(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 145794, 3251] NotebookOptionsPosition[ 141707, 3111] NotebookOutlinePosition[ 142059, 3127] CellTagsIndexPosition[ 142016, 3124] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["Integraci\[OAcute]n por Montecarlo con muestreo por importacia", "Text", CellChangeTimes->{{3.603975587364377*^9, 3.6039756113941107`*^9}}], Cell[BoxData[ RowBox[{"expdev", ":=", RowBox[{"-", RowBox[{"Log", "[", RowBox[{"RandomReal", "[", "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.603975614158078*^9, 3.603975648521308*^9}}], Cell[CellGroupData[{ Cell[BoxData["expdev"], "Input", CellChangeTimes->{{3.603975628772027*^9, 3.603975652030669*^9}}], Cell[BoxData["0.6959155062793184`"], "Output", CellChangeTimes->{{3.603975630508976*^9, 3.6039756536779327`*^9}, { 3.6569281341526947`*^9, 3.656928150814283*^9}}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"data", "=", RowBox[{"Table", "[", RowBox[{"expdev", ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "100000"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.603975634235011*^9, 3.603975688381275*^9}, { 3.656928215216148*^9, 3.656928215387692*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Histogram", "[", "data", "]"}]], "Input", CellChangeTimes->{{3.603975690172782*^9, 3.603975693848466*^9}}], Cell[BoxData[ GraphicsBox[{ {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.5459999999999999], Thickness[Small]}], {}, {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.5459999999999999], Thickness[Small]}], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0., 0}, {0.5, 39447}, "RoundingRadius" -> 0]}, ImageSizeCache->{{38.0238190552442, 52.782498726253735`}, {-99.65251714737587, 88.660663911433}}], StatusArea[#, 39447]& , TagBoxNote->"39447"], StyleBox["39447", {}, StripOnInput -> False]], Annotation[#, Style[39447, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.5, 0}, {1., 23929}, "RoundingRadius" -> 0]}, ImageSizeCache->{{52.282498726253735`, 67.04117839726328}, {-25.76895328521661, 88.660663911433}}], StatusArea[#, 23929]& , TagBoxNote->"23929"], StyleBox["23929", {}, StripOnInput -> False]], Annotation[#, Style[23929, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1., 0}, {1.5, 14346}, "RoundingRadius" -> 0]}, ImageSizeCache->{{66.54117839726328, 81.29985806827281}, { 19.857170731478334`, 88.660663911433}}], StatusArea[#, 14346]& , TagBoxNote->"14346"], StyleBox["14346", {}, StripOnInput -> False]], Annotation[#, Style[14346, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.5, 0}, {2., 8736}, "RoundingRadius" -> 0]}, ImageSizeCache->{{80.79985806827281, 95.55853773928234}, { 46.56723602769649, 88.660663911433}}], StatusArea[#, 8736]& , TagBoxNote->"8736"], StyleBox["8736", {}, StripOnInput -> False]], Annotation[#, Style[8736, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2., 0}, {2.5, 5395}, "RoundingRadius" -> 0]}, ImageSizeCache->{{95.05853773928234, 109.81721741029187`}, { 62.47424639394691, 88.660663911433}}], StatusArea[#, 5395]& , TagBoxNote->"5395"], StyleBox["5395", {}, StripOnInput -> False]], Annotation[#, Style[5395, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2.5, 0}, {3., 3195}, "RoundingRadius" -> 0]}, ImageSizeCache->{{109.31721741029187`, 124.07589708130142`}, { 72.94878180422855, 88.660663911433}}], StatusArea[#, 3195]& , TagBoxNote->"3195"], StyleBox["3195", {}, StripOnInput -> False]], Annotation[#, Style[3195, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3., 0}, {3.5, 1909}, "RoundingRadius" -> 0]}, ImageSizeCache->{{123.57589708130142`, 138.33457675231097`}, { 79.07162386678408, 88.660663911433}}], StatusArea[#, 1909]& , TagBoxNote->"1909"], StyleBox["1909", {}, StripOnInput -> False]], Annotation[#, Style[1909, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3.5, 0}, {4., 1196}, "RoundingRadius" -> 0]}, ImageSizeCache->{{137.83457675231097`, 152.5932564233205}, { 82.46632557020718, 88.660663911433}}], StatusArea[#, 1196]& , TagBoxNote->"1196"], StyleBox["1196", {}, StripOnInput -> False]], Annotation[#, Style[1196, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{4., 0}, {4.5, 743}, "RoundingRadius" -> 0]}, ImageSizeCache->{{152.0932564233205, 166.85193609433003`}, { 84.62312763423334, 88.660663911433}}], StatusArea[#, 743]& , TagBoxNote->"743"], StyleBox["743", {}, StripOnInput -> False]], Annotation[#, Style[743, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{4.5, 0}, {5., 446}, "RoundingRadius" -> 0]}, ImageSizeCache->{{166.35193609433003`, 181.11061576533956`}, { 86.03718991462137, 88.660663911433}}], StatusArea[#, 446]& , TagBoxNote->"446"], StyleBox["446", {}, StripOnInput -> False]], Annotation[#, Style[446, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{5., 0}, {5.5, 249}, "RoundingRadius" -> 0]}, ImageSizeCache->{{180.61061576533956`, 195.3692954363491}, { 86.9751369490875, 88.660663911433}}], StatusArea[#, 249]& , TagBoxNote->"249"], StyleBox["249", {}, StripOnInput -> False]], Annotation[#, Style[249, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{5.5, 0}, {6., 166}, "RoundingRadius" -> 0]}, ImageSizeCache->{{194.8692954363491, 209.62797510735862`}, { 87.37031260320266, 88.660663911433}}], StatusArea[#, 166]& , TagBoxNote->"166"], StyleBox["166", {}, StripOnInput -> False]], Annotation[#, Style[166, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{6., 0}, {6.5, 93}, "RoundingRadius" -> 0]}, ImageSizeCache->{{209.12797510735862`, 223.88665477836815`}, { 87.71787673272564, 88.660663911433}}], StatusArea[#, 93]& , TagBoxNote->"93"], StyleBox["93", {}, StripOnInput -> False]], Annotation[#, Style[93, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{6.5, 0}, {7., 53}, "RoundingRadius" -> 0]}, ImageSizeCache->{{223.38665477836815`, 238.14533444937769`}, { 87.9083228310944, 88.660663911433}}], StatusArea[#, 53]& , TagBoxNote->"53"], StyleBox["53", {}, StripOnInput -> False]], Annotation[#, Style[53, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{7., 0}, {7.5, 38}, "RoundingRadius" -> 0]}, ImageSizeCache->{{237.64533444937769`, 252.40401412038722`}, { 87.97974011798269, 88.660663911433}}], StatusArea[#, 38]& , TagBoxNote->"38"], StyleBox["38", {}, StripOnInput -> False]], Annotation[#, Style[38, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{7.5, 0}, {8., 18}, "RoundingRadius" -> 0]}, ImageSizeCache->{{251.90401412038722`, 266.66269379139675`}, { 88.07496316716707, 88.660663911433}}], StatusArea[#, 18]& , TagBoxNote->"18"], StyleBox["18", {}, StripOnInput -> False]], Annotation[#, Style[18, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{8., 0}, {8.5, 15}, "RoundingRadius" -> 0]}, ImageSizeCache->{{266.16269379139675`, 280.9213734624063}, { 88.08924662454473, 88.660663911433}}], StatusArea[#, 15]& , TagBoxNote->"15"], StyleBox["15", {}, StripOnInput -> False]], Annotation[#, Style[15, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{8.5, 0}, {9., 8}, "RoundingRadius" -> 0]}, ImageSizeCache->{{280.4213734624063, 295.1800531334158}, { 88.12257469175925, 88.660663911433}}], StatusArea[#, 8]& , TagBoxNote->"8"], StyleBox["8", {}, StripOnInput -> False]], Annotation[#, Style[8, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{9., 0}, {9.5, 10}, "RoundingRadius" -> 0]}, ImageSizeCache->{{294.6800531334158, 309.43873280442534`}, { 88.11305238684082, 88.660663911433}}], StatusArea[#, 10]& , TagBoxNote->"10"], StyleBox["10", {}, StripOnInput -> False]], Annotation[#, Style[10, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{9.5, 0}, {10., 1}, "RoundingRadius" -> 0]}, ImageSizeCache->{{308.93873280442534`, 323.6974124754349}, { 88.15590275897378, 88.660663911433}}], StatusArea[#, 1]& , TagBoxNote->"1"], StyleBox["1", {}, StripOnInput -> False]], Annotation[#, Style[1, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{10., 0}, {10.5, 5}, "RoundingRadius" -> 0]}, ImageSizeCache->{{323.1974124754349, 337.9560921464444}, { 88.13685814913691, 88.660663911433}}], StatusArea[#, 5]& , TagBoxNote->"5"], StyleBox["5", {}, StripOnInput -> False]], Annotation[#, Style[5, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{10.5, 0}, {11., 2}, "RoundingRadius" -> 0]}, ImageSizeCache->{{337.4560921464444, 352.21477181745394`}, { 88.15114160651457, 88.660663911433}}], StatusArea[#, 2]& , TagBoxNote->"2"], StyleBox["2", {}, StripOnInput -> False]], Annotation[#, Style[2, {}], "Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{-0.22, 0}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], PlotRange->{{0., 11.