti.

Integrating over Ti :
∫

y

s̃i(Ti(y))g(y, a)dy ≤

∫

y

si(y)g(y, a)dy .

This can be done for each i = 1, ..., n while setting the actions of j �= i

as given (to preserve the NE solution), and by offering {s̃i(Ti)}
n

i=1
the

principal will implement (a1, ..., an) at a (weakly) lower cost. Q.E.D.

The intuition is the same as for single agent in Holmstrom (1979): The
collection (T1, ..., Tn) gives better information than y. Thus we can think of
y as a garbling (or even a mean-preserving spread) of the vector T (y).

Yet again, this looks like a statistical inference problem, but it is not;
it is an equilibrium problem. It turns out that the “mechanics” of optimal
incentives look like the mechanics of optimal inference. This is like “reverse
engineering”; we use to the statistical inference properties that a would cause
on T (y), and use incentive based on these properties to make sure that the
agents will choose the “correct” a.
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Application: Yardstick Competition

We return to the simple case of x = y, so that the signal is profits, but

consider the restricted case in which:

x(a, θ) =
n∑

i=1

xi(ai, θi).

That is, total profits equal the sum of individual profits generated by each

agent individually, and each agent’s profits are a function of his effort and

some individual noise θi, where θi, θj may be correlated.

Proposition 4.8: If θi and θj are independent for all i �= j, and xi is in-

creasing in θi, then {si(xi)}
n

i=1 is the optimal form of the incentive

schemes.

Proof: Let fi(xi, ai) be the density of xi given ai. Then define:

g(x, a) =
n∏

j=i

fj(x1, a1) ,

pi(xi, a) = fi(xi, ai) ,

hi(x, a−i) =
∏

j �=i

fj(xj, aj) ,

and apply Proposition 4.7. Q.E.D.

Now consider a different scenario: Let xi = ai + εi + η, where

εi ∼ N(0,
1

τ i

) ∀ i = 1, ..., n

is an idiosyncratic noise that is independent across the agents, and

η ∼ N(0,
1

τ0
)

is some common shock. Therefore, we don’t have independence as in the
previous paragraph. (Note, we use the notion of precision, which is expressed

by the τ i’s. These are the inverse of variance, τ i ≡
1

σ
2

i

; the more precision a

signal has, the less is its variance.)
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Proposition 4.9: Let

αi =

τ i∑n

j=1
τ j

, ∀ i = 1, ..., n ,

x =

n∑

i=1

αixi

then, in this scenario, si(xi, x) is the optimal form of the incentive

scheme.

Proof: We prove this using the sufficient statistic result. Since xi = ai+η+εi

then εi = xi − ai − η, and we can write:

F (x̂1, ..., x̂n, a) =

k

∞∫

−∞




x̂1−a1−η∫

−∞

e
−

1

2
τ1ε

2

1dε1

︸ ︷︷ ︸
·

I1

x̂2−a2−η∫

−∞

e
−

1

2
τ2ε

2

2dε2...

︸ ︷︷ ︸

I2

· · ·

x̂n−an−η∫

−∞

e
1
1

2
τnε

2
ndεn

︸ ︷︷ ︸
In



e
−

1

2
τ0η

2

dη

each of the inner integrals, Ii, can be written as:

Ii =

x̂i∫

−∞

e
−

1

2
τ i(xi−ai−η)

2

dxi

To obtain f(x̂1, ..., x̂n, a) we need to partially differentiate F (·) with

respect to x̂i, for i = 1, ..., n sequentially, which yields:

f(x, a) =

∞∫

−∞

e
−

1

2
[
∑
n

j=1
τj(xj−aj−η)2+τ0η

2]dη
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Let τ
−i =

∑

j �=i

τ j and z−i =

∑

j �=i

τ j

τ
−i

(xj − aj) and note that:

n∑

j=1

τ j(xj − aj − η)2

=
∑

j �=i

τ j [

Aj

︷ ︸︸ ︷

(xj − aj − z
−i) +

B
︷ ︸︸ ︷

(z
−i − η)]2 + τ i(xi − ai − η)2

=
∑

j �=i

τ j(xj − aj − z−i)
2 +
∑

j �=i

τ j(z−i − η)2 + τ i(xi − ai − η)2 −

=0︷ ︸︸ ︷∑
j �=i

τ j2AjB

where the last term is equal to zero because B is independent of j so,∑

j �=i

τ j2AjB = 2B
∑

j �=i

τ jAj , and it is easy to check that
∑

j �=i

τ jAj = 0. So

we have,

f(x, a) =

∞∫

−∞

e

1

2
[
∑

j �=i

(xj−aj−z
−i)

2

· e

−

1

2
[
∑

j �=i

(z−i−η)
2+τ i(xi−ai−η)

2+τ0η
2]

dη

= e

1

2
[
∑

j �=i

(xj−aj−z−i)
2]

·

︸ ︷︷ ︸

h(x,a
−i)

∞∫

−∞

e

−
1

2
[
∑

j �=i

(z−i−η)
2+τ i(xi−ai−η)

2+τ0η
2]

dη

︸ ︷︷ ︸

p̂i(z−i,xi,ai,η)

Letting τ ≡

n∑

j=1

τ j , we can write,

z
−i =

1

τ
−i

∑

j �=i

τ jxj −

∑

j �=i

τ jaj

τ−j

=

τ

τ
−i · τ

[(
n∑

j=1

τ jxj

)
− τ ixi

]
−

∑
j �=i

τ jaj

τ−i

=

τ x− τ ixi

τ
−i

−

∑

j �=i

τ jaj

τ
−i

So we can rewrite p̂i(z−i, xi, ai, η) as pi(x, xi, a, η) and we can now apply

the sufficient statistic result from Proposition 4.7. Q.E.D.
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(Note: having the εi’s with mean is not crucial, we can have εi = µ
i
+ ε

′

i
,

where ε
′

i
∼ N(0, 1

τi

) which gives us any mean we wish.)
>From the two scenarios we saw, we can conclude that competition (via

rank-order tournaments, e.g., s(xi, x) as the incentive scheme) is not useful
per-se but only as a way of getting more information. With independent
shocks relative performance schedules only add noise and reduce the princi-
pal’s profits. Thus, if we believe that Mutual fund managers face some com-
mon shock as well as an idiosyncratic shock, then we should see “yardstick
competition.” In a firm, however, if two divisions have unrelated technol-
ogy (no common shock), then the division managers should not have relative
evaluation schemes.

1. There is a literature on tournaments, e.g., Lazear-Rosen (1981), which
showed that rank-order tournaments can increase effort [also, Green-
Stokey (1983), Nalebuff-Stiglitz (1983)]. However, from Holm-
strom we see that only under very restrictive conditions will rank-
order tournaments be optimal (for this, ordinal rankings need to
be a sufficient statistic.)

2. In all the multi-agent literature it is assumed that the princi-
pal chooses her “preferred” Nash Equilibrium if there are sev-
eral. Mookherjee RES 1984 demonstrated that there may be a
NE that is better for the agents. Consider the following exam-
ple: i ∈ {1, 2}, ai ∈ {aL, am, aH}, gi(aL) < gi(am) < gi(aH),
and xi = ai + η. (This is an “extreme” case of a common shock
with no individual shock.) Assume that (am, am) is FB optimal
choice for the principal. The principal can implement the FB with
a rank-order tournament:

si =

{
u
−1

i
(gi(am) + u) if xi ≥ xj

u−1i (gi(aL) + u− δ) if xi < xj

It is easy to see that (am, am) is a NE implemented at the FB cost
(agent’s IR is binding). Notice, however, that (aL, aL) is also a
NE, and the agents strictly prefer this because then,

ui = gi(am) + u− gi(aL) > u .

