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ABSTRACT 
The biota have effected profound changes on the environment of the surface of the earth. At the 
same time, that environment has imposed constraints on the biota, so that life and the 
environment may be considered as two parts of a coupled system. Unfortunately, the system is 
too complex and too little known for us to model it adequately. To investigate the properties 
which this close-coupling might confer on the system, we chose to develop a model of an 
imaginary planet having a very simple biosphere. It consisted of just two species of daisy of 
different colours and was first described by Lovelock (1982). The growth rate of the daisies 
depends on only one environmental variable, temperature, which the daisies in turn modify 
because they absorb different amounts of radiation. Regardless of the details of the interaction, 
the effect of the daisies is to stabilize the temperature. The result arises because of the peaked 
shape of the growth-temperature curve and is independent of the mechanics by which the biota 
are assumed to modify the temperature. We sketch out the elements of a biological feedback 
system which might help regulate the temperature of the earth. 

1. Introduction 

On earth, modification of the environment by 
living things is apparent on any scale that one cares 
to look at, up to and including the global scale. In 
turn, geophysical and geochemical constraints have 
shaped the evolution of life and continue to dictate 
what type of life, and how much of it, can colonize 
the available space. One can think of the biota and 
their environment as two elements of a closely- 
coupled system: perturbations of one will affect the 
other and this may in turn feed back on the original 
change. The feedback may tend either to enhance 
or to diminish the initial perturbation, depending on 
whether its sign is positive or negative. 

If we wish to explore the properties which this 
close-coupling may confer on the system, we at 
once come upon a substantial problem: the earth’s 
biota and environment are vastly complex and 
there is hardly a single aspect of their interaction 
which can as yet be described with any confidence 
by a mathematical equation. For this reason we 

have chosen to study an artificial world, having a 
very simple biota which is specifically designed to 
display the characteristic in which we are 
interested-namely, close-coupling of the biota and 
the global environment. By simplifying our bio- 
sphere enormously we can describe it in terms of a 
few equations borrowed directly from population 
ecology theory. But let the reader be warned in 
advance: we are not trying to model the Earth, but 
rather a fictional world which displays clearly a 
property which we believe is important for the 
Earth. 

2. The equations for Daisyworld 

Daisyworld is a cloudless planet with a negligible 
atmospheric greenhouse on which the only plants 
are two species of daisy of different colours. One 
species is dark-ground covered by it reflects less 
light then bare ground-while the other is light and 
reflects more than the bare ground. To emphasize 
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the contrast we will refer to them as “black” and 
“white” though the black daisies need not be 
perfectly black, nor the white ones perfectly white. 

The comparative growth of the daisies is 
governed by (see Carter and Prince, 198 1) 

where a,, a, are the areas covered by “black” 
and “white” daisies respectively and x is the area of 
fertile ground not covered by either species, all 
measured as fractions of the total planetary area. 
The growth rate of the daisies is p per unit of time 
and area, and the death rate is y per unit of time. 
The area of fertile ground which is uncolonized by 
daisies is 

x = p - a, - awr 
where P is the proportion of the planet‘s area which 
is fertile ground. 

The growth rate of the daisies is assumed to be a 
parabolic function of local temperature, TI: 

(2) 

= 1 - 0.003265 (22.5 - TI)’ (3) 
which is zero when the local temperature TI is 5 OC 
and 40°C and has a maximum value of one when 
TI equals 22.5”C. The effective temperature a t  
which the planet radiates, T, “C, is found by 
equating absorbed and emitted radiation: 

o(T, + 27314 = SL ( 1  -A). (4) 

Here a is Stefan’s constant, S is a constant having 
units of flux, L is a dimensionless measure of the 
luminosity of daisyworld’s sun and A is the albedo 
of the planet. For simplicity we shall ignore 
spherical geometry and treat the planet ds if it were 
flat, or at best cylindrical. Then the albedo A is 
simply determined by 

A = a g A g  -t a,A, + awAw = 1 A,, (5) 
1 

where ag (=1 - a, - a,) is the area, and A, the 
albedo, of bare ground. A, and A, are the albedos 
of ground covered by “black” and “white” daisies, 
and we will assume that A, > A, > A, with values 
typically 0.75,0.5 and 0.25. X I  in eq. (5)  signifies a 
summation over bare ground, black daisies and 
white daisies. 