}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.603975694656329*^9, 3.603975698174662*^9}, 3.656928170936121*^9, 3.6569282177883587`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{"x", " ", RowBox[{"Exp", "[", RowBox[{"-", "x"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.603975717308074*^9, 3.6039757307052317`*^9}}], Cell[BoxData["1"], "Output", CellChangeTimes->{3.6039757319527807`*^9, 3.6569287544667797`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Sum", "[", RowBox[{"expdev", ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "100000"}], "}"}]}], "]"}], "/", "100000"}]], "Input", CellChangeTimes->{{3.6039757359972*^9, 3.603975772521999*^9}, { 3.6039758962755003`*^9, 3.603975898475663*^9}, {3.603976132655765*^9, 3.603976134444426*^9}}], Cell[BoxData["1.004616113928047`"], "Output", CellChangeTimes->{{3.603975750560007*^9, 3.6039757806610107`*^9}, 3.603975899131072*^9, 3.603976135386807*^9, 3.656928755682777*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"x", "^", "2"}], " ", RowBox[{"Exp", "[", RowBox[{"-", "x"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.603975717308074*^9, 3.6039757307052317`*^9}, 3.6039758311701603`*^9}], Cell[BoxData["2"], "Output", CellChangeTimes->{3.6039757319527807`*^9, 3.603975832559701*^9, 3.656928864335009*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{"expdev", "^", "2"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "100000"}], "}"}]}], "]"}], "/", "100000"}]], "Input", CellChangeTimes->{{3.6039757359972*^9, 3.603975772521999*^9}, 3.6039758368963614`*^9, {3.6039758896152554`*^9, 3.603975891966466*^9}, { 3.603976142162258*^9, 3.6039761424994698`*^9}}], Cell[BoxData["1.9992437418330047`"], "Output", CellChangeTimes->{{3.603975750560007*^9, 3.6039757806610107`*^9}, { 3.603975837193296*^9, 3.603975845405353*^9}, 3.603975892676527*^9, 3.603976143355486*^9, 3.656928866478751*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"x", "^", "3"}], " ", RowBox[{"Exp", "[", RowBox[{"-", "x"}], "]"}]}], ",", RowBox[{"{", RowBox[{"x", ",", "0", ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.603975717308074*^9, 3.6039757307052317`*^9}, 3.603975854109838*^9}], Cell[BoxData["6"], "Output", CellChangeTimes->{3.6039757319527807`*^9, 3.603975854403686*^9, 3.6569289489625998`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{"expdev", "^", "3"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "100000"}], "}"}]}], "]"}], "/", "100000"}]], "Input", CellChangeTimes->{{3.6039757359972*^9, 3.603975772521999*^9}, { 3.603975860195907*^9, 3.603975877420217*^9}, {3.603976148406288*^9, 3.60397614875489*^9}}], Cell[BoxData["6.064076776074405`"], "Output", CellChangeTimes->{{3.603975750560007*^9, 3.6039757806610107`*^9}, { 3.603975860751593*^9, 3.6039758849480047`*^9}, 3.603976149846675*^9, 3.656928951616308*^9}] }, Open ]], Cell[BoxData[ RowBox[{"Gaussdev", ":=", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"-", "2"}], RowBox[{"Log", "[", RowBox[{"RandomReal", "[", "]"}], "]"}]}], "]"}], RowBox[{"Cos", "[", RowBox[{"2", "\[Pi]", " ", RowBox[{"RandomReal", "[", "]"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.6036642710956907`*^9, 3.603664320129106*^9}}], Cell[CellGroupData[{ Cell[BoxData["Gaussdev"], "Input", CellChangeTimes->{{3.6036643219843903`*^9, 3.603664324257454*^9}}], Cell[BoxData[ RowBox[{"-", "0.13440724263345474`"}]], "Output", CellChangeTimes->{{3.6036643248736477`*^9, 3.603664328025337*^9}, 3.603976157408206*^9, 3.6567593043813467`*^9, {3.656929077010811*^9, 3.656929083806571*^9}}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"data", "=", RowBox[{"Table", "[", RowBox[{"Gaussdev", ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "1000000"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.603663667175972*^9, 3.603663726530081*^9}, { 3.603664345545472*^9, 3.6036643574077597`*^9}, {3.656929102904101*^9, 3.656929103077078*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Histogram", "[", "data", "]"}]], "Input", CellChangeTimes->{{3.603663715746311*^9, 3.6036637213211*^9}}], Cell[BoxData[ GraphicsBox[{ {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.5529999999999999], Thickness[Small]}], {}, {RGBColor[0.987148, 0.8073604000000001, 0.49470040000000004`], EdgeForm[{ Opacity[0.5529999999999999], Thickness[Small]}], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-5., 0}, {-4.5, 4}, "RoundingRadius" -> 0]}, ImageSizeCache->{{43.90852682145717, 59.0716859201647}, { 88.56112982716519, 89.06497612668772}}], StatusArea[#, 4]& , TagBoxNote->"4"], StyleBox["4", {}, StripOnInput -> False]], Annotation[#, Style[4, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-4.5, 0}, {-4., 30}, "RoundingRadius" -> 0]}, ImageSizeCache->{{58.5716859201647, 73.73484501887224}, { 88.53612888026872, 89.06497612668772}}], StatusArea[#, 30]& , TagBoxNote->"30"], StyleBox["30", {}, StripOnInput -> False]], Annotation[#, Style[30, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-4., 0}, {-3.5, 215}, "RoundingRadius" -> 0]}, ImageSizeCache->{{73.23484501887224, 88.39800411757977}, { 88.35823752735153, 89.06497612668772}}], StatusArea[#, 215]& , TagBoxNote->"215"], StyleBox["215", {}, StripOnInput -> False]], Annotation[#, Style[215, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-3.5, 0}, {-3., 1110}, "RoundingRadius" -> 0]}, ImageSizeCache->{{87.89800411757977, 103.06116321628731`}, { 87.49762800918461, 89.06497612668772}}], StatusArea[#, 1110]& , TagBoxNote->"1110"], StyleBox["1110", {}, StripOnInput -> False]], Annotation[#, Style[1110, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-3., 0}, {-2.5, 4734}, "RoundingRadius" -> 0]}, ImageSizeCache->{{102.56116321628731`, 117.72432231499485`}, { 84.01288064176903, 89.06497612668772}}], StatusArea[#, 4734]& , TagBoxNote->"4734"], StyleBox["4734", {}, StripOnInput -> False]], Annotation[#, Style[4734, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2.5, 0}, {-2., 16721}, "RoundingRadius" -> 0]}, ImageSizeCache->{{117.22432231499485`, 132.38748141370237`}, { 72.48648254761599, 89.06497612668772}}], StatusArea[#, 16721]& , TagBoxNote->"16721"], StyleBox["16721", {}, StripOnInput -> False]], Annotation[#, Style[16721, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2., 0}, {-1.5, 44456}, "RoundingRadius" -> 0]}, ImageSizeCache->{{131.88748141370237`, 147.05064051240993`}, { 45.817203233247575`, 89.06497612668772}}], StatusArea[#, 44456]& , TagBoxNote->"44456"], StyleBox["44456", {}, StripOnInput -> False]], Annotation[#, Style[44456, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1.5, 0}, {-1., 91535}, "RoundingRadius" -> 0]}, ImageSizeCache->{{146.55064051240993`, 161.71379961111745`}, { 0.5472194279059153, 89.06497612668772}}], StatusArea[#, 91535]& , TagBoxNote->"91535"], StyleBox["91535", {}, StripOnInput -> False]], Annotation[#, Style[91535, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1., 0}, {-0.5, 149828}, "RoundingRadius" -> 0]}, ImageSizeCache->{{161.21379961111745`, 176.376958709825}, {-55.50586508885911, 89.06497612668772}}], StatusArea[#, 149828]& , TagBoxNote->"149828"], StyleBox["149828", {}, StripOnInput -> False]], Annotation[#, Style[149828, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.5, 0}, {0., 190882}, "RoundingRadius" -> 0]}, ImageSizeCache->{{175.876958709825, 191.04011780853253`}, {-94.9823602383843, 89.06497612668772}}], StatusArea[#, 190882]& , TagBoxNote->"190882"], StyleBox["190882", {}, StripOnInput -> False]], Annotation[#, Style[190882, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0., 