(We can overcome this problem if we can find two payments,
swin > stie, such that

gi(am)− gi(aL) ≤ u
−1

i
(swin)− u

−1

i
(stie) ≤ gi(aH)− g(am)
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and we can use the scheme swin > stie > slose.)

3. Ma (1988) suggested a way of getting around the multiple NE
problem: use an indirect mechanism and employ subgame-perfect-
implementation (can also use Nash implementation with integer-
games à la Maskin):

Stage 1 : players choose (a1, a2) which is observable to them

but not to the principal

Stage 2 : player 1 can “protest” (p) or “not protest” (np)

Stage 3 : xi’s realized, si’s payed to agents.

where,

si(x1, x2,np) =




u
−1

i
(gi(am) + u+ γ) if xi > xj

u
−1

i (gi(am) + u) if xi = xj

u
−1

i (gi(aL) + u− δ) if xi < xj

s1(x1, x2,p) = s1(x1, x2,np) +

>0 iff a2=aH

︷ ︸︸ ︷

α[x2 − E(x2|a2 = a
m
)](α small)

s2(x1, x2,p) = u−1
2

(g2(aL) + u− β), (β large)

So, player 1’s best response (BR) to a2 ∈ {aL, am} is “NP”, and
a1 = am would be the BR ex-ante. Look at Normal Form, and it
is easy to see that ((am, “NP”), am) is the unique NE (also SPE).

figure here

Note: It is important that (a1, a2) are observable by (at least)
agent 1. If not, we can’t use the standard implementation ap-
proach and can’t get FB (see Ma).
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5.7 Dynamic Models

5.7.1 Long-Term Agency Relationship

In the Adverse-Selection (hidden information) models we saw that long-term
commitment contracts will do better than short-term contracts (or Long-
Term renegotiable contracts).

Stylized facts: Sequences of short-term contracts are common, e.g.,
piece-rates for laborers and sales commissions for sales representatives. That
is, many schemes pay for per period performance.

Question: When will Short-Term contracts be as good as Long-Term?

This question is addressed by Fudenberg-Holmstrom-Milgrom (1990) (FHM
hereafter.) We will outline a simplified version of FHM. Consider a 2-period
relationship. In each period t ∈ {1, 2} we have the sequence of events as
described by the following time line:

Figure here

The technology is given by the following distributions: In period t, the
agent exerts effort (action) at, and the output, xt, is distributed according to
x1 ∼ F1(x1|a1), and x2 ∼ F2(x2|a1, a2, x1, σ1), where σ1 is a signal observed
by the agent. That is, second period technology can depend on all previous
variables.

1. No discounting (no interest on money)

2. Agent has all the bargaining power. (Note that this will cause our
program to look different with respect to individual rationality,
but the essence of the moral hazard problem is unchanged, and
we still need an incentive constraint for the agent. Now, however,
the individual rationality constraint will be for the principal.)

Given the dynamic nature of the problem, let a = (a1, a2(a1, σ1, x1)) be
an action plan for the agent that has his second period action dependent on
all first period observables. (These ae observables to him, not necessarily
to the principal.) Let c = (c1(σ1, x1), c2(a1, σ1, σ2, x1, x2)) be a (contingent)
consumption plan for the agent.

Assumption A1: xt and st are observable and verifiable (contractible)
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(This is also A1 in FHM.) Assumption A1 implies that a payment plan
(incentive scheme) will take the form s = (s1(x1), s2(x1, x2)).

We allow the agent’s utility function to take on the most general form,

U(a1, a2, c1, c2, σ1, σ2),

and the principal’s utility is given by (undiscounted) profits,

π = x1 − s1 + x2 − s2 .

A Long-Term-Contract (LTC) is a triplet, ∆ = (a, c, s), where (a, c) are
the agent’s “suggested” plans, and s is the payment plan. The agent’s ex-

pected utility, and the principal’s expected profits given a LTC ∆ are:

U(∆) = E[U(a, c, σ)|a]

π(∆) = E[x1 − s1(x1) + x2 − s2(x1, x2)|a]

Definition 4.5: We say that a LTC ∆ is:

1. Incentive Compatible (IC) if (a, c) ∈ argmax
â,ĉ

E[U(â, ĉ, σ)|â]

2. Efficient if it is (IC) and if there is no ∆̃ such that π(∆̃) ≥ π(∆)
and U(∆̃) ≥ U (∆) with at least one strict inequality.

3. Sequentially Incentive Compatible (SIC) if given any history of the
first period, the continuation of ∆ is IC in the second period.

4. Sequentially Efficient if it is (SIC), and, given any history of the
first period, the continuation of ∆ is efficient in the second period.

(Note: (3) and (4) in the definition above need to be formally defined
with continuation utilities and profits. This is done in FHM, but since the
idea is quite clear we will skip the formalities.)

We will now set up a series of assumptions that will guarantee that ST
contracts (to be defined) will do as well as LTC’s: (The numbering of the
assumptions are as in FHM).

Assumption A3: The agent and the principal have equal access to banks

between periods at the competitive market rate (δ = 1).
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Implication: the agent has a budget constraint:

c1 + c2 = s1(x1) + s2(x1, x2).

Assumption A4: At the beginning of each period t, there is common knowl-

edge of technology.

Implication: F (x2|a1, a2, x1, σ1) = F (x2|a2, x1), or, (x1, a2) is a sufficient

statistic for (x1, a2, a1, σ1) with respect to x2. That is, information provided

by x1 is sufficient to determine how a2 affects x2. A simple example of this

assumption is the common time-separable case: F2(x2|a2), which implies that

the periods are independent in technology.

Assumption A5: At the beginning of each period there is common knowl-

edge of the agent’s preferences over the continuation plans of any (a, c, s).

Implications:

1. U(a, c, σ) cannot depend on σ (that is, there is no hidden information,
or “types”, in period 2.)

2. The continuation plan at t = 2 cannot depend on a1.

3. The continuation plan at t = 2 cannot depend on c1, if c1 is not
observable to the principal.

For simplicity we will assume that the agents utility function is given by
(this satisfies A5):

U (·, ·) = v1(c1)− g1(a1) + v2(c2)− g2(a2)

with the standard signs of the derivatives, v
′

t
> 0, v

′′

t
< 0, g

′

t
> 0, and

g
′′

t
> 0. Thus, from now on we can ignore σ as if it did not exist (to satisfy

A4 and A5.)
The importance of A4 and A5 is that they guarantee no “adverse selec-

tion” at the negotiation stage in period t = 2. (That is, at the re-contracting
stage of any LTC.) We will later see examples of violations of these two
assumptions, and the problems that are caused by these violations.

Given any continuation of a SIC contract, let UPS(at, xt) denote the
utility possibility set given the history (at, xt). (For a0, x0 this is not history
dependent since there is no history before t = 1.) Let π = UPF (u|a1, x1)
denote the frontier of the UPS.
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Assumption A6: For every (at, xt), the function UPF (u|at, xt) is strictly
decreasing in u.