Finally, we wish to fix the local temperature of 
the daisies in terms of variables which have already 
been defined. Since black daisies absorb more 

radiation than white; we assume they will be 
warmer. If we use the expression 

(TI  + 273)4 = q(A -A,)  + (T, + 273)‘, (6) 

where q is a positive constant, to calculate local 
temperatures as functions of local albedo, we find 
that T, > TB > T, as we would expect. This 
expression also preserves the energy balance of the 
planet, for F, the total radiation lost to space, must 
be the sum of that arising from each area: 

F = a, o(Tl + 273)4 
1 

= oqA 1 a, - oq 1 (a,A,) + a(T, + 273)4 1 a , ,  
1 I 1 

but s incex,  a, = 1 and 1, a ,A,  = A ,  

F = a(T, + 273)4, 

as it must do for consistency with eq. (4). Since the 
local temperatures of black and white daisies 
always lie within a range 22.5 17.5 “ C  which is 
small by comparison to the absolute temperature, 
we may if we prefer use a linear approximation to 
eq. (6): 

(7) Tb.w = q’(A - Ab.w) + Te 

where 4‘ = 914 (273 + 22.5)3. The error intro- 
duced by this approximation is normally less than 
2 “C for the temperatures of interest. 

In eq. (6), the parameter q expresses the degree 
to which solar energy, after having been absorbed 
by the planet, is redistributed amongst the three 
types of surface. Its effect is most clearly seen if A 
is eliminated between eq. (4) and (6): 

(TI  + 273)4 = q(1 - A,) + (T,  + 173)4 
x ( 1  - qa1SL). (8) 

Now if q = 0, the local temperatures all become 
equal to  the mean temperature. This situation 
corresponds to perfect “conduction” of energy 
from higher to lower temperatures. If on the other 
hand we set q == SLIa, we obtain: 

SL  
( T , + 2 7 3 ) 4 = - ( 1 - A , )  

a 
(9) 

In this case temperatures are set by the steady state 
between local absorption and local radiation to 
space, with perfect “insulation” between high and 
low temperature regions on the surface. A value of 
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q greater than S L I a  would be physically very 
suspect since it would imply a transfer of heat 
against the temperature gradient. In this study we 
used values of q less than 0.2 SLla.  

3. Steady state behaviour of the system 

The daisyworld equations form a system of 
non-linear, multiple feedback loops. The analysis of 
such systems is not a trivial problem, even for the 
highly simplified situation on daisyworld. Some 
information on the steady state behaviour of the 
equations can, however, be obtained without a 
disproportionate amount of mathematical effort. 

Consider the non-zero, steady state solutions of 
eq. (1). When da/dt is zero but a is finite, 

x*p* = y, (10) 

where the asterisks denote the steady state. 

daisies must satisfy this equation: it follows that 
The growth parameters for both black and white 

P:, = Pb+* 
Now, bearing in mind that Tb > T,, it can be seen 
by inspection of eq. (3) that for this to be true, 

T t  - 22.5 = 22.5 - T;. (12) 

Furthermore, subtracting eq. (7) for Tb from that 
for T, 

T t  - T c  = 4’ ( A  , - Ab). 

TE = 22.5 + fq‘(A, - Ab)  

(13) 

Hence 

(14) 

T c  = 22.5 -+q’(A,-Ab)? 

so, assuming that a stable steady state with a, > 0, 
ab > 0 exists, T: and T ;  will be constant regardless 
of the initial conditions. Therefore, given sufficient 
time to return to the steady state, the daisies will 
respond to a perturbation by restoring their local 
temperatures to prefixed values, despite the fact 
that no physically real reference temperature exists 
within the system. 