0}, {0.5, 191729}, "RoundingRadius" -> 0]}, ImageSizeCache->{{190.54011780853253`, 205.70327690724005`}, {-95.79681416228084, 89.06497612668772}}], StatusArea[#, 191729]& , TagBoxNote->"191729"], StyleBox["191729", {}, StripOnInput -> False]], Annotation[#, Style[191729, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.5, 0}, {1., 150554}, "RoundingRadius" -> 0]}, ImageSizeCache->{{205.20327690724005`, 220.3664360059476}, {-56.20396845219901, 89.06497612668772}}], StatusArea[#, 150554]& , TagBoxNote->"150554"], StyleBox["150554", {}, StripOnInput -> False]], Annotation[#, Style[150554, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1., 0}, {1.5, 91575}, "RoundingRadius" -> 0]}, ImageSizeCache->{{219.8664360059476, 235.02959510465513`}, { 0.5087564326805847, 89.06497612668772}}], StatusArea[#, 91575]& , TagBoxNote->"91575"], StyleBox["91575", {}, StripOnInput -> False]], Annotation[#, Style[91575, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.5, 0}, {2., 43810}, "RoundingRadius" -> 0]}, ImageSizeCache->{{234.52959510465513`, 249.69275420336268`}, { 46.438380606136775`, 89.06497612668772}}], StatusArea[#, 43810]& , TagBoxNote->"43810"], StyleBox["43810", {}, StripOnInput -> False]], Annotation[#, Style[43810, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2., 0}, {2.5, 16637}, "RoundingRadius" -> 0]}, ImageSizeCache->{{249.19275420336268`, 264.35591330207023`}, { 72.5672548375892, 89.06497612668772}}], StatusArea[#, 16637]& , TagBoxNote->"16637"], StyleBox["16637", {}, StripOnInput -> False]], Annotation[#, Style[16637, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2.5, 0}, {3., 4849}, "RoundingRadius" -> 0]}, ImageSizeCache->{{263.85591330207023`, 279.01907240077776`}, { 83.90229953049618, 89.06497612668772}}], StatusArea[#, 4849]& , TagBoxNote->"4849"], StyleBox["4849", {}, StripOnInput -> False]], Annotation[#, Style[4849, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3., 0}, {3.5, 1108}, "RoundingRadius" -> 0]}, ImageSizeCache->{{278.51907240077776`, 293.6822314994853}, { 87.49955115894588, 89.06497612668772}}], StatusArea[#, 1108]& , TagBoxNote->"1108"], StyleBox["1108", {}, StripOnInput -> False]], Annotation[#, Style[1108, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3.5, 0}, {4., 189}, "RoundingRadius" -> 0]}, ImageSizeCache->{{293.1822314994853, 308.3453905981928}, { 88.383238474248, 89.06497612668772}}], StatusArea[#, 189]& , TagBoxNote->"189"], StyleBox["189", {}, StripOnInput -> False]], Annotation[#, Style[189, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{4., 0}, {4.5, 33}, "RoundingRadius" -> 0]}, ImageSizeCache->{{307.8453905981928, 323.00854969690033`}, { 88.53324415562682, 89.06497612668772}}], StatusArea[#, 33]& , TagBoxNote->"33"], StyleBox["33", {}, StripOnInput -> False]], Annotation[#, Style[33, {}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{5., 0}, {5.5, 1}, "RoundingRadius" -> 0]}, ImageSizeCache->{{337.17170879560786`, 352.33486789431544`}, { 88.56401455180709, 89.06497612668772}}], StatusArea[#, 1]& , TagBoxNote->"1"], StyleBox["1", {}, StripOnInput -> False]], Annotation[#, Style[1, {}], "Tooltip"]& ]}, {}, {}}, {{}, {}, {}, {}, {}, {}, {}, {}, {}, {}, {}, \ {}, {}, {}, {}, {}, {}, {}, {}, {}}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{-5.21, 0}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], PlotRange->{{-5., 5.5}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.603663723168139*^9, 3.6036637282834673`*^9}, { 3.6036643490706244`*^9, 3.603664365272087*^9}, 3.60397621876318*^9, 3.6567593072101316`*^9, {3.656929093626227*^9, 3.656929112874793*^9}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{"x", " ", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{"x", "^", "2"}]}], "/", "2"}], "]"}], "/", RowBox[{"Sqrt", "[", RowBox[{"2", "\[Pi]"}], "]"}]}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.603976271996563*^9, 3.603976302749124*^9}, { 3.603976479053463*^9, 3.603976479367424*^9}}], Cell[BoxData["0"], "Output", CellChangeTimes->{3.60397630379676*^9, 3.603976480174367*^9, 3.656759269679295*^9, 3.6567593124177923`*^9, 3.656929219352491*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Sum", "[", RowBox[{"Gaussdev", ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "100000"}], "}"}]}], "]"}], "/", "100000"}]], "Input", CellChangeTimes->{{3.6039763151589108`*^9, 3.603976326205399*^9}}], Cell[BoxData[ RowBox[{"-", "0.003674929686987697`"}]], "Output", CellChangeTimes->{{3.603976327611684*^9, 3.603976330921351*^9}, { 3.656759288795341*^9, 3.656759314296303*^9}, 3.6569292675344067`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"x", "^", "2"}], " ", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{"x", "^", "2"}]}], "/", "2"}], "]"}], "/", RowBox[{"Sqrt", "[", RowBox[{"2", "\[Pi]"}], "]"}]}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.603976271996563*^9, 3.603976302749124*^9}, 3.603976343875132*^9, {3.603976486376698*^9, 3.603976486623961*^9}}], Cell[BoxData["1"], "Output", CellChangeTimes->{3.60397630379676*^9, 3.603976344348804*^9, 3.603976487197456*^9, 3.656759336697056*^9, 3.6569292917887163`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{"Gaussdev", "^", "2"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "100000"}], "}"}]}], "]"}], "/", "100000"}]], "Input", CellChangeTimes->{{3.6039763151589108`*^9, 3.603976326205399*^9}, 3.603976363804111*^9}], Cell[BoxData["1.000286255849175`"], "Output", CellChangeTimes->{{3.603976327611684*^9, 3.603976330921351*^9}, 3.603976364700534*^9, 3.603976493938487*^9, 3.656759343243547*^9, { 3.656929301584867*^9, 3.656929333632785*^9}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Cos", "[", "x", "]"}], " ", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{"x", "^", "2"}]}], "/", "2"}], "]"}], "/", RowBox[{"Sqrt", "[", RowBox[{"2", "\[Pi]"}], "]"}]}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.603976271996563*^9, 3.603976302749124*^9}, 3.603976343875132*^9, {3.603976486376698*^9, 3.603976486623961*^9}, { 3.6039766136293907`*^9, 3.603976617363564*^9}}], Cell[BoxData[ FractionBox["1", SqrtBox["\[ExponentialE]"]]], "Output", CellChangeTimes->{3.60397630379676*^9, 3.603976344348804*^9, 3.603976487197456*^9, 3.603976618218194*^9, 3.656759373634959*^9, 3.656929395697061*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.603976622879642*^9, 3.603976625192828*^9}}], Cell[BoxData["0.6065306597126334`"], "Output", CellChangeTimes->{3.603976626086287*^9, 3.656759379756691*^9, 3.656929398036845*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{"Cos", "[", "Gaussdev", "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "100000"}], "}"}]}], "]"}], "/", "100000"}]], "Input", CellChangeTimes->{{3.6039763151589108`*^9, 3.603976326205399*^9}, 3.603976363804111*^9, {3.603976628726296*^9, 3.603976632956071*^9}}], Cell[BoxData["0.6070370005606889`"], "Output", CellChangeTimes->{{3.603976327611684*^9, 3.603976330921351*^9}, 3.603976364700534*^9, 3.603976493938487*^9, 3.6039766340573187`*^9, 3.656759389578005*^9, 3.656929416654842*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integrate", "[", RowBox[{ RowBox[{ RowBox[{"Cos", "[", RowBox[{"x", " ", "y"}], " ", "]"}], " ", RowBox[{ RowBox[{"Exp", "[", RowBox[{ RowBox[{"-", RowBox[{"(", RowBox[{ RowBox[{"x", "^", "2"}], "+", RowBox[{"y", "^", "2"}]}], ")"}]}], "/", "2"}], "]"}], "/", RowBox[{"(", RowBox[{"2", "\[Pi]"}], ")"}]}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}], ",", RowBox[{"{", RowBox[{"y", ",", RowBox[{"-", "\[Infinity]"}], ",", "\[Infinity]"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.603977177522504*^9, 3.603977221369491*^9}, { 3.6039772681937323`*^9, 3.6039772726937838`*^9}, {3.604350250767877*^9, 3.6043502858058968`*^9}, {3.604353466073265*^9, 3.604353493139718*^9}}], Cell[BoxData[ FractionBox["1", SqrtBox["2"]]], "Output", CellChangeTimes->{ 3.6039772230024*^9, 3.603977273557968*^9, 3.6043503013793507`*^9, { 3.6043534749099894`*^9, 3.6043534940199738`*^9}, 