Implication: The full set of incentives can be provided by efficient con-
tracts (If the frontier were not strictly decreasing, we cannot keep the agent’s
utility fixed at u′ and move to an efficient point.)

2Figures here

We now turn to the analysis of LTC’s and STC’s.

Definition 4.6: We say that a LTC ∆ is optimal if it solves,



max
s,a,c

Ex1,x2
[v1(c1(x1))− g1(a1) + v2(c2(x1, x2))− g2(a2)|a]

s.t. (a, c) ∈ argmax
a1,a2,c1,c2

Ex1,x2
[v1(c1))− g1(a1) + v2(c2)− g2(a2)|a] (IC

A
)

s1(x1) + s2(x1, x2) = c1(x1) + c2(x1, x2) (BC
A
)

Ex1x2 [x1 − s1(x1) + x2 − s2(x1, x2)|a] = 0 (IR
P
)

Notes:

1. (IRP ) must bind because of A6 (downward sloping UPF)

2. A6 and (IRP ) binding imply that if the solution is optimal then it must
be efficient.

3. We restrict attention to choices as functions only of the xt’s, since we
ignore the σ’s to satisfy A4 and A5.

Short-Term Contracts

A sequence of short-term contracts (STC) will specify one contract, ∆1 =
(a1, c1(x1), s1(x1)), at t = 1, and given a realization of x1, the parties will

specify a second contract, ∆2 = (a2, c2(x2), s2(x2)), at t = 2.

Fact: Since ∆2 depends on the realization of x1, if the parties are rational,

and A4-A5 are satisfied, then parties can foresee the contract ∆2 for

every realization of x1.
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This fact is straightforward, and it implies that for convenience, we can

think of ∆ as a complete contingent plan, ∆ = (∆1,∆2), where,

∆1 = (a1, c1(x1), s1(x1)) ,

∆2 = (a2(x1), c2(x1, x2), s2(x1, x2)) .

Question: What is the difference between such a complete contingent plan
and a LTC?

The answer is that in a LTC, the agent can commit to∆2 ex-ante, whereas
with STC’s this is impossible. However, players can foresee ∆2 that will arise
in a sequence of STC’s.

To solve for the optimal sequence of STC’s we will work backward (i.e.,
use dynamic programming.) At t = 2, for every (x1, s1, c1) the agent finds

the optimal ∆∗

2
by solving:




max
{a2(x1),c2(x1,·)s2(x1,·)}

Ex2
[v2(c2(x1, x2))− g2(a2(x1))|a2(x1)]

s.t. a2(x1), c2(x1, ·) ∈ arg max
a2,c2

Ex2
[v2(c2)− g2(a2))|a2] (IC2

A
)

s1 + s2(x1, ·) = c1 + c2(x1, ·) (BC
A
)

Ex2[x2 − s2(x1, x2)|a2(x1)] = 0 (IR2

P
)

Since the agent has perfect foresight at date t = 1, then anticipating c2(x1, ·), a2(x1, ·)
correctly he finds the optimal ∆∗

1
by solving:




max

∆=(s,c,a)
E
x1,x2

[v1(c1(x1))− g1(a1) + v2(c2(x1, x2))− g2(a2(x1))|a]

s.t. (a1, c1(x1)) ∈ argmax
a1,c1

Ex1x2
[v1(c1)− g1(a1) + v2(c2(x1, x2))− g2(a2(x1))|a] (IC1

A
)

Ex1[x1 − s1(x1)|a1] = 0 (IR1

p
)

Notes:

1. The agent’s budget constraint, (BCA), is only relevant at t = 2.

2. (IR1

P
) depends only on x1, s1(x1), since perfect foresight implies that

E[π2] = 0. (This need not hold for LTC’s since the principal must break
even over the whole relationship, andmay have positive expected profits
in one period for some histories, and negative expected profits in the
other cases.)
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3. Expectations about ∆∗

2
are correct.

Proposition 4.10: (Theorem 2 in FHM) Under (A1) [verifiability], (A4)
and (A5) [common knowledge of technology and preferences] and (A6)
[decreasing UPF] any efficient LTC can be replaced by a sequentially

efficient LTCwhich provides the same initial expected utility and profit
levels.

Proof: Suppose ∆ is an efficient LTC that is not sequentially efficient.
⇒ ∃ x̂1 such that the continuation a2(x̂1), c2(x̂1, x2), s2(x̂1, x2) is not
efficient. ⇒ ∃ ∆′

2
(a different continuation contract) which Pareto dom-

inates ∆2 after x̂1. Now, (A6) ⇒ ∃ ∆′

2
that gives the same expected

continuation utility to the agent with a higher expected profit to the
principal.

Figure Here

Construct a new LTC ˜∆ s.t. ˜∆1 = ∆1, and,

∆̃2(x1) =

{
∆′

2
(x1) if x1 = x̂1

∆2(x1) if x1 �= x1

i.e., the same as ∆, but with continuation ∆′ after x̂1. ⇒ the agent’s
continuation utilities are unchanged, ⇒(ICA) is preserved, and this is
common knowledge from (A4) and (A5). The principal strictly prefers
the new continuation contract so (IRP ) is preserved since the principal
is ex-ante weakly better off. (If she were strictly better off then∆ could
not have been efficient.) So, ∆̃ is sequentially efficient and gives the
same U0, π0. Q.E.D.

Intuition: Just like complete Arrow-Debreu contingent markets.

Note: The reason the principal is only weakly better off (i.e., indifferent)
is that the efficient LTC can be not sequetially efficient only for zero-
probability histories. (e.g., continuous output space with a finite num-
ber of such histories, or histories that are off the equilibrium path.)

Question: What is the difference between an optimal sequentially efficient
LTC and a series of optimal STC’s?
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In the series of optimal STC’s the principal’s rents are zero in every period,

regardless of the history, whereas along the “play” of an optimal sequentially
efficient LTC the principal may have different expected continuation profits
for different histories at times t �= 1.

Definition 4.7: A sequentially efficient LTC which gives the principal zero

expected profits conditional on any history is called sequentially opti-

mal.

Observation: If ∆ is a sequentially optimal LTC, then its per-period con-
tinuation contracts constitute a sequence of optimal STC’s.

Proposition 4.11: (Theorem 3 in FHM) Under the assumptions of Propo-
sition 4.10, plus assumption A3 (equal access to banking,) then any
optimal LTC can be replaced by a sequence of optimal STC’s.

Proof: From Proposition 4.10 we know that there exists a sequentially effi-
cient LTC that replaces the optimal LTC, so we are left to construct
a sequentially efficient LTC with zero-expected profits for the princi-
pal at time 2, for any history of the first period. Given a sequentially
efficient contract ∆, define:

π2(x1) = Ex2
[x2 − s2(x1, x2)|a2(x2)]

and assume that for some histories π2(x1) �= 0 (if π2(x1) = 0 for all x1,

then we are done.) Using A3, we can define a new contract ̂∆, such
that

ŝ1(x1) = s1(x1)− π2(x1),

ŝ2(x1, x2) = s2(x1, x2) + π2(x1) ∀ (x1, x2) ,

and leave ct(·)’s and a2(·) unchanged. By construction we have the
following four conditions:

1. (BCA) is satisfied (both for the LTC ̂∆ at t = 1, and for the
resulting STC’s at t = 2.)

2. For all x1 :

Ex2
[x2 − ŝ2(x1, x2)|a2(x1)] = Ex2

[x2 − s1(x1, x2)− π2(x1)|a2(x1)]

= π2(x1)− π2(x1)

= 0.
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3. The agent’s incentives are unchanged since the ct(·)’s are un-
changed. (And, they need not be changed since (BCA) is sat-
isfied.)

4. ex ante we have,

Ex1 [x1 − ŝ1(x1)|a1] = Ex1
[x1 − s1(x1) + π2(x1)|a1]

= Ex1x2
[x1 − x1(x1) + x2 − s2(x1, x2)|a1, a2(x1)]

= 0

where the last equality follows from ∆ being an optimal sequen-
tially efficient LTC.

But notice that (1)-(4) above imply that ̂∆ is sequentially optimal. Q.E.D.

Violating the Assumptions:

Case 1: Consumption not observable. This violates A5, that is, there
is now no common knowledge of the agent’s preferences at t = 2. This
will cause a violation of Proposition 4.11, and an example is given in
FHM, example 2.

Case 2: Agent cannot access bank. This is the case in Rogerson (1985).
Restrict st ≡ ct, so that the agent cannot borrow or save. In this case

the agent would optimally like to “smooth” his consumption across

time, so the principal is performing two tasks: First, she is giving the

agent incentives in each period, and second, she is acting as a “bank”

to smooth the agent’s consumption. Rogerson looks at a stationary

model and shows that under these assumptions optimal LTC’s have

s2(x1, x2) and not s2(x2), that is, memory “matters”. The intuition

goes as follows: If for a larger x1 the principal wants to give larger com-

pensation, then both s1(x1) and s2(x1, ·) should rise. We need LTC’s

to commit to this incentives scheme, because with STC’s the principal

cannot commit to increase s2(·) when x1 is larger. Rogerson also looks

at consumption paths given different conditions on the agent’s utility

function.

Case 3: No common knowledge of tecnology. That is,

x2 ∼ F2(x2|x1, a1, a2)
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in which case the agent’s action in the first period affects the second

period’s technology. Consider the simple case where x1 = a2 ≡ 0, and

a1 ∈ {aL, aH} with g(aH) > g(aL).

Figure Here

Suppose that a1 = aH is the optimal second-best choice the principal
wants to implement, and at the time of negotiation 2 (or renegotiation,)
the principal does not observe a1. The optimal LTC is one in which
s(x2) has the agent exposed to some risk, so that he has incentives
to choose aH . Note, however, that the optimal sequence of STC’s is
as follows: At t = 1, s1 is a constant (there is nothing to condition
on). At t = 2, s2 must be a constant as well, which follows from the
fact that the effort was already taken, and efficiency dictates that the
principal should bear all the risk (ex-post efficient renegotiation.) This
implies that if renegotiation is possible after effort has been exerted, but
before outcome has been realized, then the only ex-post credible (RNP)
contract has s(x) being a constant, and no incentives are provided. This
is exactly what Fudenberg and Tirole (1990) analyze. The optimal LTC
of the standard second best scenario is not sequentially efficient, or, is
not RNP. This implies that with renegotiation we cannot have the agent
choosing aH with probability 1. The solution is as follows: The agent
chooses aH with probability pH < 1, and aL with probability 1 − pH.

At the renegotiation stage the principal plays the role of a monopolistic
insurer (à la Stiglitz), and a menu of contracts is offered so that it is
RNP ex-post (at the stage of negotiation 2 in the figure above). This
is demonstrated by the following figure:

Figure Here

Other Results on Renegotiation in Agency

Hermalin and Katz (1991) look at following case (and more...):

Figure Here

The optimal LTC without renegotiation is the standard second-best s(x).
Any sequence of STC’s has the same problem as Fudenberg and Tirole (1990).
Hermalin and Katz consider a combination of ex-ante LTC in which renegoti-
ation occurs on the equilibrium path. In the case where the agent’s action is
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observable and verifiable (in contrast to some signal, y, of the action a) then
FB is achieved with LTC and renegotiation. The procedure goes as follows:

1. At t = 0 the principal offers the agent a risky incentive scheme, s(x),
that implements a∗

FB
. That is, the solution to the first stage in the

Grossman-Hart decomposed process, which is not the SB standard con-

tract but rather the lowest cost contract to implement a∗
FB

.

2. Given any choice a ∈ A that the agent actually chose, at t = 2 the
principal offers the agent a constant ŝ that is the certainty-equivalent
of s(x). That is, she offers ŝ = E[v(s(x)|a], which implies that the
agent’s continuation utility is unchanged, so choosing a∗

FB
after t = 0

is still optimal, and there is no ex-post risk. Thus, the FB is achieved.

Hermalin and Katz (1991) also looks at a signal y �= a being observable
and not verifiable. If y is a sufficient statistic for x with respect to a, then
we can implement s(y) in the same fashion and improve upon s(x).

Question: If renegotiation outside the contract helps, does this mean that
the RNP principal is not applicable here?

The answer is no. We can think of renegotiation as a bargaining game
where the principal makes take-it-or-leave-it offers. Then, this process can
be written into the contract as follows: The principal offers s(x) and the
agent accepts/rejects, then the principal offers ŝ and agent accepts/rejects.
Thus, we put renegotiation into the contract. (Note that we can alternatively
havemessage-game that replicates the process of renegotiation: after s(x) has
been offered, and a has been chosen, both the principal and agent announce â,
and if their announcements coincide then ŝ is awarded. If the announcements
are different, both parties are penalized.)

Other papers: Ma (1991)

Figure Here

can get a1 = aH with probability 1, but this may not be optimal...

Segal-Tadelis (1996):
Figure Here
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σ1 is a signal that is always observed by agent, while the principal may
choose to observe it at no cost, or commit not to observe it. In the optimal
contract the principal may choose not to observe the signal even if x2 is not
a sufficient statistic. (Intuition: create endogenous asymmetric information
at the renegotiation stage.)

Matthews (1995): Looks at renegotiation where the agent has all the
bargaining power and the action is unobservable. Using a forward induction
argument (note that agent makes the renegotiation offers, and we are thus
in a signalling game) the unique RNP contract is one where the principal
“sells” the firm to the agent.

5.7.2 Agency with lots of repetition

One might expect that as a relationship is repeated more often, then there
is room to achieve efficiency. Indeed, Radner (1981) and Rubinstein & Yaari
( ....) show that if an agency relationship is repeated for a long time then
we can arbitrarily approach the FB as T → ∞. The idea goes as follows:
Consider the agent’s utility as:

U =

T∑

t=1

δt[v(st(x
t))− g(at)]

where xt
= (x1, x2, ..., xt), and assume that the model is stationary with i.i.d.

shocks (this is the formulation in Radner(1981)). Then, as T → ∞ and
δ → 1 the principal can use a “counting scheme,” i.e., count the outcomes
and pay “well” if the distribution over x is commensurate with a∗

FB
, and

punish the agent otherwise. (The intuition is indeed simple, but the proof is
quite complicated.)

1. From Rogerson (1985) we know that if the agent has access to a bank
(lending and borrowing) then the FB is attainable without a prin-
cipal; the agent can insure himself across time as follows: choose
a
∗

FB
in each period, consume x

∗ in each period, lend (or borrow if
negative) �t = xt − x

∗ in each period, and

lim
T→∞

�1 + �2 + ...+ �T

T
= 0 a.s.