It is possible to prove by further analysis that 
this steady state exists and is stable for a wide 
range of parameter values. Here we will content 
ourselves with using a computer to integrate the 
equations to steady state for a few specific cases. 

However, before abandoning the formal analysis 
entirely, there is one further, rather surprising 
feature of the steady state which can easily be 
proved: we can show that the steady state 
planetary temperature T: will actually decrease in 
response to an increase in solar luminosity, as 
follows. Differentiation of eq. (8) with respect to L 
when T, is constant gives 

4(T:+ 2 7 3 , ’ d r : j l - g )  d L  

qo 
SL2 

+ (T:+ 273)4- = O  

or 

-qa (T: + 273) 
dT:/dL = 

4SLZ (1 - qu/SL) ’ 

which must be negative provided q < SL/a. 
Figs. la, b, c, d show steady state values of 

planetary temperature, T, and areas of black and 
white daisies a,, and a,, as the luminosity L is 
increased. For comparison, the dotted curves show 
the temperature of the planet without life. The 
values of the parameters adopted are given in the 
figure legends. The procedure used to generate the 
curves was as follows: for a fixed value of L,  initial 
values of ab, a, were set at the previous steady 
state values, or 0.01 if these were zero; the 
equations were integrated forward in time until a 
steady state was reached; the value of L was 
incremented and the procedure was repeated. Thus 
the curves show the effect of increasing the 
luminosity slowly, so that the system has time to 
reach steady state at each value of L. The effect of 
decreasing the luminosity is not necessarily iden- 
tical to that of increasing it, for the system may 
exhibit hysteresis. Fig. l c  shows an example. 

Fig. l a  shows the response for one species of 
daisy only, where the daisy albedo is the same as 
the ground. This represents the “no feedback” case 
where the presence or absence of daisies makes no 
difference to the temperature. In Fig. lb, black 
daisies only are allowed to grow. It is apparent that 
even for this one-species case, the homeostasis of 
the planetary temperature may be considerable. 
Fig. l c  shows the response with white daisies only, 
for both increasing and decreasing luminosity. Fig. 
Id illustrates the behaviour of the complete model. 
This exhibits the expected stable region where the 
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Fig. 1 .  Steady state responses of daisyworld. Areas of black and white daisies and effective temperature are plotted 
against increasing values of the luminosity parameter L .  Dotted lines indicate the temperature of the planet without 
life. Fixed parameters used in generating these curves were: y in eq. (l), 0.3; P in  eq. (2), 1.0; S in eq. (4), 9.17 x 10’ 
ergs cm-* s-’; albedo of bare ground, 0.5; q’ in eq. (7), 20. (a) For a population of “neutral” daisies, albedo 0.5 
(dotted and solid temperature curves are coincident). (b) For a population only of black daisies, albedo 0.25. (c) For a 
population only of white daisies, albedo = 0.75. This figure also shows that the effect of decreasing luminosity. Note 
that the system exhibits hysteresis. (d) For a population of both black and white daisies, albedos 0.75,0.25. 

two species of daisy co-exist and verifies our 
prediction of a decrease in effective temperature 
with increasing luminosity. 

Before leaving this version of daisyworld it is 
worth mentioning the effect of taking more explicit 
account of spherical geometry. On a real planet, the 
effective value of the solar constant decreases with 
increasing latitude, so that T, for a spherical planet 
could be calculated by some suitably weighted 
running mean of the displayed curves (i.e. con- 
volution with a weighting function). The effect 
would be to increase the range of luminosity over 
which life could persist on the planet (because, for 
example, at luminosities where, over most of the 
planet, it was too hot even for white daisies, they 
might still survive at  high latitudes). Sharp dis- 
continuities would be less evident and the homeo- 
stasis of mean temperature rather less striking. 