3.656759425191935*^9, 3.656929459043432*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.603977226618791*^9, 3.6039772327652683`*^9}}], Cell[BoxData["0.7071067811865475`"], "Output", CellChangeTimes->{ 3.603977233401778*^9, 3.603977274776402*^9, 3.604350307023761*^9, { 3.6043534884802113`*^9, 3.604353495250432*^9}, 3.656759431114605*^9, 3.656929461178575*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{"Cos", "[", RowBox[{"Gaussdev", " ", "Gaussdev"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "100000"}], "}"}]}], "]"}], "/", "100000"}]], "Input", CellChangeTimes->{{3.6039772459849043`*^9, 3.603977253004981*^9}, { 3.604350335014318*^9, 3.604350335364328*^9}, {3.604353500654599*^9, 3.604353504062767*^9}}], Cell[BoxData["0.7056181918969908`"], "Output", CellChangeTimes->{3.603977256879697*^9, 3.6043503407049723`*^9, 3.604353505772698*^9, 3.656759433711542*^9, 3.6569295140118017`*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"promedio", "[", "data_", "]"}], ":=", RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{"data", "[", RowBox[{"[", "i", "]"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}], "/", RowBox[{"Length", "[", "data", "]"}]}]}], ";"}]], "Input", CellChangeTimes->{{3.6039800932096987`*^9, 3.6039802688710318`*^9}, { 3.6039803906915503`*^9, 3.603980400209466*^9}, {3.6039808718745937`*^9, 3.603980875184156*^9}, {3.604000550264509*^9, 3.604000550714779*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"data", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"Gaussdev", "^", "2"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], ";"}]], "Input",\ CellChangeTimes->{{3.603980275010803*^9, 3.603980298707432*^9}, 3.6039804133819523`*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"promedio", "[", "data", "]"}]], "Input", CellChangeTimes->{{3.603980300629661*^9, 3.603980303668253*^9}, { 3.604000561019348*^9, 3.6040005615928297`*^9}}], Cell[BoxData["0.9670662438661917`"], "Output", CellChangeTimes->{ 3.6039803045378027`*^9, {3.6039804031492033`*^9, 3.6039804151360817`*^9}, 3.604000564142926*^9}] }, Open ]], Cell["Ecuaci\[OAcute]n diferencial estoc\[AAcute]stica", "Text", CellChangeTimes->{{3.603985786218508*^9, 3.6039857968576193`*^9}, 3.604000468485034*^9}], Cell["\<\ m D[x,{t,2}]=-\[Lambda] D[x,t]+\[Eta][t] <\[Eta]_i[t]\[Eta]_j[tp]>=2\[Lambda] kT \[Delta]_ij \[Delta](t-tp)\ \>", "InlineFormula", CellChangeTimes->{{3.6569244388066463`*^9, 3.6569245346904783`*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"\[Mu]", "=", "10"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Sigma]", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Nn", "=", "1000"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]t", "=", RowBox[{"1", "/", "Nn"}]}], ";"}]}], "Input", CellChangeTimes->{{3.6039860019854183`*^9, 3.6039860468518677`*^9}, { 3.6039861360552*^9, 3.6039861516591997`*^9}, {3.6039861910927877`*^9, 3.603986191946537*^9}, {3.603986285437435*^9, 3.603986312831008*^9}, { 3.603986436966939*^9, 3.6039864536062813`*^9}, {3.604061999368535*^9, 3.604061999960431*^9}, {3.604065504771627*^9, 3.604065509241111*^9}, { 3.6569311608723373`*^9, 3.6569311616851892`*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"x", "[", "0", "]"}], "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{"Do", "[", RowBox[{ RowBox[{ RowBox[{"x", "[", "i", "]"}], "=", RowBox[{ RowBox[{"x", "[", RowBox[{"i", "-", "1"}], "]"}], "+", RowBox[{ RowBox[{"Sqrt", "[", "\[Sigma]", "]"}], " ", "Gaussdev", " ", RowBox[{"Sqrt", "[", "\[Delta]t", "]"}]}]}]}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "Nn"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.6039858815409517`*^9, 3.6039859932566023`*^9}, { 3.6039861174385643`*^9, 3.603986128665012*^9}, {3.6039862380407333`*^9, 3.603986259561985*^9}, {3.603986418247054*^9, 3.603986419035039*^9}, 3.604062009385223*^9, 3.6040624775302553`*^9, {3.604065640386907*^9, 3.604065643097584*^9}, {3.656931208207258*^9, 3.656931270554645*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLinePlot", "[", " ", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"\[Delta]t", " ", "i"}], ",", RowBox[{"x", "[", "i", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "Nn"}], "}"}]}], "]"}], "]"}]], "Input", CellChangeTimes->{{3.60398597983113*^9, 3.603985987708626*^9}, { 3.6039860541195087`*^9, 3.6039860776664352`*^9}, {3.603986320088089*^9, 3.603986342498519*^9}}], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.006944444444444445], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJw12Hc8Vf8fB/BLSzS0tVTS0i99NbTUqz301V4aKu0S2jullPYeqIhvokSl EHGuvffel+viDq49771+l/u+/umhOPecz/l8Xs/Xu3HmVpsOqbJYrMpuLFbn nxLP2jQT8w2IZu7b/9PsxSi+34eyeR+uSPo9ZdquH/979sVRjJ833eKUu/Lf rXFl9lCWbv5H5spg71Ull8/i9pKqxA7Rb/r5iwh44fuu90wv5hJ/ooGa11WM MkpKsHvwh37/BsIevlxlvyKEWVC8/tEbS1v80P+9sf4tm653GzHzl7Kufohi Atf0UZ169w5u137JTwpJoOvbo6ed67KVkmRm3q+Y8yHO91Gy62RF/ZU4+ryH iF/BPr8yP44J0LYTbgx4jHV5o5M/jYyiz3+KSuG5xaGHopl3EWO/nz76DDWt B0KWHo+h+3mO9+03HKNs2Ux+a9cHwiw//Fvir1C6v5dYZ5f7aOhtNjNyeqFu z5uvUHe3Jc59UjDd72t82LPwwZ39fszOg11XRKl9I+fr0kC6/7e44Tu62Xzp T8bRoesLGnOm9OIYfqXncYQKe1DAvAVfmNyk5s3cT05oMpi2OTruFz3fO3xY 4Rn0MyGIGd59W79pP99jW9PI0902/aLn/YApqU53vtr6MDsUF4TrlLyFDXtf 0vO7wCu+IMz3mSfz75x7S/bxXKBlMajoxbNLtB4f8b2C0zErfTlEGzuv+BFz jH/nDx1jR+vjCscG5/nNFR+ZBxYV7Z61rphstSR7pLoLrZcbWDtNlzwQDsbU u0Plj+AGX823s/91vkHr9x+GdmQ+qNL4wMR/XOFXL/0Pl96kzJts+p3W8xOG 9nerGPXjGdO5Wlrd3XG8qedoH1V3Wl935Pz6cmHqMV9GPdvNeqH6Z5wssm2b /vsnrfdnpA6bWe16yZ/50vm4mh7o5f/x87Iaf1p/D4SZWzclm7szxp2XG+qJ iYcqS3qv+0zvwxN7nhfrB/R0ZbqWe9QXxKXnXfKp9af38wX971ssGJX7m+lc vRSdr0hdGqD7g698X1/xsSf3kHn6V2bK7idhjZO9YC+aNXPCdTa9Py94dksZ 0rA2hImVX23E9G84rtp97kInNr3Pb0hjT3Ac6fCdOfqs6ipme+OVudvVAV9+ 0vv1xoqpLrxhJn6M/Obkj+yDpDn6jUOOONP79oGxk7cVV+LJbJFvHvkrxeDr eh2fX/rR+/+ObYXfNzjVBjL/yVcv2+07/j7/b86UQ+G0H76j4GFynlV8FNMg zbjIn/gDzrXi5+0pcbQ/fqBtiGi9rnYSs7xrA/zAVp1TujdWxDKK/fIDhksf tb5fG83IX17nA0HbeZhfVmMU7Z+f6GEzsClsdQSjuL2fmPjO7ft7m0jaTz+R 6Brc+GIKw8zs+vJFP8mrDt75P7S/fOHYoqGZNuEvc4sdJ99Bvih10D8/Qs2L Uew3X1TlBVmut37LpMvfvnxNcKXlbdrhoW9p//1C2q/wwDqeFzO+64K/0Ie/ 9LR+96+0H39B7aWJabhrIHOm6wX8xlETX5tStRDan79xs+iu0S/DP0x442T5 G/6NoWuSbp5YEUX71Q9rt5rOfxUYyQxU3CDcR/9gO8yOoP3rB511/Z2nm0Qz XXcX4wfzmb8cN0TE0H72x70FMV7n5Nf7+V78OWqtP4y23t/qMyOM9rc/oi7N uV+0O4JR7Xpgf6Tr2Zz9qx1J+z0Ah30LrydkxjGbFBsGBs+ia+esSaL9H4CA 0Z77zF4kM66dj5sRgC11y6ffH5RC5+EPnGfsvpxoncjUdV5uxx+cSunbPHx9 Gp2PP0hI0eL4hCQySzu3f/4f3J2VUjR3WDKdl0DwZ+0/tfdjMtO1fc0CMdJm 3OyVokQ6P4HI3Po55u3KNKbkcucLCcQOc9MHHvqpdJ6CwPtZmnEvOJEx6Nrg QYj/uEhlXUcqna8gLPsiPtLTO4O5+WqZfMsEQSN3wfnpEzPovP1FDqfoStqK TCZVp+sF45LFim+feVl0/v7it43TuI79Wcy4zvSv+ovtkNxpPZdO5zEY9+ZP 6eU4LoM51Xk8rIPhfMHIKPhSEp3PYGQs67ZObVMSE9r5duuDMQ4qTtwBKXRe Q2Afw14tKUxiNBUHEjpik5vrG1Po/Ibg4oClW6IcM5mu5WsNgY/PfG72+2w6 zwy+vt/5podJLtN1e1cZ7PnbZ+I/6bl0vhlE3ZwfYROdy7C6vtiw0M8ISTmb T+edjd1Ltu9stitgPKLWyk80G+IvOQv3Lyug88+G48Tg9FGjc5kN8tMo36Mo 6j1V5XNQLuUBG2ePqj15cDePaenUJ4KNCT1NGoapFFI+sPG+MGF37zGFjMuI zgMRip4mrpVzVAspL0JhfXNK3b+3CpjVXS84FGq3u1vFPC6k/AiF/9Jh/iOK 8piaz503GApnUcLWeKtsypNQHPp67M7g5AzmbefdxYVibJjE797/sihfQpGt FtTXSTuL6dxca/qE4cWi7ovNLdMpb8Kw2DFhn97XDKYzTdJMwjA9yP3bwl2Z lD9hqFBrkVrdyGQ6d4t8y6BhUeU8B1Ea5VEYHj8z9G4UJjFdj5sShlU3JzwY W5RA+RQG59tfer7tiGO6LjcwHHZJGW/3NMdTXoWjfryTE0sriemKo83h8FZ/ M3CBRSzlVzhCxzZlHH2QwCjqQzg0R3Ks/G7HU56FI2vb9rFrq6KZrjjIDkeC mrVkU2wC5Vs4VnvNHqWakMLYdAVOBCotvqb0O5pGeReByapJv2IfZjGTug5Q BDzfHphxmZNB+RcB7cIRFepbs5nkrnoRgcNPtHRqKrIoDyOgr2m9e3tJBnOh 8zgURmCiJFiQ+yqd8jECb4c8rzm8LIsZ07mdtSNx8/OclpG3MigvI6HOrNox SSuDie7cfvsicVFdo/HexVTKz0jofNK5sWVgBmPVFZCRSM6ZZBq1NJPyNBKz Ppk6b0nNY4Z1HfhIuPjy3xVeyqN8jYKV6uJTy3Tyma7b042CkVPC4H6ahZS3 Uaj+yF4Zfj6POdz1FYVhNY/N1zjkUv5GYdK7bmN6OeQwneVJnrAoXbQqmLHL oTyWX88qSOvuyEymMx0v8qMQMMha5aQgi/I5Gre91xxu6JHFmHVdMBp23mXW 6esyKK+jcWDOiC1zxOlMz66AioZj0NFeYTnplN/R2Ps+d+7rqnSm820M9o6G jknS8Qd9EijPo7E4N1Vv6tcUpqvdiaPhkDzKe3p1CuV7DOYGFOQOnZHCyDqP m0EMBjbqeeqop1Hex2DO4rI1Y51TGffO7Xw6BrZLa81G66dQ/sdg7OCFGT+3 pjLrFA8szzOzOrF6Cnkgv/69blrL1iczTZ2vozEGxyLWj/ufWgz5EItNl889 ymRFMx86H3dOLPoyFk46y+PIi1jkRt2+I/mRzKzsWsBYXOujaSvdkEp+xGKZ wQ72phcJTHUXD7HwVPGYEJseS57Eoo1x316fGse87oz39ljkHE3evGpnEvkS h1vpfnlxGxOZrnheGIfnTzJ2r0qMJW/iUHL5XHHHnFimK16vxyHmhrvHzdBw 8icOTuIeRnv3RDKK+IvD8iHd+stc/pJHcdA/2e6wfetfpiteVOMxxYhT+UPz B/kUjwSpXfBmVUem6/gui0fvvDAZi+9KXsVj4ODpmuquPkzX8bCLh4dPwhqd cT/Ir3j0cNxr3Gb8k1Fsv3jYmt9+vWukE3kWj5aelwY82e3OZHa+XrUEnCr/ s/LOXlfyLQFhWpYZnFffmGtdAZgAs10tWPviO3mXAPvxXosbXD2YCV0bMAFp C01ZCzVcyb8EHD9x7LZusj+TmND1hZbvyTNn8H3IwwToWaqfr7j1hznXFaiJ GP6PvsGqIX/Jx0S8M+ybO/9jMDO6a0MnYnvA/j97XweQl4l4dpAXGPc9kIns Gq8S8SRtWKPXIeW8koh72d5S3sxQ5mRXQCdC88P7MKdDfuRpIo6u77N/9a8g piuuBifB7EXCM091ZR9OQsqPnat61QYzXXGwLUn+V4WDJy4KJW+TcL+xLHmY /P0pxq8kOPaa3HpOQ9mfk2AU5L7E+kAg00dx4DBtLff2g4d+5HESpotiVqQ9 CmK6tsuIZKTGXHoa5xFCPifjuosbp7ZfONP1OnYnY8GAkgxb60jyOhnme2p9 t/iEMYrxLBkp7/zmW16NIL/l3y++mek3JYLpulxxMpZ/WTInMz6SPE+BxV7r dP1t8XTeU9B7aQVHPTGGfE9By4bUiU194uj8p2DfQ83l0sfh5H0Kno52zhLW +FIepODJ0Bcy/W6e5H8K9POTvn76/IvyIQUxq7X253cPoj6QgoIDnxfuyPSj vEiBtOPAONbV39QPUqBimWySNzeA8iMFcyPUn2pcCqW+kAInS82NeVeiKU9S kLrsxICN66KoP6TA3aM/5/aIKMqXFJRNeTx78YMo6hOp2DaOt+jFemXepGJE XKCa35M46hepKPV0fv96UzzlTyo2Gpl9/88ggvpGKvoOsRW2T46iPEpFsdmE GVc+R1H/SIWDsf6OpT3CKZ9S8RiT/galsKmPpEJQyOW5G4dSXqVin0WfdaGy UOonqfDImBxw5gBD+ZWKmNAVhqssQqmvpGJMU4qeSBhKeZaKc1M/S2qiI6i/ pOJefZlVNDeS8i0V3r1iqgNFYdRn0uB66dnVJznRlHdp4Eu3nPgQlED9Jg0z Jr88OP9gLOVfGpasFn8vuhtPfScNYvOeJemboigP0/D1Q09RUHUE9Z80lAur eru/jaF8TMPi+1fatCUx1IfSoJKcauhtEEd5mQbZBLNuJaaJ1I/SoC0aeO7R y2TKzzRsM6t14I9Lpb6UhuLVowa+OaDs92lwOGN7a1HvDOpPaWhrVds/ZUUW 5Ws6evd33T80Jof6VDrOYIP7lZH5lLfpWPlPhpN1UAH1q3T8zz1QZ1P/Ysrf dPyZk9Tj4FoO9a10aDb0rl6VXkJ5nI6LK7bbTHIrof6VjiC3pTltvUoon9Mh 2fiyOVijlPpYOu5c6BlyPKKU8jodelbD30Q+5FI/S0dPd5ml914u5Xc6nPPV RqYP5VJfS0fBJYNu8T6llOfpGCi9W953cCn1t3Q8yixasOUAl/I9A73+Cam8 dJlHfS4DJ8+cnvcyoYzyPgMaP7fcyZrKo36XgQ3bD9xkhvAo/zOQZvdBKyC9 gvpeBgTtPvm7rvDJgwx4bkhRcz1WSf0vAxeCPTXyF/DJhwx4CZeWZXXwqQ9m QNvwQ63NPT55kYGSTz9Xz+DwqR9m4Pvbc55fzQTkRwamm6jdbBknpL4ov/+v Fxev+ikkTzLgluo/PTKET/0xAw0/h+T05/LJl0wUexx4e6eCT30yE5EDInLL PQXkTSbym7XrLnYTUL/MRPuHfRdVayrIn0zwVNUqvu2vpL6ZiRBjv5k3+ZXk USacSw/8Ux8ioP6ZCYMLRZrXMvnkUybGjHI61zxNQH00U96HA/oviOGTV5mY dPmJZmydgPppJtysB0wbGCAkvzKx6+32Df6zBNRXM7HIJs6gWconzzKhIuZe Pn+IT/01C9ckW4ZacivJtywkeffU+bOpkvpsFrjDhp77k1JJ3mXB/es1leBd fOq3Wbja22mfTSGf/MvC4++rP7x7UEl9NwsJwYsLZr7mk4dZuLzv67DUgXzq v1mQGj54td6CTz5mwUf/4sQnAyqoD2eh1GcsV8WogrzMwrJfi8a7R5ZTP87C D71Ncal5ZeRnFrbtfqoTtI9HfTkL+/yvm/bQLydPs9AcotE6vx+P+nM2BvSd 17OpiEe+ZsPF7qe17aly6tPZCJvw23j0NB55m43g8NXOZid41K+zERTTX13Q wiN/s3FN7dAy3Xge9e1s9Hhd022JSTl5nI3aB71X9PpUQf07G2Zbxi34ubuc fM6G9sasH9e8yqmPZ0Or6Sz36qZy8job+h1ZmssLK6ifZ+OJcNjqQ5MF5Hc2 fAImiPYc4VNfz8YGjZexK2bwyfMcdFuyee6dz3zyPAenDRqmlR4XkOc5uPdu RsGOZULyPAfzTrlHDd4nIM9zEHaxpyi8Tkie56DXmHlP/mcjIs9zkHLJLjb3 iZA8z4FZby37yzVC8jwH+9oXCJ61CsjzHBhx7OdrhYjI8xxY/zY90mgqIs9z 4NB95NG7P6rI8xw8HzT9+YAtIvI8B1ee1w4caF1Nnsufp25NCK9aTJ7nYEbA 8QN7Q6vI81z8U1r3cZBGFXmei+7fxq7vVllNnuci6+y5OHWumDzPxYxu669u vF9DnuciZmRF8EA3MXmei11aXKs+n6vI81xocX3uzvKvJs9zMXDzmYMJu6vI 81xonPVY87BXNXmei22Pp3Kcl1aT57l4Pc7AItBOTJ7nYuIwlYRPl2rI81xs XrNxh7tbDXmei5y+40+q36whz3MxqsMdTj415HkuFn29/ObMr1ryPA8PQi7c GF9QS57noe7dhehVm+vI8zzoPc5UuRleS57nYa7IXZc7qJY8z0Nm0ud5vw/X kOd5GN4+5oLpNjF5ngezoTduca+IyfM8zG64GK1+Ukye52HLpCFcq1YxeZ6H 0Unmw+Oia8jzPARfcm7iXakhz/OQMX9W2LALNeR5Hi4Pk2pNLhWT53n4wnVZ +NNdTJ7noXvk5bE6t2rI83yM7Ke/b5aRmDzPx67fVWa1O8XkeT6GF3n0zjpV TZ7nQ7jmXsrPyTXkeT5CJqqHHblYQ57nY7t//0XbLWrI83xM1OsWt2ZHLXme DzD7n57pWUee5+OrsV17zbVa8jwfFgeD/8xNqCXP87HzUm/VzDs15Hk+PP3j n4YPriXP8yHA6n5VB2vI83wE/Pb6dZ5fQ57nY0zfadfjptWS5/nYq23uOnN0 LXlegIsTDl0ee7qWPC9A/pw1k3+Y1pPnBQi4FdJglVNHnhegNSy1+56OOvK8 AFdN4nscP1JPnhegz5ZNq07uryfPC1B4dsma4w/qyfMClJie/9onuI48LwDr 17kpGS515HkBlm++bfNfaR15XoDgcZ9iWfLPU3heAN6SloX9B9eT5wXoPXDg jJDD9eR5AVJ2L2ye9bCePC9A3+0qNiat9eR5AYYv/73FKbSBPC9Eq3HWbAe7 RvK8EMFn/FoubGskzwuh12ok0PnTQJ4XYuf0As6VHo3keSEmCizUN5g1kueF 6HHkcNxG40byvBBR51fHrp3QSJ4XInJ+mMTXvJE8L8SYaTdN131tJM8LUffC Kfs2q4k8L8ShUTHh1xsayfNCjF3/eEDayUbyvBAuO02yXu9tJM8L0fN43Nb9 kxrJ80IYvXXbniS/H4XnRVjUfc1G7YQG8rwI+3rn99FvbyDPi7BZenRO45FG 8rwI28uxOHlfI3lehG1PBtqsn99Inhch4ITj4cQHjeR5EVrnPazdymskz4sg M2FmDQ5vIs+LkLZKPGXV0ibyvAjH33e7db+okTwvgn/fqR68SU3keRF2/xpn XZjXRJ4X4cq/o3Qfj20iz4vQ69T8PQ8KmsjzIjhNajAv791MnhdhS+jWtOLL zeR5MZxHDhDN82gmz4vhOqs5yimvmTwvhoH+idXRm1vI82KY9FuZ96GkmTwv RnM0Qp8PaCHPi/Hmdf2PM29ayPNiXPbo1aCxsIU8L8bydXNuHdrZQp4XYwgv pDliWAt5XoxPCz8EvqhuJs+L0W1t6I3m0y3keTF0Z8ccVJ/eQp4Xw8rFctzL XS3kufz+Z/794JDcQp4Xw27kv1OPR7WQ5xz8KJRkPPzZQuedgwidboHSf1vI dw6kRZzFgw630PnnIOXrtP6j4pvJew6sW2KMDxc2UR7If96nZ2U8msl/Dgry Yo+V8pspHzhwuIoVyUeaqQ9wcGaP+Fdvy2bKCw4kmqbRyfL1VfQDDuY5HJhf rdNC+cFBEHd33RJeM/UFDtq0Zw7U82ymPOEg3OHI2ZvTmqk/cGA88N2eLS7N lC8cOG34J6z3wGbqExwkq6m9cI1rorzhYMGRqKev5M+n6BcccPqce/vMpIXy hwPTW43/yz7YQn2DA52AUV8dg1oojzgorx7xIuhUC/UPDkLvZ2YZXm6hfOLA f/ro9r59WqmPcHCi7Z9Eld8tlFccqOywHP2lsJn6CQceNV73N8n3oyK/OFg+ +/7xvmnN1Fc40IxPjGhlNVOecWD+19nr5Nxm6i8cJFzWu+cnbKJ84yD/xjf7 ZdeaqM+U4FS2qm7I0ybKuxIsW5Wgu3pCE/WbEpycGStN6VDmXwlCLpwa0jK5 ifpOCXaVzF4V/1yZhyWY1/qwt2FMI/WfEsRV2zlsHdxI+ViCpX3eF16rb6A+ VIJuC/7LXd3UQHlZgsGTLWytPzdQPyrBwFRr5zsPGyg/S3DXhv1PQV099aUS zBJ6vrsnbaA8LUH8kyfvzAwaqT+VwNA68tYqFWW+yp/v9My30+X3p+hTJXCb X5euEqPM2xJEvfxYwN3dRP2qBNtNC4f5b2ui/C3BqOXLU4cMbKK+VYKtGa3c nTOVeVwCE38zDem4JupfJag5MUj3oI0yn0vAjp17sXxEI/WxEpTbF0707qbM 6xIk6a+zu+neSP1M/u/cGzxeiTK/S3B28N+3+jqN1NdKYBS4s8h5vzLPS/DI 56sW70oj9bcSvCvZqdI7rYHyvRQmCbcXDFrUSH2uFCNGTahtWtxEeV+KcxE9 5mvL94Oi38m/jw/tv/NjE+V/KfrnWJgFeTZR3ytFZLHG5RGVTeRBKd4NNpSo uDZR/yuF7swzfIOFzeRDKdJ80/yTjzVRHyzF8/duFumDm8iLUjApVZJ/7Rup H5bCcq/g4XRjpR+lCFMr7G/7tpH6YimcRu/vtdOgiTwpxZ7uywVu/RqpP5bi WajeWW+vRvKlFGfnvO3viCbqk6VIsT3lttZZ6U0pDm7rG1o4vpn6ZSn+xhp/ etXWTP7I1yvtqG/Bihbqm6Uoqu6wC0cLeVQKs+bwq6xbLdQ/5d+7zrQqCmwh n0rxI+Qi+4FdC/VR+e872HUMkOerwqtS1B3WVbGuaqZ+WoqEhr8WH9ubya9S uHzYajKV00x9tRRbHGfsExi0kGeleL3PNo9pbab+ypXvN72O9+ot5BsX1oec Rt262EJ9lgu1M/GHD2u3knfyn1drKtbc3Ur9lotNm675q/dsI/+40C+pDzqZ 1Ep9l4ua7FGvre+2kYdcvBvxQ/1tfiv1Xy6MdoZFPnZtIx+5cFa7MaPicTv1 YS4i+nFDvle1kZdcGLM/xU0rbaV+zMVPLY/67t3ayE8uXgtucMZ7tFJf5kLl cKt5xPk28pSL040vFm33aKP+zMWE6mIbo5Y28pWLJ0bPs2b+bqM+zUUs4pxO j2knb7nQu/X9r5tqO/VrLtbOL37xpmc7+cuF/d57B/s5tFPf5qLhbLjEyaud POZizK/ie/kl7dS/uVg05OHsjasl5DMXCZ4f58dpSqmPc5FV9K6vykQpec1F jxObfNMWyKifc7FQ9MEubJaM/OYi0HbQE70rUurrXMy5McF0Wa2UPC+DW+aQ 2/fZUvK8DPsLHEOyj0jJ8zJc1i5wfFUpJc/LIHYwftJLKCXPy9B9UfKlN45S 8rwMQfMyIo7YyMjzMqx+Hn+wapKMPC/DpuGPr5eFSsnzMhzcqc4SnZWS52VY 27pc1fiJlDwvw9ZPZvZaD6XkeRn0c93H/+chJc/LsO9nv7KP46TkeRnG9hlS y3GWkudlqNYukOhpyMjzMmzf1qi+7oeMPC/DurIwR1a6jDwvQ/3EGAeLXBl5 XoYRWzN884d3kOdlOK1R/Kj9low8L0PeKPPhBYM6yPMy7EzMvDVidgd5XgbL 5gbNQ1s6yPMy8NxWLDoqv77C8zKYnB9+3+J0B3leBqfBXnvG3GOxFZ6XwTbf 8My5EBZb4XkZ3GfF+jv/YbEVnpchxeWLreE5FlvheRlGGusKL+ax2ArPy7CU fzNm7UoVtsLzMty0e/HJ3YfFVnjOg2da5Pmldiy2wnMeAlaYfH8YxWIrPOch 0fJo2U4ui63wnIcZacdc9haw2ArPeVgZdtAr8akKW+E5D4Nf50m/3VNhKzzn IV/sNjfVSoWt8JyHzbpffkcGqrAVnvPwvxSfh+kfVNgKz3ko6cMatd1eha3w nAfLEy/aX21WYSs858H40aOTt1tYbIXnPBR5zbZo6qvCVnjOQ//zfbY/Yqmw FZ7zsCpQq7WHgQpb4TkP6z4evhogv57Ccx7Csj4+LtmgwlZ4zoOeMPvNin0q bIXnPLhIX49XM1NhKzznQWXSP08bTqiwFZ7L18/73J36CSpshec8bMgTHuS/ Y7EVnvNw5bnqeo9EFlvhOQ932g5eOPWbxVZ4zkPQilk5o7+x2ArPeTB4Yvso 9yqLrfCch10NTS66Tiy2wnMeureETB40h8VWeM5DhuFTq+n7WGyF5zwMGn1e 1XILi63wXL4+bPdfMlUWW+F5OYYbj1TX1WOxFZ6XQ+vz2NzlPzrI83KM0/g2 wLZJRp6Xo/5G7sL6YzLyvByfTZoH2EVLyfNyTBi5VOooP38Kz8uRtjLH3ktF Rp6XY/eerI5bo2TkeTk8LvyeOfCOlDwvh1+Z45+9DRLyvBy/2j1T7mZKyPNy dC8+8f3mFwl5Xg77h79O7bCUkufluJk3l2McIiHPy7F5k6fvg/FS8lz+PBO1 f7O8JOR5Ofx3e1z0+dVOnpcDzwbmJZhKyPNyHJw/Wjt/nYQ8L0fOssELtue2 k+flsNWftzMypp08L8eFh5VXbCPayfNyrDMKGFW3rZ08L8cyrdFvz6W3kufl 6Hfj42eV9lbyvBw/xhzuk7W1jTwvxzVz6zzpmjbyvBySTaaf9jxoI8/LMWXU 0/iAJ23keTmOtuurarxqI8/Lcfbx2/WWcW3keQX+bhzz35Et7eR5BdaF75zy 51s7eV6BCBt1639d2sjzCqSxgua+399OnldgvyXH81/vdvK8AukCr0TLbhLy vAKPOLeb5u1sJ88rkDVMj7v1dBt5XoFx3Bo/TeN28rwCY3Q+N57JV3pegQF6 s1k91STkeQV+FruNT2JJyPMKXFthWX9su4Q8r0Cmj5PgvbmEPK/Atr3f2Cu3 SMjzCpTzF/iWtbaT5xW46Meqm2khIc8r4JYzYfKKhRLyvAK9NLRc/G60kecV CFhgvnK4dht5XoEO9x1l3+R9RuF5BW58d98+0bGNPK/ACs1Z3VU3t5Hn8uf1 5599VthKnlfAITzIUndcK3legbGnNENc9dvI8wq0ZEx53ra3nTyvQOL+DR42 kyXkeQVUiuJy9b5LyPMKLCzSeHhY/vwKz+XvszBp5bo/7eR5JdpPmVtvgIQ8 