(We need to assure no bankruptcy; Yaari (....) deals with this
issue.)
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2. We need to ask ourselves if this kind of repetition, and the under-
lying conditions constitute a leading case? How interesting is this
result (i.e., FB achieved with or without a principal.) The answer
seems to be that these conditions are rather hard to justify which
puts these results in some doubt.

5.7.3 Complex Environments and Simple Contracts

What have we learned so far from agency theory with moral hazard? We
can roughly summarize it in two points: First, agency trades off risk with
incentives. This is a “nice” result since it allows us to understand better what
these relationships entail in terms of these trade-offs.. Second, we learned
that the form of an optimal SB contract can be anything. For example, even
a simple real-world observation like monotonicity is far from general. This
lesson, that the optimal SB contract may look very strange, is less attractive
as a result given its real world implications. Furthermore, in a very simple
example which seems to be “well behaved”, Mirrlees has shown that there is
no SB solution (recall from Example 4.1 above.)

If we try and perform a reality check, it is quite clear that strange con-
tracts (like that in Mirrlees’s example) are not observed, whereas simple
linear contracts seem to be common, where the linearity is applied to some
aggregate measure of output. For example,

1. Piece rate per week (not per hour);

2. Sales commission per week/month/quarter;

3. Stocks or options with clauses like “can’t sell before date t”, which is
similar to holding some percentage of the firm’s value at date t.

Holmstrom and Milgrom (1987) (H-M hereafter) make the point that
“strange” and complicated contracts are due to the simplistic nature of the
models. In reality, things are much more complex, and the agent has room
for manipulation. Thus, we would like to have incentive schemes that are
robust to these complexities. As H-M show, it turns out that linear incentive
schemes with respect to aggregates will be optimal in a complex environment
that has some realistic flavors to it, and are robust to small changes in the
environment.
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Simplified version of Holmstrom and Milgrom (1987)

Consider a principal-agent relationship that lasts for T periods:

Figure Here

We make the following assumptions:

1. Let xt ∼ ft(xt|at), which implies common knowledge of technology.

2. At time t, the agent observes past outcomes (x1, ..., xt−1), which implies
that he can “adjust” effort at, so that the choice of effort is a history
dependent strategy:

a1, a2(x1), ..., at(x1, x2, ..., xt−1), aT (x1, ..., xT−1)

3. Assume zero interest rate (no discounting). This implies that the agent
cares only about total payment, s(x1, x2, ..., xT ), since he can consume
at the end of the relationship.

4. Utilities are given as follows: For the principal, profits (utility) are:

π =
T∑

t=1

xt − s(x1, ..., xT ) ,

and for the agent, utility is given by:

U = −e
−r[w+s−

T∑

t=1

c(at)]
,

where c(at) denotes the cost of effort level at,and w denotes the agent’s
initial wealth. (Note that this is a Constant Absolute Risk Aversion
(CARA) utility function, which implies that both preferences and and
the optimal compensation are independent of w. Therefore, w.l.o.g.
assume that w = 0.)

5. Agent has all the bargaining power. This is not how H-M ’87 proceed
(they have principal with all the bargaining power) but here we will
use the F-H-M ’90 results to simplify the analysis.

6. For simplicity, let xt ∈ {0, 1} for all t (e.g., “sale” or “no sale”).
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The following proposition is analogous to Theorem 5 in H-M.

Proposition 4.12: The optimal LTC takes on the form:

s(x1, ..., xT ) = α

T∑

t=1

xt + β.

i.e., compensation is linear in aggregate output.

Proof: The assumptions of F-H-M (1990) are satisfied: (A1) x’s are verifi-
able; (A3) Same access to bank with 0 interest rate; (A4) xt ∼ ft(xt|at)
implies common knowledge of technology; (A5) in each period t the
agent’s utility is:

−e

−r[−
t−1∑

τ=1

c(aτ )]
· e

−r[s−
T∑

τ=t

c(aτ)]
,

where the first term is a constant that is unknown to the principal, and
the second term is known to the principal. Thus, the agent’s preferences
are common knowledge; (A6) we clearly have a downward sloping UPF.
Now, using Proposition 4.11 (Theorem 3 in F-H-M), an optimal LTC
can be implemented with a sequence of STC’s:

{s1(x1), s2(x1, x2), ..., sT (x1, ..., xT )} ,

and we can just define s ≡
T∑

t=1

st(·). To find the optimal sequence of

STC’s we solve backward: At t = T :

U = −e

−r

[
T−1∑
t=1

(st(·)−ct(at))

]
︸ ︷︷ ︸

constant

· e
−r[sT (·)−cT (aT )]

Thus, what happened in periods t = 1, ..., T − 1 is irrelevant, and the

agent solves the one-shot program:




max
sT (·),aT

ExT
[−e

−r[sT (·)−c(aT )]|aT ]

s.t. aT ∈ argmax
a

ExT [−e
−r(sT (·)−c(a)]|a]

E[xT − sT (·)|aT ] = 0
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and the solution is: 〈a∗, s∗(xT = 0), s∗(xT = 1)〉 . Now move back to

period T − 1, in which the agent’s utility is given by

U = −e
−r[

T−2∑

t=1

(st−c(at))]
· e
−r[sT−1−c(aT−1)]

· e
−r[sT−c(aT )]

.

When we solve the program the first term is constant, and being

forward-looking the agent maximizes:

max

sT−1,aT−1

ExT−1,xT
[−e

−r[sT−1−c(aT−1)]
· e
−r[s∗(xT )−c(a∗)]|aT−1, aT = a∗] .

But since period T does not depend on the history (due to the sequence
of STC’s), the objective function can be rewritten as:

max
sT−1,aT−1

ExT−1
[−e

−r[sT−1−c(aT−1)]|aT−1] · ExT
[e−r[s∗(xT )−c(a∗)]|a∗]

︸ ︷︷ ︸

constant

,

and again the agent solves a one-shot program, which is the same as

for T . Thus, aT−1 = a
∗, sT−1 = s∗(xT−1). This procedure repeats itself

for all t and we get:

s(x1, ..., xT ) =
T∑

t=1

st(xt)

= #{t : xt = 1} · s∗(1) + #{t : xt = 0} · s∗(0)

= (
T∑

t=1

xt) · s
∗(1) + (T −

T∑

t=1

xt)s
∗(0)

= [s∗(1)− s
∗(0)]︸ ︷︷ ︸

α

T∑
t=1

xt + Ts∗(0)
︸ ︷︷ ︸

β

Q.E.D.

Intuition of Linearity: Due to the CARA utility function of the agent, and
the separability, each period is like the “one shot” single period problem and
we have an optimal “slope” of the one-shot incentive scheme, s∗(1) − s

∗(0),
which is constant and will give the agent incentives to choose a

∗ which is
time/history independent.
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1. It turns out that the principal need not observe (x1, ..., xT ), but it is

enough for her to observe
T∑

t=1

xt (and of course, this needs to be

verifiable). In Holmstrom-Milgrom this is the assumption. (That
is, the principal only observes aggregates, and these are verifiable.)
Two common examples are first, a Salesman, whose compensa-
tion only depends on total sales (not when they occurred over the
measurement period), and second, a Laborer, whose piece-rate
depends on the number of items produced per day/week, etc. (not
on when they were produced during the time period.)