4. Removing the negative feedback 

The “environmental feedback” in the model as 
described so far is strongly limiting on both species 
of daisy. Black daisies are warmer than white, and 
tend therefore to be favoured by cooler mean 
temperatures, yet an increase in the numbers of 
black daisies tends to warm the planet. The same 
goes in reverse for the white daisies. Under these 
circumstances it is perhaps not surprising that the 
system exhibits a stable point around which the 
daisies can successfully homeostat the temperature 
over a wide range of luminosities. Not every 
interaction between the biota and the environment 
can be expected to operate in such a civilized 
fashion. Accordingly, we now follow what happens 
when we deliberately and radically alter the 
negative feedbacks which stabilize daisyworld. 
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Fig. 2. Steady state response for conditions as in Fig. Id, 
but with a cloud of albedo 0.8 assumed to obscure the 
black daisies. 

Specifically, while retaining the condition that black 
daisies are warmer than white, we contrive to make 
the black daisies cool the planet. 

Owing to a subtle change of climate, clouds 
appear on daisyworld. The clouds are light in 
colour. We will assume that the clouds form only 
over stands of black daisies because of the rising air 
generated over these warm spots. Now, therefore, 
black daisies no longer tend to increase the 
temperature. Instead, more black daisies mean 
more white clouds and a colder planet. 

Fig. 2 shows the steady state output derived 
under this assumption. White daisies were not 
deliberately suppressed, but became extinct of their 
own accord. White daisies fail because, in the battle 
for survival of the fittest, they are now distinctly 
less fit than the black daisies. An increase in either 
species now tends to cool the planet, but black 
daisies, being warmer than the mean, thrive better 
at low temperatures. However, although the white 
daisies tend to be eliminated under the new 
conditions, an effective homeostasis is nevertheless 
maintained. It is clear that however we change the 
directions of the feedbacks, the worst that can 
happen is that we lose the less well-adapted species. 
The remaining daisies are still capable of homeo- 
stasis. Regardless of the directions of the feed- 
backs, the model always shows greater stability 
with daisies than it does without them. This result 
arises because the temperature versus growth curve 
is peaked, decreasing towards zero both above and 
below an optimum temperature. So whichever 
direction the life of the planet drives the temper- 

ature, it ultimately reaches a region where a greater 
abundance of daisies results, via the temperature 
feedback, in a slower growth rate. A stable point 
will exist in this region. The stable state is buffered 
against external variations because the growth rate 
itself is a rather sensitive function of temperature 
and feeds back on any change. 

5. Relevance to the earth 

Extrapolation from daisyworld to the earth is, to 
say the least, rather tenuous at this stage. How- 
ever, a peaked growth versus temperature curve is a 
universal property of living things. Furthermore, 
the biota may have a substantial influence oh the 
earth’s temperature via the abundance of green- 
house gases in the atmosphere. Recently, Owen et 
al. (1979) and Walker et al. ( 1  98 1) have speculated 
that the abundance of atmospheric CO, may have 
been dominant in determining the mean temper- 
ature of the earth through geological time, in which 
case the biota as a whole would appear to be 
depressing the mean temperature below that of the 
“sterile earth” by tending to reduce atmospheric 
CO, pressures (Lovelock and Watson, 1982). In 
the present context, neither the direction nor the 
mechanism whereby life affects the temperature are 
of themselves important---only the assumption that 
the biota influence the temperature is required. For 
the sake of illustration, however, let us suppose that 
the net effect of life on Earth is to reduce 
atmospheric carbon dioxide, and that the biota are 
temperature limited. Thus a decrease in temper- 
ature would lead to an extension of the barren polar 
regions and would decrease the average level of 
biological activity over the earth as a whole, while a 
temperature increase would have the opposite 
effect. But a decrease in biological activity as a 
whole would presumably also decrease those 
activities which tend to reduce atmospheric CO,. 
Thus carbon dioxide would increase to oppose the 
original change. We then have the rudiments of a 
temperature stabilization system for the earth 
analogous to that on daisyworld. We can speculate 
that some such mechanisms may have played a 
part in regulating the temperature and other 
environmental variables over the long history of the 
earth. 
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