r0TKsamPz8rayfNK2AbenpggaifPK2Fu27b43SYJeV6JnmdDDh47ISHPK+GR Ktq2Xv69wvNKWI4TLlf/JCHPK6H/ScMx6rSEPK+E3vkjhq4DlJ5XInTf49wN vyXkeSWib832Xf5AQp5X4sAVKzXDsUrPK2H0LmJkq7PS80o8MLwYblSg9LwS h3XGzv61WkqeV2KhS4FB/nkpeV4Jw1Sdxh02UvK8EvlZLpMvD5aS55XgW0m1 vXdLyfNK3Pv2bcymx1LyvBKHjDbrxoqk5Hkl/ltr0W/EOyl5XgmZZlbiTG0Z eV6JNeFb2OXNUvJc/vlb5zh8OSIjzythGuy9982/HTSfV+KZdubsWrMOms8r IXRf5dodHTSfV0I8yeTvLuMOms/l62m142GPrR00n1dCJWH0NR22jObzSgQU XylLOiij+ZwPlUXdftwVS2k+52PP7w6bQ+dlNJ/zsbx4Tb+H8vVVeM6H+owY NYvXUprP+XgvjFo2Xd7nFJ7zEbb7tsdaSGk+58Nc31CvRUNK8zkf09pM+5ye J6X5nA9tmf6mxhgpzed8PNsSrrXsmJTmcz7ye5jt+TNGSvM5H/vGaLfZH5DS fM7H/ItuezzMpDSf8xF94Ur6x8tSms/5UOs4ExR+SEbzOR+69vu4/0bIaD6X //4JwZJz82Q0n/NhWaduOv6UlOZzPmyefqzpUS2l+ZyPW5KoOb6PpDSf8/Gi H9O/7b6U5nM+VP0NNzfFS2k+5+OHu9rbI/L1UXjOx9CWtP+9mCij+ZyP1wMk vOtqMprP+fB0b1fp/lJG8zkfsSoVdlo+MprP+di5dUWortxHhed87FVJ3/e5 l4zmcz6ejPuWd+2mjOZzPiaWukTPlfdHhecC9LbIayqz7qD5XAB4OKTjsYw8 F2Dj0QzzUxs7yHMB5t+oezDDsIM8F8B8G2w+ytdT4bkABuYm9Z++KT0XwMtN 7P7JX0qeC/Bn80XhqeFS8lyAf1ctFryYofRcgCOjq94ZjlF6LkD9Z9NeK98o PRfg7N9t34zvKj0XgJfheuBntYQ8F+DaMJ7PzGyl5wIMSywZXnRbQp4LYBUz fbfNJqXnAkwP9DaUnJKQ5wKEC9yXoUrpuQAhIs3lsqdS8lyAE37r2/oESclz AW6/L32Z6SQlzwUIm3anx5RuUvJcgOLHftH3/CTkuQBvpl5+O0yeNwrPBRjI qc/LSpOQ5wLMM/w9+Jc8zxSeC3DqpodvaD8ZeS7AoRE714SclJHnAow7GTMl o1ZGnsvvZ56vffvhDvJcvt7+hzNvLOggz4U4ZTDN7MorGXkuxAvXk8tzTDrI cyFW3hEX2HbrIM+F0NpiWTYoTEaeCzF09wprI4sO8lyItvot1zbM6SDPhfDe tcPxRlMHeS6E1dBw1XvpHeS5EOsDb5imXewgz4W4tGW68Zf1HeS5EKl/HO7O uC0jz4VwuPI+Botl5Ln8/lhudwfclZLnQvzvYsvTR2ek5LkQi9jP+d+nSMlz IXxcmJP6jVLyXIh/7YcM+KnZQZ7Lr7/DRb9cp4M8F0J0zMW9Z4GMPBfC6VRE /5kJMvJciAmcCUPuyvNZ4bkQA0bbC8fqyshzIZqyr9g4yu9H4bkQ0yYZ2Isj pOS5EEGFq2ddviIjz+Wft72weV2qcj4X4k3Q4wreJOV8LoSrwSG2RbHScyEC 44xadU4qPRdCv17Py/GCcj4Xwv7I3nu/vinncxFmj5ocPzxAOZ+L0PvAwGqR VDmfi1A36H6Z6QwZeS5CR/u07n88lPO5CMEWx8dYj5aR5yKcuaPnUjSigzwX oWXhpWdndZXzuQgPVU+0TnSXkeciXJ+r33hxl4w8F8Hr1iifafwO8lyEHZh1 MPwQi63wXARuiEfksQEstsJz+c+LDatijFhsheciFDvswDF7FlvhuQhP9LdX PSvpIM9FeO798Xq3pSy2wnMRkvgmVUOesdgKz0WoravWtj/NYis8F0HqbXMi ZxmLrfBchA3t40PaRrHYCs9FKO/fb6Fro3I+F+Hguq0PF3RnsRWeizD21YJV AT7K+VwEDY2npakNyvlchBXvHm9I2az0XITzJ7frz/KVkecihFRU8oa1yshz EdDUattbnr8Kz0WYZdiuZbZX6bkI79yHWAZOU3ouwsyer3gph5WeizBo49zb /dWUnldh4WDXPoI0pedVMPhHe+dTByl5XoXLlxuP1I+TkedV6PGub9Y9oYw8 r4LEwFja8lVGnlfh08jXmuflPio8r8KzBfar+s2VkedVSNTZqhGySkaeV6Ho wR72ookd5HkVyoR10QNCZOR5Fbb30ii+L1N6XgWH1TNGHd0vI8+rkHdv6LRx FkrPq3Dc9EXrd1Wl51X47/iExs/LJeR5FaaPP73U77CEPJc/35LK9jNTJOR5 FUYevKm27JWEPK+Cvv2PhMXDlZ5XIXmlseFRXwl5XoWAR8vzNl6VkOfyn395 rmB/Rzt5Lr9/Xf8nDya2k+dVuOXbYKgb0UaeV+Hn6Ka1NXdayfMqbOCWF/X9 2EqeV8Em4dMRbfNW8rwKzoucX5ywayXPq1Cdfj311IpW8rwKnnc/LwqtaCXP q/DkUtylf9TayfNqsFf3HfQtvI08r0bKfqMN/2W1kefVqBqgsnO3fD5TeF6N 2RFauVcz2snzarTNOfM/FbmvCs+r8Y/BlOQpzyXkeTWS2Nebd/LbyfNqfDjc VOgjn88Unlfj3OgrSZby+UzheTU2TenrctpX6Xk1HKx2bW7zU3ouv7/rqcZP nknJ82qUzosYO3iKjDyvhjZrR3/bKil5Xo3oZTe86/Yr5/NqnB5+2/6Pq5Q8 r8bTt6qXP8rzT+F5NXYLnKz9daXkeTWGXZz0pVmg9Fx+/8Uj3G7K96PC82oE pwtVg/fKyPNq7He58GWb3EOF59UwGf/tvs3iDvK8GrcybW3c/+sgz6vxxfHW zkIWi63wvBo5J0yNsqZ2kOfVkAx166P7UUqeV2Ni1HLbQiul59V4E7n5j/de pefy93nCLaDnNBl5Xg3rPiYfnZxk5LkYQyxeHjEtkZLnYoRisdutYUrPxfi2 KeV/w4fKyHMx4vS0B1npKT0XI/jsGCdfed4oPBfj8VID3bkmSs/FKKtqWjaW kZLnYjBeMU9HH5KS52I8OThikM5BKXkuRkbr/ttvMyXkufz+UpN7HHqonM/F +D3NwKjUQEqei3H3/YZDFipKz8Votjw0/JSV0nMxpPovis8eV3ouxu0ElmT/ MKXnYkhGmG/5/FQ5n4tx7/DDoNcJyvlcjGyDntU+8nlY4bkYp545Og4eKSHP xTBPHWfjs0xCnouh+sx2Tfh4CXkuRsO8/vd7CZX/3y6G9fkAs/r+EvJcDJtP /neGo508F8PuZ8Hh/brt5LkYbBOb90uClPO5GD/PjfV2vaz0XIywCcdWfUxo J8/FWOQxN+ewpI08F6Pv/YXVjbeU83kNBEamJds4bcz/AU9Xqq4= "]]}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{}, PlotRange->{{0, 1.}, {-2.216197413687533, 0.0006355294024224991}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.603985983355303*^9, 3.603986017807806*^9}, { 3.603986049736885*^9, 3.603986078038381*^9}, {3.603986130753805*^9, 3.603986154345648*^9}, {3.603986195089572*^9, 3.6039861988503103`*^9}, { 3.6039862477915697`*^9, 3.603986261850597*^9}, 3.603986294481825*^9, 3.603986343157428*^9, {3.6039864205968313`*^9, 3.603986460674902*^9}, { 3.604062005465218*^9, 3.604062010788562*^9}, {3.6040624801326733`*^9, 3.604062486666192*^9}, 3.604065511374853*^9, 3.604065644926632*^9, { 3.656931200404208*^9, 3.6569312797320423`*^9}}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"Nmuestreo", "=", "1000"}], ";"}]], "Input", CellChangeTimes->{{3.6040623395713577`*^9, 3.6040623515924053`*^9}, 3.604062411928548*^9, 3.6040657197211113`*^9}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"x", "[", RowBox[{"sim_", ",", "0"}], "]"}], "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{"Do", "[", RowBox[{ RowBox[{"Do", "[", RowBox[{ RowBox[{ RowBox[{"x", "[", RowBox[{"sim", ",", "i"}], "]"}], "=", RowBox[{ RowBox[{"x", "[", RowBox[{"sim", ",", RowBox[{"i", "-", "1"}]}], "]"}], RowBox[{"(*", RowBox[{ RowBox[{"-", "\[Delta]t"}], " ", "\[Mu]", " ", RowBox[{"x", "[", RowBox[{"sim", ",", RowBox[{"i", "-", "1"}]}], "]"}]}], "*)"}], "+", RowBox[{ RowBox[{"Sqrt", "[", "\[Sigma]", "]"}], " ", "Gaussdev", " ", RowBox[{"Sqrt", "[", "\[Delta]t", "]"}]}]}]}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "Nn"}], "}"}]}], "]"}], ",", RowBox[{"{", RowBox[{"sim", ",", "1", ",", "Nmuestreo"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.6039858815409517`*^9, 3.6039859932566023`*^9}, { 3.6039861174385643`*^9, 3.603986128665012*^9}, {3.6039862380407333`*^9, 3.603986259561985*^9}, {3.603986418247054*^9, 3.603986419035039*^9}, { 3.604061858002082*^9, 3.604061905817203*^9}, {3.604061960066308*^9, 3.604061977345784*^9}, {3.604062141609475*^9, 3.604062166073394*^9}, { 3.60406225102573*^9, 3.604062255730006*^9}, {3.604062356241446*^9, 3.604062357970745*^9}, {3.604065664954082*^9, 3.604065670170285*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"R2", "[", "i_", "]"}], ":=", RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{ RowBox[{"x", "[", RowBox[{"sim", ",", "i"}], "]"}], RowBox[{"x", "[", RowBox[{"sim", ",", "i"}], "]"}]}], ",", RowBox[{"{", RowBox[{"sim", ",", "1", ",", "Nmuestreo"}], "}"}]}], "]"}], "/", "Nmuestreo"}]}]], "Input", CellChangeTimes->{{3.6040623735697947`*^9, 3.604062399993176*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"data", "=", RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"i", " ", "\[Delta]t"}], ",", " ", RowBox[{"R2", "[", "i", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "Nn"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.604062018864482*^9, 3.604062172864736*^9}, { 3.604062309602241*^9, 3.604062321104797*^9}, {3.6040624262417183`*^9, 3.604062428552805*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", "data", "]"}]], "Input", CellChangeTimes->{{3.604062125467266*^9, 3.604062132234962*^9}}], Cell[BoxData[ GraphicsBox[{{}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.008333333333333333], AbsoluteThickness[1.6], PointBox[CompressedData[" 1:eJwt13dcTW8cB/DsLcr8ydawV1bkQ2aoRLLJJrL3iIxKyhaRmSSjoSgl7aG9 76i7984m63fqfvun1+me+5znnPM8n/en/ut3LdrU1MTERNnMxKTh9+/Ij+VO 6xfiO/+Nq+zhQhiPPXBIFLXBr84D9d6e7/Zf24pxK/mnfwduo893w+u8oJ9l 2m4c6xI1R3R0PxwCAwKXeOyn8w/jCbv3cMvYwziishrd+sVxCLuWWB+Ycpy+ fwodFtm9a/n1JCYLXIJu7jwNx29TvJLNT9N4Z9FrUsqcmr9nkOTYvulQP1+0 tf6iOfr8HI3vD4fxnS03iP0wKT7v4Pv7AZB8PFQa8uw8XS8QDw7lX3h6KgCJ fc5pXBMvwjx0/d/NPQLp+pdx/1eC0FYchNCsfjF7t17BgGVJkqudL9N8ruJF 37a5439cRs3Pxgsiv8u0f/7mV2l+1zFSljbUfOU19BrJG9TS5wbyl48XDP53 neYbjKI7vhYu4htYsbFxRIxw5iWqFcE0/1vY6P6m2Lr2Jm6HNP6gZVOBml99 i+7nNvJ8T1k77goBp/j7Ykn4HQSdubaTV3Cb7i8UIcEHYmz5d9CzuXvH4a/u Ysq4MqfUH6F0v/eQ4zBx2Njh97DMOCDWLPEqGPLwPt3/A6RnJ50cb/sACyac n+4he4Cz0774WqQ+oOfxECOf1jwvb/kQWteGER+i9okbd/+sh/R8HmFWp39D 5MMe4cIOxa/Ij48gHWtX6SJ6RM8rDAsmFsUGng7DUL9uzC2EoVcfk/SULo/p +T1G9bOri+bfeYyCh7PefP7zGLVtEtcWjQmn5xmOylYLx78Xh6PhafVo/gQX TU+mWB1+Qs/3Cca6/4wY/+EJ2rLCdtu3jYBt4YuO9dsi6HlHoHvA0HLXbxF4 1nC7nZ7iq+HTjz6bntLzf4qSOTF50uinmNcwXLdIeGzu1v4T5ym9j0hIxh/h bo+LROPjtniGsL1bhlsNeEbv5xnGX/s4oXDGMzQ8vdIBz5H38d6kDV7P6H09 x+2V4ed7mT/H4FWXMr7avEBzw92UX4+e0/t7AXGT41+T8QIfmNH+G/kSmefu aeZIX9D7fImzv83mOM57ia1XdMcxLgq83196n3j3kt5vFOKH7reWJEWBmRxz