2. With a non-linear scheme the following will occur. Since the agent
observes the past performance (and the principal does not) then
he can “calibrate” his next effort level:

Figure Here

If the past performance up to a certain time is relatively low, then
the agent will work harder to compensate for that past. Similarly,
if output is relatively high, then the agent will work less. However,
this is not optimal since a∗ in each period is optimal. (This is true
assuming a concave s(·) as in the figure above. If it were convex
then the reverse will happen.)

Question: What happens of we fix time, and let T →∞ ?

The idea goes as follows: Take a fixed time horizon and increase the num-
ber of periods while making the length of each period shorter, thus keeping
total time fixed.

Fact: From the Central Limit Theorem, the average of many independent
random variables will be normally distributed.

Notice, that by doing the above exercise, we are practically taking the
average of more and more i.i.d. random variables. (This intuitively follows
from the fact that each carries less “weight” since the time period for each
is shorter.)

Question: If for the situation described above, lim
T→∞

T∑

t=1

xt is normally dis-

tributed, are we in the “Mirrlees example” case? i.e., can we approxi-

mate the FB?
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The answer is “yes” if the agent cannot observe x1, ..., xT but only
∑

xt.

If, however, the agent observes all the xt’s the theorem we proved implies a
linear scheme and the answer is “no.” Thus, we can conclude that letting
the agent do “more” (namely, observe outcome and calibrate effort) gives us
a simple scheme, and a well defined SB solution.

The Brownian-Motion Approximation

Consider our simple model, xt ∈ {0, 1}, and at ∈ A affects the probability

distribution of xt. Then, fix the time length of the relationship to the interval
[0,1], and let T → ∞, with the length of each period, 1

T
, going to zero. In

the limit we will get a Brownian Motion (one dimensional) {x(t), t ∈ [0,1]},
with

dx(t) = µ(t)dt+ σdB(t) ,

where µ(t) is the drift rate, σ is the standard deviation, and B(t) is the
standard Brownian motion (zero drift, unit variance) and x(t) is the “sum”
of all the changes up until time t.

Fact: If µ(t) = µ for all t, then x(1) ∼ N (µ, σ2).

That is, if the drift is constant and equal to µ, then the value of x when
t = 1 will be normally distributed with mean µ and variance σ2. So, we
can think of this as the continuous approximation of our earlier exercise,
and if agent does not observe x(t), for all t < 1 then we are “stuck” in a
Mirrlees case of no SB solution. But, if x(t) is observed by the agent then
the Holmstrom-Milgrom results hold, and we get a nice linear scheme in x(1),
since this normal distribution is the result of a dynamic stochastic process.
(The Mirrlees problem arises only in the static contract.)

Analysis of the Brownian-Motion Approximation

We assume that the Brownian Motion model is described as follows:

• The agent controls µ (the drift) by choice of a ∈ A where “a” stands for
the constant choice over the time length [0,1] at total cost c(a). This
implies that x(1) ∼ N (a, σ2). From now on we will consider x ≡ x(1).

• The principal offers the contracts (In this case the agent has CARA
utility, so that having the principal get all the surplus does not change
the optimal SB choice a

∗; only the division of surplus is changed.)
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First Best: The agent will be fully insured, and the principal wants to
maximize the mean of x subject to the agent’s (IR). Assuming that u = 0

for the agent, the objective function is,

max
a

a− c(a)

and the FOC is, c′(a) = 1.
Second Best: We know from our previous analysis that the optimal

scheme is a linear scheme: s(x) = αx + β, where x ∼ N(a,σ2). The agent

maximizes:

max
a

Ex[e−r(αx+β−c(a))|a]

We can simplify this by having the agent maximize his certainty equivalent

instead of maximizing expected utility, that is, maximize

CE = αa+ β
︸ ︷︷ ︸

mean

−

r

2
α
2
σ
2

︸ ︷︷ ︸

risk permium

− c(a)

(Note: CARA ⇒ the risk premium is independent of the agent’s income.)
Assume that c

′(·) > 0,and c′′(·) > 0, so that the first-order approach is
valid, and since the agent maximizes,

max
a

αa+ β −

r

2
α2σ2

− c(a) ,

and the FOC is
c′(a) = α .

The principal will set the agent’s (IR) to bind, i.e., CE = 0:

αa+ β −
r

2
α2σ2

− c(a) = 0

or,

β = c(a) +
r

2
α2σ2

− αa .

We can now substitute for β into the incentive scheme,

s(x) = αx+ β

= αx+ c(a) +
r

2
α2σ2

− αa,
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and the principal maximizes her expected profits, E[x − s(x)|a], subject to
the agent’s (IC). Since E[x] = a, the principal’s problem can be written as{

max
a,α

a− c(a)− r

2
α
2
σ
2

s.t. c
′(a) = α

By substituting c
′(a) for α in the objective function, the principals necessary

(but not sufficient) FOC with respect to a becomes,

1 = c
′(a) + rc

′(a) · c
′′(a)σ2

Let’s assume that the SOC is satisfied, and we have a unique maximizer, in
which case we are done.

Example 4.2: A simple case is when c(a) = k

2
a2, and the principal’s FOC

is

ka+ rk2aσ2 = 1

which yields,

a =
1

k + rk2σ2
; α =

1

1 + rkσ2

and we get a nice closed form solution with “realistic” results as follows:

1. c′(a) < 1⇒ less effort in SB relative to FB.

2. 0 < α < 1⇒ a sharing rule that “makes sense.”

3. Appealing comparative statics: α ↓ and a ↓ if either: (i) r ↑ (more
risk aversion) or, (ii) σ2 ↑ (more exogenous variance) That is, more
risk implies less effort and a “flatter” (more insured) scheme.

Remark: A nice feature of the model is that if agent owns the firm he will
choose a = a

∗

FB
but he will be exposed to risk (follows from CARA).

1. Complicated environment ⇒ simple optimal contracts

2. Nice tractable model, generalizes easily to x = (x1, ..., xn) and

a = (a1, ..., an) vectors.



CHAPTER 5. THE PRINCIPAL-AGENT MODEL 148

5.8 Nonverifiable Performance

5.8.1 Relational Contracts (Levin)

5.8.2 Market Pressure (Holmstrom)

5.9 Multitask Model

Holmstrom-Milgrom (1991) analyze a model in which the agent has multiple

tasks, for example, he produces some output using a machine, and at the
same time needs to care for the machine’s long-term quality. Using their
model, H-M ’91address the following questions:

1. Why are many incentive schemes “low powered?” (i.e., “flat” wages
that do not depend on some measure of output.)

2. Why are certain verifiable signals left out of the contract? (assuming
that the ones left in are not sufficient statistics.)

3. Should tasks be performed “in house” or rather purchased through the
market?

Using the multitask model, H-M ’91 show that incentive schemes not
only create risk and incentives, but also allocate the agent’s efforts among
the various tasks he performs.

5.9.1 The Basic Model

• A risk averse agent chooses an effort vector t = (t1, ..., tn) ≥ 0 at cost
c(t) ≥ 0, where c(y) is strictly convex.

• Expected gross benefits to principal is B(t). (The principal is risk
neutral.)