y9F4oPVfPG1ENL3vaCz3/rv2AisabsziYV4pbtr4PQyYEEPvPwbRloKBC71j 8Jh5eqywGPxJdd0p4sfQeojBxednTcwNMfjyp/KwyioWg28ZNvvPjaX1EYvq jE8vuRdiMbNxAcQCBZUbOIJYWi+xGJVWZRWFV2BeXsMN4eewemHg9Ve0fl7h 8M7qv6t0r2Cc3iu4F2zx9bGOo/X0Cj+amnbpHRaHsY0/cVg6bUBmhwnxtL7i wEm8nL7BLh5n0vKZFRSHuby/RXEb4mm9xWGw78KM/cvjUcG8feaZYEKzitSe N+Jp/cWD83mAi97kNQY2DhiP2/1+xtnvf03rMR6e97f4DWzyBvsaX8BrvJ/q Vpe66g2tz9eoHL5A8Sj0DTK/2jBv+DXqeUgSZL6h9foGaxbb9s4blwAz4wRR fLsu5+jMBFq/b3DJNnGMWXwCGmeX9wazF0xfOP1bAq3nBJwdHnH7eIdEvLpr iMiZn4CdrR2u9vdJpPWdgMJzIxYWPUtE08YbToBaxmtT0OUtrfdE+FwpHBsy +C0WGRcM1h3u+mP4kbe0/hPRUbu7fHv9WzxquN3KRAx5seLRPbMk2g/Meer8 W3MmJ+FTw3DL3iKijYNDrX0S7Y+3cJuyP2busSQ4NCz/mrcIG+jb+tnwZNov STghOjDH6mQyGpfvmiRorA+suR+YTPsnCbuPL7Zb9y8ZoqMNLyQJA57Mbrpl 4zvaT8kYMyFucz3nHUY3LvBkeH7fO/mRXQrtr2S8WXo0+fW1FPjcmMEsmWR8 Sr72N1qVQvvtHSZO6rPNs917lA1ofMEICYmqqWel0P57h7J1b4rb9X+P/g3p r3uHiKlLZ63zeE/7MQV3tis5K/e+x56G7bE7BW5HP69ecOA97c8U/N7vPXpW 7XukN7zdzykIPeB0YsvQVNqv7xEy4Mw6j9BUdDJuSKw48sT5cFwq7d/3GFbs KVquS0Xj4/v5Hkdju65oYZ9G+zkVt7uIhwc6pqFxesdT8bpy87i5e9Nof6di apuN2+r90mDS+JOGXS022jW7lkb7PQ326bEPbgem4WnOfGZHp6Hutz5hbHAa 7f80+Lrs7Wd2PQ0Lmd3IrFF4hozhZzDnG/OAGbe93mReZhp+NOiTlYb9LlfD +/LSKB/S0P1sUT+dMg0P/mvYEOn4fPue//4h6ZQX6RCWRbYq2pSOuY0vOB2j 1fYerr7plB/pmNl7RWGr0HTURTRMMB1JJ5PcW+SnU56k487bn1M9StJxq2F2 zN/zNi4Nk1SmU76k44Hgt9+17hloWFyO7TOwyrXjodQZGZQ3GRh9cvUgx5UZ aEiTcqcMXHyoLfq3I4PyJwN+myPs1rzMQMNqYZYMZvvfEo9Ky6A8yoBs6UTr ik8ZaLzd0gx4ffTvP9Yyk/IpA3km7+q+DclE43Bmmai8HpcRMT+T8ioTN6LC t7balonGOFqciYf/fg+TbMqk/MrEx6ID67Zsz4SxPmTCrJc7h7M1k/IsE2fD 12b/Yo4b44CVie3b5g5Y/i6T8i0TPp832u4WZeJkY+BkoeQr/3pykyzKuyyM LDiYvtksC9aNGygLLx93bhI9IovyLwvhWy7cOX+L+V5jvcjCKa8xTVuXZFEe ZuFch3R3/89ZONSwHXhZGLJjRg9ny2zKxyxscH8wcZ1TNvo2LOc+2RDu4Yf3 XJlNeZkNTnL9rKfh2chtWH4e2TCsXr7amZtN+ZmNoDUJ0p2ybOxqDMhssGtN Dus/ZlOeZmOiX+Z8sT4b3Rs3fDb+FtxJXtArh/I1BxvuzzLMsc9B4/QG5eBw 6YKo8C05lLc5GHBycHz+uRxsbvzJwaT5AaqLV3Mof3Pgw7ZcOfZRDhrKE5Ow TL/5si3vew7lcQ66Lvk2Z9msXDSk42FVDtoXDVmRHZRL+ZyL2R1PJBtu5GJN 44C5sB1RruhRm0t5nYst98ufWHbIQ8vGgMpFiyufI6dMyKP8zkXnBT9jduzP Q8Pb6BKVi2cacdtrV/Ioz3ORaPV7B3zz0NjuDLnw/S6KuhOQR/meh38hYZ6G pDz8bdhuo/MgdLYvLYjLo7zPw5Ae4Rb8rDw8aVjOe/Nwr9nAJmvMPlD+52H9 rnd5kmEf4Gy8YSwtsxwVuOkDecCME/ZgpeLSB3xreB1f83DqZ6yN9+sP5MMH jLloszwk9gPuNdzuhA8oGD2y7zLlB/LiA3oPkoXeGJuP2Y0P8AOyVx5IU63M Jz+YcR5MMFnrlQ99Iw8foA8rOrP3RT558gHH7oyPayPKR3BDvP/6gGkVn9Zs NuSTL/mYHpk1J6dXARrj2T4frBV9ne+OKiBv8uE3s+OhFUEFaIxX73zU5+6O dQspIH/yMWfbinonXQGM8ZePf03nBbPNC8mjfIwd/OfrYRQa46VpAYZt+hM+ Z3Yh+VQA65iI0oHzCtG4fWcUoJnQw/7WpULyqgAOcwKmvA4pROP2OFeA2d3t 2LXcQvKrANk15amXvhbCuPwK8PXl+sG6fkXkWQFOVayOZTkXoarh9bYuxMlu Y8siPYvIt0I8LFv/5+exIpxonGEhXs6b+/P3riLyrhDCadKr1beLYNm4AAux 42h6d9MzReRfIe6ecZxaE1OEosLGH3RrmZpV+rmIPCzEl9tu56d2K8aBxkAt gvLQTPnBqcXkYxGiBlwqf7ivGL0bF3QRbOyCM4JfFJOXzLy9FlVPDC9GduO/ V0Uw+/4wqiammPwsQhu7tb0Hti6BV2NAF6FHjfp8/oAS8rQIfVx7mrewLkFj XHUphvnkp8lD55WQr8WwXzXhoY1HCRrjwL0YGyf+jMtdU0LeFqPg/uf5t0+U wPjvVzGsBzrNW/K6hPwthttc3+69ckrQ3rjh4PdjrkXrghLyuBi3fzyaUFdW gsbl8h/z+5TNoXJRCflcgnkubZreaVmKxtexqgQ1ihmBBubY6HUJXA/E5N4z K4Xx37MSDNm08WCnkaXkdwlk0V+LvTxK0TicoATXPruklW0rJc9LEd6+Y0XK iVLa76X47vHiZilzbPS9FMGrVnnH+JTS/i9FMte0+8AbpeR9KSo2eMqqgksp D0qxp8W8G+uulpL/pYjLennWNbyU8qEUk8cmnrz6rJT6QCmG/u71a19cKeVF KXiOzlE7HpdSPyiFvuXNa+cqSyk/SrH0+jznmYpS6gulSAu4nLVfWUp5UgrD l5ivRe3KqD+UIs/WbVWyZRnlSym2+58O8OlaRn2iDLoYWQ/TvmWUN2XYf8w/ zLpfGfWLMryXudx6PKuM8qcMrn1Z/R3cy6hvlCHtGy8xb3sZ5VEZDrQWhjqe LKP+UYaE4YJpm0PKKJ/KsDMxPaHiXRn1kTJ8zZ9kGVxWRnlVhomB+y5t+lZG /aQMmhH9bvCalFN+lcE+NUKf2K2c+koZTG/F7703uZzyrAwXZzfZEmFXTv2l DFGzb5+d4lRO+VaGP5x9Y1atKqc+U44ZXseta+aXU96V41Uf0QFrj3LqN+X4 4RfqnOZfTvlXjmNRhStXnS6nvlOOhRGVPqKgcsrDcrjeSHEpuFVO/accn963 ejAjt5zysRwDK3MmW2aWUx8qx5GEDV5T+eWUl+Uw21ppdrGunPpROUq/BHnU fi6n/CyHbpbF6NNNKqgvlWOVfs5MU7MKytNydHGMNaR1q6D+VI71grWxUcMq KF8rsNYnbbr9uArqUxWoOJ+d3Mm1gvK2Aj8uuD7bfbqC+lUFRtxIMlMHVlD+ VuDOR9af05kV1Lcq8LP1qk4DBBWUxxXw6pxuGi+qoP5VgQ632s6/UVFB+VyB MxMDAvuZVFIfq8D3ChO3p6MqKa+ZcaqCO02aXEn9rAKWcbfW9HWrpPyuwMs1 bQeO9qykvsbcz2CbS+xLlZTnFbCOWpG4Ob+S+lsFisqSvlnwKynfK3F4fxen pfJK6nOV8PZ1fHu7WRXlfSWSAoMO29hWUb+rRM6VmClNnaoo/yvRNODz6aBV VdT3KrE8+XfBps1V5EEldvYdKrvPHBv7XyUWjnruNcK7inyoxKkDZ392v19F fbASF94kXDoaW0VeMPfxvWuea3YV9cNKXN84YOGZuiryoxLWVibfwpljY1+s xHdbu5/dW1aTJ5XYOtciaNnAauqPlZg+jufZblo1+VKFoyN4uvLF1dQnq6C9 fue39aJq8qYKq66lZV3cVE39sgou+iS7/P3V5E8VRlkE9N8SVE19swpDv0wd IDhbTR5VIWVf1kab99XUP6uw3ufYc6+yavKpCqoeXd7b1FVTH62C8JPLoI+/ q8mrKlzVmXS378WiflqF5LDWVT7zWeRXFaYca/ayYhaL+moV2i+cW3diBYs8 q8L83EuvLhxlUX+txpThW97NvsIi35hjqwlRk26yqM9WY/dum6ZNb7DIu2qc cg58pjvHon5bjS4hd8/0DWKRf9VoN9QhzuE0i/puNZq+aZrow4xv9LAavw4f vlgWwaL+W42YNjMmjilmkY/ViGtuGuglYVEfZo49Oj0xF7HIy2rUDmz5eDiH Rf24GsfZawMfqlnkZzU+qTfFd2W+b+zL1bjgWjd5sIxFnlbDZuWtXRcNLOrP LCbfPw7WjWGTryzckLKtj2xjU59mnsOLp5LZG9jkLQu5/mkd7HexqV+zYL/b 7HuL3Wzyl4VPnR+MbLOeTX2bhfjxE0Z8dmWTxyyoxAkfEyaxqX+z4BZ75HKz Q2zymYXY63kDRwayqY+zsPjbwA/dbrPJaxb2XrKv+M0cG+sCCzFBT8JqU9nk NwusdqYbvLLY1NdZiKtr/fcdm02es8Ey+xRqVcwmz9koWCl5z+ayyXM2kq2f T8rLZpPnbOgmzOqvZL5v9JyNtsl3llry2OQ5Gx+CmtQFa9nkORuKKZbVPbty yHM2Ln6P/dxuEIc8Z2PK0ZAfbEcOec7G7O+2i7UbOOQ5G8MFIWfs93LIc+Y5 LmpWHXKHQ56zUd39c+Sb+xzynI357+NFQ15zyHNmHouKt1pmcMhz5j25mL9t WcIhzzkYbWM/J4DNIc854AVFfxAXcMhz5vOSGUtMKznkOQdphayC1zUc8pyD /sdb5S5pwiXPOZh47nz6xxFc8pyDXrd9A+P6c8lz5rjge/It5nyj5xzUXeLs fPqXQ55zEFKyovcwEYc858A7puT8AiWHPGfO93Ews/vNIc858Eyzu9SN+b7R cw4e9ghYXf2TQ55zYBsgfdBTyiHPOZAfm6Qta8clz7nYu+BeYltzLnnOxalR bu+nM+MZPefidlv/WN+OXPKci2YbmlT/Z8Mlz7kYyxqyacgYLnnORXE7L7+b zDhGz7k4cn4Sz2sqlzznorruQvSV8VzynIsuIyoS9zhyyXPmOb12S7izjEue c3Hx3fcO41245DkXEeZs3j03LnnORd/nR+zqLnLJcy7WPX4yfHMglzznonuY VZ/VV7jkeQ1O5kV3jPHnkuc18HgQkVp/mUue12D5iWWe82K55HkNfHfeaaaK 5pLnNRg9fuxJlZxLnteg38IL1za0rSHPa7AtpuvicZY15HkN3KeEh/S0rSHP a9Bm9vy5P5fWkOc1cLNt3n4Rc2z0vAbepz653zxRQ57XwCHMmfs5soY8r0G3 IZtHOKfUkOc1cMq50v1cVQ15zowz49yx001qyfMaPOu7elXz/2rJ81rsqJoV 1XFILXleiw2CI0fbjKklz2uR4rUzcsmCWvK8FmcW7mwzbkMteV6Le+slpZev 1pLntdi+5OPdyue15HktxgVv7Sxi1ZLntbhqMshu//ta8rwWo2PrBpZ9ryXP mfMmz3GYLa4lz2sR5ta6ykpaS54z18tZd3ddcS15XgufUQuu7pLXkue1CB3r Nnxsex55zlzP+9ycu1155HktWgrEMaYDeeQ5DxE/0waEOvHIcx5OFZ//nQ4e ec5D6t4wL+4kHnnOw7Bir+7r+vLIcx7a9Ocdre7GI895OOh0zHtVBx55zkNw 70r/YGYco+c8HHn+ucT5II8856EwoleB/z4eec5DmMX8C5Ne88hzHlzWTwu4 /oxHnvMQ98/0cOsEHnnOg/tbm5/vP/DIc+b4j/uRMWU88pwHs/pnusv1PPKc j1/jLcz+duWT53ysFnbt14/5bfScD8v3w/Z0t+ST53w0Xdc5ZM1MPnnOx4ex vh/2DOOT53wseCuVlqznk+d8OL67/8xqJ5885+N6l6L/Wm3nk+d8CIbXFI88 wyfP+chgnV0evolPnvPhlpq85Ic/nzzno/Cw9tUhZjyj53xMKD2xfGg4nzzn o0rqN/3RSz55zseM67Psl97ik+d8jOg46NDSV3zyXIAQzeUTW4r45LkAyidb ldc+8slzAb7E5aq0HQTkuQAOVy9/G8r83ei5AKVnHvFX2AjIcwF8j7craeUk IM8FQOrcllPWC8hzAVxMKtf98BCQ5wIU3/yU5+ouIM8F2PjxV1LmLgF5LoDF RxeTDZsF5LkAEzpevhDKfN/ouQCntoztvtJbQJ4LsL3rw4CBWQLyXADX7AcT 77UQkudC+Ah7OdT2FdJ+F4JdbvkrsaeQfBdC5bz+4aDOQtr/QnAujj1+ykxI 3gsh1Uy5Xj1USHkgRPt5Zs+3ThGS/0LsQnBk7jwh5YMQOfsmrwhzElIfYK4z sfhJxHIh5YUQl69aNTl0WEj9gBnnrrCf/pSQ8kMI8+mKnofPCKkvCDEidMzg lPNCyhMhLDQX5lQ/EFJ/EGKT3cyrjuFCyhchhh6/cDz+hZD6hBC7rwZN65At pLwRYnNH8fycfCH1CyFiLnzK0NQKKX+EuJEybPJQgZD6hhC8I11WV0qElEdC COXN/SoqhdQ/hNjnbsmxUQkpn4S4m5ISPaGtiPqIEHtVA2adaSWivBKij9WZ WYc7iaifMPfpddeP10tE+SUE613/s9t6i6ivCBH6eJ/v6c4iyjMhrGpb2+Qx 3zf2FyG6LY4xCCxElG9CZPrUPfIeI6I+I4LXUq8QcysR5Z0IOx53YtuOFFG/ ESHq5rDtgIjyT8R4e/7pR+b7xr4jgqe6btP7iSLKQxFC1npfq7MVUf8RIe5Y xd0uDiLKRxE6vtq8yHSuiPqQCLNsept4zxZRXopQHNbxnQfzfWM/Yv6u+nho GjOuMT9F+JPrXtRsnIj6UsP1RD/LpoooT0XwKO7U7xDzPWN/EmE+r9vm//aK KF9FGFb5pd28kyLqUyJMS9jTvvqUiPJWhN9DZtmcYj439isRKoeE3gw4I6L8 FeH7lROzTE+LqG+J4H0u+uIU5nNjHotwQrXswt0gEfUvESJf+hd7Boson5nz ms6bPv2+iPqYCC4PPc8/iBZRXouQMi0q8He6iPqZCB2WZnbsmiai/Bah7ExQ H91bEfU15jlywv9NLxRRnotgPbjDkWXZIupvIuxfeWr+0jIR5bsY9al/64XM dYwFR4zIdXGxygoR5b0YGy3GWAyVi6jfidFJPzzoLzOOMf/FMHO+daCpqZj6 nhjt65VNj7cVkwdinKjwTh3dQ0z9T4xFaXe2/uotJh/EWL1vmc0X5nxjHxSj 7S+HhHP9xOSFGPySqlYFY8XUD8VIPJ8xOHaqmPwQQ504qflZFzH1RTH2+yal lzqIyRMxrP0HWkvWiqk/imH7tXQ7e7mYfBFj0JMm0nXMPIx9Uowv/gM8fqwW kzdirDNfdbnNLjH1SzFGfK/dPfyAmPwR47+T/bapDoupb4oxxT7WoqOPmDwS 4/63yKebbompf4oxPi5jncsTMfkkRjf36shjzDjGPirGlr9urMcPxeQVM/6K 0UWTH4upn4qxx0Jl+BEtJr/EuPWl+dONzDjGvirGy4VHLJQFYvJMjL6wYisK xdRfJbizXtV++Vsx+SbBpeZDnYa9E1OflWDa+MiEg8z3jd5J0NtRYwhlxjf2 