• The agent’s effort t also generates a vector of information signals: x ∈
�k given by,

x = µ(t) + ε ,

where, µ : �n

+ → �k is concave, and the noise is multi-normal, ε ∼
N(0,Σ), 0 ∈ �k is the vector of zeros, and Σ is a k × k covariance

matrix.
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• Given wage w and action t, the agent has exponential CARA utility

given by,

u(w, t) = e−r[w−c(t)]

• Following Holmstrom-Milgrom (1987) we assume that this is a final
stage of a Brownian Motion model, so that the optimal scheme is linear,
and given by,

w(x) = αTx+ β ,

αTx =
k∑

n=1

αnxn ,

and the agent’s expected utility is equal to the certainty equivalent,

CE = αTµ(t) + β −
r
2

2
α
TΣα− c(t)

(where α
TΣα is the variance of αT

ε.)
First Best: The principal ignores (IC) and only need to compensate the

agent for his effort, so the principal’ss program is,

max
t

B(t)− c(t) .

Second Best: The principal maximizes,



max
t

B(t)− αTµ(t)− β

s.t. t ∈ argmaxαTµ(t)− c(t) (IC)

αTµ(t) + β − r
2

2
α
TΣα− c(t) ≥ 0 (IR)

As before (in H-M ’87) (IR) binding gives β as a function of (α, t), so we
can substitute this into the objective function, and get,{

max
t

B(t)− c(t)− r
2

2
α
T
Σα

s.t. t ∈ argmaxαTµ(t)− c(t). (IC)

(Note: B(t) need not be part of x. For example, B(t) can be a private benefit
of the principal, or due to inaccurate accounting, we can have x being an
inaccurate signal of true output.)
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We can introduce the following simplification: µ(t) = t. This implies that

x ∈ �n (one interpretation is that there is one signal per task.) This is
the case of full dimensionality. (Note that this is not really a special case:
If µ(t) ∈ �m, m > n, then we can “reduce” the dimensionality by some
combination of signals, and if m < n then we can add signals with variance
of infinity.)

>From this simplification:

CE = αT t+ β −
r

2
αTΣα− c(t)

and the agent’s FOC’s are (we assume that we get an interior solution with
t >> 0):

αi = ci(t) ∀ i = 1, ..., n

Following the first-order approach, we can substitute these FOC’s into the
principal’s objective function where we use these FOCs as (IC) constraints.
First, note that from the agent’s FOCs we have (in vector notation):

α(t) = ∇c(t)

which implies that ∇α(t) = [cij] which is the n × n matrix of the second
derivatives of c(t). Using the Inverse Function Theorem we get ∇t(α) =
[cij ]

−1 which we use later to perform comparative statics on t(·).
The principal maximizes,

max
t

B(t)− c(t) −
r

2
α(t)TΣα(t)

and since α(t) = ∇c(t) from the agent’s FOC, we can write αi(t) = ci(t) for
each i = 1, ...n (where ci(t) =

∂c

∂ti
,) and we get the principal’s FOCs with

respect to t,

Bi(t) = αi(t) + r

n∑

k=1

n∑

j=1

αj(t)δjkCki(t) ∀ i = 1, ..., n

or in vector form:

∇B(t) = [I + r[cij]Σ]α ,

where I is the identity matrix, and thus we have,

α = [I + r[cij]Σ]
−1
∇B(t) . (5.10)

Assuming that ∇c(t)TΣ∇c(t) is a convex function of t will give sufficiency
of the FOCs.
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Benchmark: Stochastic and Technological Independence

To simplify we assume stochastic and technological independence which is

given by,

• Σ is diagonal⇒ σij = 0 if i �= j, (errors are stochastically independent.)

• [cij ] is diagonal ⇒ cij = 0 if i �= j, (technologies of the different tasks
are independent.)

under these assumptions the solution to (5.10) yields,

αi =
Bi

1 + rciiσ
2

i

∀ i = 1, ..., n (5.11)

Observe that this solution implies:

1. “commissions” for the different tasks are independent (not surprising
given the independence assumptions.)

2. αi decreases in risk (higher r or higher σ2)

3. αi decreases in cii (if cii is larger, then the agent is less responsive to
incentives for task i.)

A Special Case

Consider the case where n = 2, and only action t1 can be measured:

xi = ti + εi ,

where var(ε2) = ∞, and 0 < var(ε1) < ∞ , that is, 0 < σ2

1
< ∞ , σ2

2
=

∞, and σ12 = σ21 = 0.
>From the FOC (5.11) above we have that α2 = 0, and (assuming an

interior solution t1, t2 > 0, )

α1 =
B1 −

B2C12

C22

1+ rσ2
1
(C11 −

C
2

12

C22
)

(5.12)

We can now ask what happens if t1, t2 are complements (c12 < 0) or
substitutes (c12 > 0)? (i.e., via the agents cost function.) To answer this we
can look at (5.12) above, and start with c12 = 0. As we change to c12 > 0 we
see that α1 decreases, and as we change to c12 < 0, α1 increases.
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Caveat: This is a local argument since C12 is a function of (t1, t2), which are
in turn functions of α1 through the incentives.

We can explain the intuition for the two directions above as follows:

1. Making C12 positive is making the tasks substitutes in costs for the
agent. If we want both t1 and t2 to be performed, and we can only give
incentives to t1 through α1, then increasing α1 “kills” incentives for t2
and increases incentives for t1. This may be undesirable. (In fact, it is
undesirable around C12 = 0.)

2. With C12 negative, the reverse happens: an increase in α increases
t1and reduces c2 so that t2 increases. Thus, α1 gives incentives to both
tasks. This result is actually global and does not depend on the local
analysis performed above.

5.9.2 Application: Effort Allocation

Consider the case in which the agent’s cost of efforts is a function of the
sum of all efforts. This is a special case in which we assume that the efforts

are extreme substitutes: The agent is indifferent between which tasks he

performs, as long as his total effort is unchanged. We simplify by assuming

that there are only two tasks, and further restrict attention t the following

special case:

1. c(t1, t2) = c(t1 + t2)

2. There exists t > 0 such that c′(t) = 0, c′′(t) > 0 ∀ t.

Figure Here

The idea behind assumption (2) above is that people will work t without
incentives, not caring how t is allocated, as long as t1+ t2 = t. However, pro-
viding incentives will affect the choice of effort. Note that this is a somewhat
unorthodox assumption, however it is not extremely unrealistic. One way to
think about this is that an agent will perform some minimal amount of per-
formance either due to the prospect of getting fired, or due to the alternative
of boredom..
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Missing Incentives

Now assume that we cannot measure the effort for the first task. For example,
the agent can be a contractor that is remodelling the principal’s house, and
t1 can be courtesy, or attention to detail. On the other hand, we assume that
t2 is (imperfectly) measurable. Using the contractor example, t2 can be time
to completion, or how close the original plan was followed.

To formalize this assume that µ(t1, t2) = µ(t2) ∈ �, a one dimensional
effect of both tasks, and following the previous notation, let the measureable
(verifiable) signal be given by,

x = µ(t2) + ε ,

and the linear compensation scheme be

s(x) = α2x+ β

Assumption: B(t1, t2) > 0 and increasing in both components, andB(0, t2) =
0 ∀ t2 (t1 is “essential” for the project to have value.)

Proposition 4.13: In the above set-up, α2 = 0 is optimal (even if the agent
is risk neutral.)

Proof: With α2 = 0 (α1 = 0 since t1 is not measurable) then principal
maximizes: B(t1, t − t1) and due to his indifference, the agent will
accommodate any solution. In this case there is no risk, and total
surplus is

S∗

= B(t∗
1
, t− t∗

1
)− c(t).

If α2 > 0, then the agent’s choices are t1 = 0, t2 = t̂2 �= t, and social

surplus is
0

︷ ︸︸ ︷

B(0, t̂2)−

>c(t)
︷︸︸︷

c(t̂) −

≥0

︷ ︸︸ ︷
r

2
α2

2
σ2 < S∗.

If α2 < 0, then t2 = 0, and t1 < t (since c′(t1) < 0 = c′(t)), and total
surplus is

<B(t,0)
︷ ︸︸ ︷

B(t1, 0)−

>c(t)
︷︸︸︷

c(t1)−

≥0
︷ ︸︸ ︷
r

2
α2σ2 < S∗

Q.E.D.
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1. It is important that B(·, ·) is a “private benefit,”or else principal
can “sell” the project to the agent. The house contracting example
is a very nice one, as is the example of a teacher having incentives
to teach children both skills of succeeding in tests (measurable),
and of creative thinking (not measurable) where the parents (or
local government) have a private benefit from the children’s’ edu-
cation.

2. This result is not “robust”: it relies both on B(0, t2) = 0 and
C(t1, t2) = C(t1 + t2). But, the intuition is very appealing..

Low powered incentives in firms

Williamson (1985) observed that inside firms incentives are “low-powered”
(e.g., wages to workers) compared to “high-powered” incentives offered to
independent contractors. Also, employees work with the principal’s assets
while contractors work with their own assets. Using a variant of the previous
set-up, this can be explained by multi-tasking.

Assume that,
B(t1, t2) = B(t1) + v(t2) ,

with B′
> 0, v′ > 0, B ′′ < 0, v′′ < 0 and B(0) = v(0) = 0. We can interpret

B(t1) to be the current expected profit from activity t1, e.g., effort in pro-
duction, while v(t2) is the future value of the “assets” from activity t2, e.g.
preventive maintenance, etc.

Now let t1 be measurable with the signal

x = µ(t1) + ε
x
.

Let the change in the asset’s value be v(t2) + εv, and it is important to
assume that the actual value accrues to the owner of the asset (for example,
there can be some private benefit, imperfect markets, etc.) We finally assume
that ε

x
and ε

v
are independent shocks.

As before, the incentive scheme will be linear, and given by

s(x) = αx+ β .

We now consider two alternatives for the relationship: Either the principal
and agent enter a contracting relationship, in which case the agent owns asset,

or they enter an employment relationship, in which case the principal owns

the asset.
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Define,

π
1
= max

t1

B(t1)− C(t1) ,

π2 = max
t2

v(t2)− C(t2) ,

π12 = max
t1

B(t1) + v(t− t1)− C(t) .

That is, π1 is maximal total surplus when only t1 can vary, π2 is maximal

total surplus when only t2 can vary, and π12 is maximal total surplus when

we can choose t1 subject to t1 + t2 = t. We have the following proposition:

1. If π12 > max{π1, π2} then the optimal employment contract has α = 0.

2. If contracting is optimal then α > 0.

3. There exist (r, σ2

v
, σ2

ε
) for which employment is optimal and other

parameters for which contracting is optimal.

4. If employment is optimal for some (r, σ2

v
, σ2

ε
), it is also optimal for

larger values. The reverse for contracting.

1. If v(t2) accrues to the principal then α > 0⇒ t2 = 0, c′(t1) = α,

and total surplus is

B(t1)− c(t1)−
r

2
α2σ2

x
< π

1
≤ π

12

whereas π12 can be achieved with α = 0.

2. Idea: with no incentives, agent will not care about t1 but rather

only about t2. With α > 0, agent still chooses the same t2 because

he gets v(t2).⇒ α > 0 is optimal.

3. This is just to say that the π’s can be ordered in any way depend-

ing on the parameters.

4. Intuition: if employment is optimal thenmore risk aversion implies

that there is a stronger case for no risk in contract, so employment

must still be optimal.

In chapter 5 we will discuss some theories of ownership, and this is an

interesting model tat has implication to these issues.
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5.9.3 Limits on outside activities

The following observation has been made by xxx: Some employees (usually
high level) have more freedom to engage in “personal business” than others
(e.g., private telephone conversations, undefined lunch breaks, etc.) This is
another observation to which the multitask model adds some insight. To
analyze this issue consider the following modifications to the model:

• Tasks: there are k + 1 tasks, (t, t1, ..., tk) ∈ �
k+1
+ , where only the first

task, t, benefits the principal:

B(t, t1, ..., tk) = p · t

(e.g., some market price for an output.)

• Agent’s costs:

c(t, t1, ..., tk) = c(t+
k∑

i=1

ti)−
k∑

i=1

vi(ti)

where vi(ti) is the agent’s private benefit from task i, with v′ > 0, and
v′′ < 0. (e.g., having access to non pecuniary tasks like outside phone lines,
long breaks, taking care of errands during work hours, etc.)

• Every personal task can be either completely excluded or completely

allowed in the contract, but no personal task can be restricted to a
level (i.e., “all-or-nothing”.)

• x = µ(t) + ε is the signal, s(x) = αx+ β is the incentive scheme.

• The principal can choose a contract that includes A ⊂ {1, ..., k} of
“allowable” personal tasks, and α, β for the incentive scheme.

To solve for the optimal contract we consider a two stage solution process

which is similar in spirit to the two stage program of Grossman and Hart
(1983): For every α, find A(α) that is optimal, then given A(α) choose α

optimally.
Assume that an interior solution exists, so that given (α,A) the agent’s

FOC’s yield:
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α = c
′(t+

k∑

i=1

ti) ,

α = v
′(ti) ∀ i ∈ A

Given α, use the following “cost-benefit” argument to determine the tasks

that should not be excluded:

A = {i : vi(ti(α)) > p · ti(α)}

Figure Here

To understand the idea, look at figure above. For each task i, there exists

some t̂i such that for ti < t̂i the private benefit to the agent is larger than

p · ti and for ti > t̂ the reverse holds. From a social-surplus point of view, if

ti(α) < t̂i, it is better to have the agent exert ti(α) into his private benefit

vi(ti) rather than in the principal’s private benefit p · ti(α). Thus, in figure,
task 1 should be allowed and task 2 should not.

We can also see that an increase in α will (weakly) cause an increase in
the set A. We also get:

Proposition 4.14: Assume t(α) is optimal then:

1. α = p

1+rσ2dt/dα
,

2. If measurement is easier (σ2 decreases), or if the agent is less risk
averse (r decreases), then α and A(α) will be larger.

3. tasks that are excluded in the FB contract are also excluded in
the SB contract, but for high rσ2 some tasks that are included in
a FB contract will be excluded in a SB contract.

(For a proof see the paper.)
The part of the proposition that is most interesting is part (2): The set

A gets smaller (and incentives weaker) when we have measurement problems
over t. A nice application is that without measurement problems, an outside
sales force (independent contractors with no exclusions) is optimal, whereas
with measurement problems an inside sales force is optimal (e.g., can’t sell
competitor’s products, etc.)
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5.9.4 Allocating tasks between two agents:

This is the last section of H-M ’91. The results are:

1. It is never optimal to assign two agents to the same task.

2. The principal wants “information homogeneity”: the hard-to-measure
tasks go to one agent and the easy-to-measure tasks go to the other.

The intuition goes as follows: (1) we don’t have “team” problem if agents
are assigned to different tasks; (2) We avoid the multitask problems men-
tioned earlier; The agent with hard-to-measure tasks gets low incentives
(“insider”) and the other gets high incentives (“outsider”).