WwnuRneUnasUk38SXOg0anUNMw9j35XA9K+vcGZ7CXkoQZKtf1Ypc2zsvxLk VvXS/OohIR+Z36aD1oZ2llAflmCTk9ffsH4S8lKCoo62lUOYY2M/lmDI2qPr uYMk5KcEay3itd9GSagvS+A96qZyxXgJeSrB/fHXnDl2EurPElyPbNci2lVC vkpw7N+u0e4uEurTEixtO2LOCmcJeSvBcHNVT7dlEurXEszaljZ5vKeE/JXg /KX2PcI3SahvM/Pfbdrs324JeSyB14DnT7lnJNS/JXBV89+F3ZeQz8x8zqQO io2UUB+X4Gt8XTryJOS1BBbzNl0M4kqon0vQrbrWPCJLQn5LcOjxwfx6toT6 ugR7Nma2WieVkOdSsAKffar6LCHPpcjcfY/zp5mUPJcip3vHsSvaSclzKc5G pG1x+E9KnktR0adkWI/BUvJcCmW1uptkvJQ8l8J1zwe7jzOl5LkUPnsWeEVM k5LnUnCbzT021FVKnktRfu21pGSJlDyXgu1x48LWbVLyXIqfjzxvX9wlJc+l uDX9xPM7G6TkuRRLXbpPLTsiJc+lONT8ZJIHc77RcyliLCJC7nhLyXMpNgxo uUDAHBs9l8IwRjP81TEpec6M7zAi3uK0lDyXYtXPkflJp6TkuRQt/vBNh5+U kudSJC2w5BmY6xg9lyIweerv+del5LkUfvs33/cMkZLnUlQ637kcyFzH6Dkz vzM+ke/vSslzKcwlgzvcZ46NnkvR6kTUppAoKXkuxfk3fW7qmesYPWee+/nK 0yMSpOQ58/vFbl7BByl5LsU9kx1if7GUPJfh9dBZ/jXfpeS5DOLEnQmv6qXk uQylDnKs7yIjz2XwO5et7DBYRp7L0GpSSEKTyTLyXIY2iyd7m0FGnsswSNBz YBNHGXkuw63bNvxP9jLyXIZ6lmh9obOMPJeBfbb6yEInGXkuwyLOmwi/jTLy XAbf8QGedWtk5LkMmwumnYlnjo2ey2BVMuzvlC0y8lyGvR8xp7unjDyXYVtA yaaEnTLyXIak2h/RLgEy8lyGgmmJTrtuyshzGWovPprHuS4jz2WIqp/D+fNK Rp7LEDnuprb6uYw8l0G+2avCKlNGnsuQaZ7eJbFKRp7L8O3w5T6/mN9Gz2Vo Z3f83+C3MvJchueSjYcO5crIc+Y+X47qZf5dRp7LwM07LnnTQk6ey3C9h2Po 955y8lwGdysT/bLRcvJchv62LzfkzZST53JsTK8dd9NNTp7LEXZl/IPlS+Xk uRwWzfaeWrRNTp7LYeXsYBi4Rk6eM9eJ/M+/q7ucPJfjS8mnKeJFcvJcDpPI RbYtl8jJczn2uN8bM4kZz+i5HCOHScKtNsnJczkEyznulVvk5LkcD31ssoR7 5eS5HDZJ++4KDsnJczn84P/kGnNs9FyON5/s7u3eLyfP5ZCP4D7mBsjJczme moQs2XVTTp7L0fJbccrXaDl5Lkfy6tzjqgQ5eS5HTvLdgbtS5OS5HDXTzTqU S+XkuRyOfeQ/f0rk5Lkc93j3ovrz5eS5HMKmq1hHv8rJczksp3HNDunl5Dlz HVl2ieNfOXkuh8jmyYXNf+TkuRwzutkJgpjzjZ7LUWh4XhPyRU6ey3FDYNFB Uy8nz+XYfU2yzKmTgjyXw/lziNuePgryXIE2ne2nCkwV5LkCyzO95XldFOS5 AsEO72Qt+ivIcwU6JKRkf5yqIM8VeHXIdDJrrII8V6Bn5IOyL4sU5LkCo56t ZXdeoyDPFbjV/G2ok6eCPFdgmtsK/cb9CvJcgZAj24InnlOQ5woMU/dbrL+v IM8V6L/JZd23CAV5zoy37/7TxEQFea7AnX1F2zpnKMhzBTSd2/PjRQryXIHt S4L8//IV5LkCOb7fRodwFeS5ApesrSwGCRTkuQKnog9MNGUryHMFrLtsnZnw TUGeK3DUPUZm+0NBnivg363j5vYdlOS5AnF3B8xP76okzxX4KN92sk9vJXmu wPAOkX+1o5XkOTPP5V+dJ49SkucKfDHfK7s0T0meM/f1e0zP0DVK8lyB+p/Z Pke3KMlzZr4PLhyNO6Qkz5n7/Lp0feQ5JXmuRGuPhddnvFGS50rMf2P2XZ2g JM+VON3dvVnuayV5zowr6X4niTk2eq7E2+3Z7a+kKMlzJS6O8HQ8kaokz5UY 9bWDo8V7JXmuhH3ND04Wcz2j50p02Vk+ODVTSZ4rcUE5cEFP5nyj50qkSJOb ODDjGT1XorbF+J/3c5TkuRKrTTDuV4WSPFfipi6ySKZUkudKBP7XoqC3VEme KxHk18Pyyjclea5EFrtg0N9WKvJcifqFITc2NFeR50rY8MMdHpmqyHMl/KZG Ki07qchz5rrrPZu8GKQiz5nrnCjO9B+sIs+Z87sIV7y0V5HnzHsUv4w+uUpF nivx3wSWWZ99KvKceS+XP8ldd6rIcyUO7hj39/ApFXmuhMDn4Kz4iyryXInw X02S7Zljo+dK9LvmeLJJgIo8VyIUM3ra+arIcyXGK7YOe8acb/RchdtBH4dk X1eR5ypM2TV73aNnKvJchTDOkctrL6nIcxWmto/m1XiryHMVyvKWaFYGq8hz FdZekab5R6nIcxVSE90tPJNU5LkKtaNCTh/JVpHnKijDJhkmPVCR5yp82lmw Z/JTFXnO/L0uONDzsYo8V8Fm4cScyFgVea5C4TPW9N3M+EbPVWgTvnO7JktF nqvg+LBdhgtHRZ6rcPnVlCgxS0WeqxD5XnSjnpmP0XMV/E5sfBNfqSLPVRjT otWXxWwVea5CYM+CryV8FXmuQvFkQfuZXBV5rkLbldO//ZOoyHMVqtcd0w79 rCLPmffOj1hkX6ciz5l5ZLxU+6hV5LkKqtOPR734riLPVZiW5nKa1VVNnqvw tt8q+2Et1eS5CnedODumtVWT5ypsCmvX7GY3NXmuQqdLu8+1GqAmz9VoYqtr qRiqJs/VUA+VtC4ZrybP1Th5bdaUf45q8lyNbo5Tr3yboSbP1fgcNMnKYZea PFcjf22lCfeomjxXY7mjhe/UE2ryXI0Eg7l08Xo1ea5G9OU012Tm2Oi5Grsc edHdPdXkuRqGlv7vL/ioyXM13PZaGBx3qslzNVK6dopufkZNnqtxrJtqDIs5 3+i5GoEBr8O3MJ8bPVcjY90yjzYX1OS5Gjed5k73CVKT52rUvFrX/GGMmjxX 43RH/0nbQ9XkuRojgs1Ctt5Rk+dqiFM9zl54rCbP1XiyTvqyfayaPGeew7j2 sX9T1OS5Gr878F22sdTkuRpXf113NWeryXM1Bji1uJVcoSbP1Sjlrt42nKsm z9VwfPsnk8tTk+dquK9KWNauVk2eq3Hvdl35uu9q8lyN4yvuD73fRUOea+BR 7H398GgNea7BjaSPNadtNOS5BjkmLrar+mrIcw0eneuQvmyohjzX4PSTdyGb x2rIcw32FY6Vhc7SkOca5M3VL8+105DnGpx1nL516HwNea5BWtNHrocWaMhz DTpL97XtvVhDnmsw4W+/5aM2ashzDabdbOt+bJuGPNcge06u1VNvDXmugde+ o+KwoxryXIMnmU7dR/pqyHMNDkTOGOd6UUOea9DTo+qs9KqGPNdgr9ZmzIQw DXmugfnmUdNbxWnIcw0yW6v9BYUa8px5Pi+rXjolachzDTZFb+3AfaYhz5l5 jinN4iVqyHMNnm0uEMzP15DnGlimZB7IKtCQ5xr0CU13XM18bvRcgwEuLWXm 2RryXIP0nuURYSka8lyDHeHfOu9hvmf0XIO5TfVp8RoNec6MP/2V5HorLXmu BbuCm3/xPy15rsUAWVvb6YO05LkWOatnpV8015LnWlx32jhy7EAtea5FvUfb Pa9HaslzLdo7lfLa9deS51rszrI2/GJ+Gz3XIsPab7iE+b7Rcy38og2ti5nz jZ5rMbPnEl4yc2z0XItt2Vva9WOuY/Rci1Obul7OZOZr9FyLs792mq4aqiXP tfDpN6SjYJSWPNfCuUfz+TOttOS5Fk7B7TTP+2jJc2bc4qs8aV8tea5FpF5n tZE53+i5Fjc63D8xx1ZLnmsxMvF5Zz9mfKPnWjS9vWGabIaWPNfiYLdxc8w2 aclz5vyLT82ttmnJc+Y5Rr/ok7RFS55rsV1x7a+tk5Y816L0sXmft1O15LkW vsWd3S+7aMlzLcTv7oXluWnJcy2iT7R2+rBMS55r0WzoIU0H5jkYPddiV9P9 +Qe3a8lzLR7a7Drw+LCWPNfhus3Arc18teS5DpMdjg4/HqAlz3WYWZwafPaB ljzXIaJqqvPui1ryXAfT2bde5jDHRs91cLOtTpRf15LnOjQP/3pgYpyWPNdB XO3a6022ljzXYfXyKT4fNFryXAdL7l/+NubY6LkOTSrdfJ1b6MhzHfrP3HDR 56eWPNdh07lRpVYfteS5DjcPtb6XWKQlz3WY3unPpRKJljzXoSjn2RLvLjry XIeSmemGOmsdea6DxyXT5ivG6MhzHbrFh7laDtGR5zrcq/Qd0ob53Oi5Dlte PV3SbaqOPNeB98I2fPliHXmug8LRztljhY481+HkgIKquUt15LkO+U17LarY riPPdXjSTBz9Z7WOPNfBYv2zad4bdeQ5M75/Dv5jxjd6zsxrkfPG0i068lyH nMpFsyuY+zZ6rkNvydvfPQ7oyHM92j+t+ZPDPCdj4OtxP39A+GtmfKPneqz2 evokzlNHnuuxKl694uAxHXmux83jp/9pT+rIcz0WX17etfqsjjzX4/GNX+Jv zHMyeq6Hc+ilEa0u6chzPX6d+83+cltHnutRs0/SZ4m3jjzXw6r59HH3mWOj 53oI/7kfOxSoI8/18DngcOjMcR15rsety36T6nx15Lkebc9GxQcy4xs9Zz4f dK/r21s68lyPLV3sE69H68hzPTrldRbqXurIcz2Cvl+2fx+mI8/1sEm1sDNh 1oHRc+bYdE6e52sdea7HoTT33mMqdOS5Hg+Fg2o6CnXkOTN+y/uXpnN05Lke g4Rb9pyW6chzPSIm/7x9/reOPGeez+zBR9/+05Hnemwu9FvUjfnc6LkerW9v l7RS6chzPfJ2eF5eo9WR53q86VkffPOTjjw3YM2p48Mv6XTkuQFz2mStWPNN R54b8P23TTu7Lzry3IAbuwzpwcy6MXpuwEG3Zu0dm+jJcwMsdvY/spdZJ0bP DSjMHhvRu6+ePDcgst6k/29rPXnOjCfoPOyao548NyDrV8COLAc9eW7AN+u6 2J3MsdFzA9rpnu5x36Enzw3QHxAPbLFfT54bEP+p14Jc5r0aPTfgwyl188Qj evLcAHXWjMx2l/XkuQEQKBd/DdCT5wYELxjDL2fes9FzA9q+qByZeUdPnhug a/43fl+onjw3oKB0pnnhEz15bsC1TJsLnav15LkB3s0Mdju/68lz5vwTVSfE 5gby3IDbp1qaL+9tIM8N8Guf3afe2kCeG/BqT+zSg1MN5LkBw0TN23FnGshz A3Lqtq1wYp6rcXrMeegeMHOEgTw3IEzhU5g9xUCe1yHBs1Wqcq0B/wOgWdIh "]]}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{}, PlotRange->{{0, 1.}, {0, 0.9804576617273913}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.6040621328343143`*^9, 3.604062155604162*^9}, 3.604062212757617*^9, {3.604062301890136*^9, 3.604062324828288*^9}, 3.604062430909255*^9, 3.604065520818575*^9, {3.60406565294221*^9, 3.604065699873283*^9}, 3.60406576761026*^9, 3.6569314934457397`*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"10", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"x", "^", "2"}], "-", "1"}], ")"}], "^", "2"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "1.5"}], ",", "1.5"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.603993897851609*^9, 3.603993929821459*^9}, { 3.603994595321838*^9, 3.6039945953894978`*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw12nk4VF/8B3CERCkhkW1MUYiiEOVzqEQhFRFSKtVX1lJKUiQJCSFrCUnW bNkdsktEKGv27HPHDGPvN7/n+f3+mXlez/vce869Z7v3eS7piuNZGzYWFpbr zJ///b+aGUT594+Ble2nbP6BIip/JSatscLACktjOvmiikjUKcXy3gIDDz4f T/BdVEAd+6rqpwgGVhK2SnPNUUC62YyEzgEGzlzUIJ7tVkAKeVZmOZUMXMnS zWchtBctFMlXXH/OwAJ7i9yS1suhgJq6kO+8DDz64EtayT4Z1CWjFZ/PzcD3 1jg6tvHJoN0vCrPeczJw6Hjh4QCqNKo+lfLj7to81io9GVqXLY3Wfvjzis/M 48t7bGR9VKSRc7ehn8P3eexNaZ/kProLnSfaPDcHzOOjYqGLE45kJCky4HRm wzy+Hnkq/uU2SfRp8MqPJxzzeGPeYP6WNQmklDqs+Jl1Hhegf5X7miXQ8cNj M7xLc7jv5ZZLhLMEsrWi2DVOzGH22xxptwrFUW786s0TjXO4/MQs51EjMaQr J2J95NUcvgIBwQsxIqiFFl1u5z+H5UiBKeJ3RJB5iZhkzPM5HLV8Z5e9ngiy NyD9WXo8h3O6epe85oVRiOPuiwVOc5ha6aoedFYY9eSoXFA+O4ePJVrVk7Zu R06Hz53ZIziH2159Tv+YIYhEG/Z03uKbw13VArec/QRRnSmLdcamOey/TWz4 0nVBJHEn3UmZcw5bTgTUpYgLoqZP64OOMOi4mC/jzXyQAJIXKmk600nH9d+e apq586Mx6k59t1g6tj10reKnPR8Kfbz8sySSjsVVhEYEDfkQ2tRq8S+Mjp1l 3avdFPjQm92Pb3kHMstXHHmURtmCdC51+gU+pmPV93abM+5sQYmNL+vjrelY 91zwiir7ZnT547zOt110zJs4dPCWEw9ayyv4WEKiYyLrWH3RAR4UXeXGlSFG x/J/yV6mi9yoY2CtPkiQjumrf2tcn3IjfdH1Buc56Nj8N5/R6egNSDVY6NzA MA2fLTstpNa5HvE+VLvESKDhYtmT3/8EsKO0F0t47B0NW5T8sPY1Z0d6ESWS XdE0zJ1vBA92syPvPDRY8pqGH0uVayhXr0NLFF0br6c0rDiTuYGdbR0auXbh 1qarNHyi1zWQ4cuKSgzdXMlSNCxkxrvuUPgqhFYd320uTsP3UhcGg3VXwV6d rzNIhIY/qKY7X15eAXHpZPW1rTQc1WqRfPHKCjxebV/9vY6G9f+r+NVycBm0 0/Z7B47MYo8t1QZ2swtQt2E8aDF5FhfppjyvKqdD3ONcrX0fZjGXxd5rVp50 eDD3ePb6+1k88TDJ/ro2HWQHthm3Rc5iH90bIuXVNPAvOCaU6TeLHfkPX3nd MguGN+Jir9nNYve/Hjw+qwT8rDJNaVacxXfJZA+2k5Pwtpj3QJ7cLN537b6P d+8E3MyuLo2SmcWV5MNiC84TsPJOucVGYhYT9fOfsmLHYefDzQvLvLN4pLNV yYplDFz21x7fPUPFq11L68Rmh0Fzt0fzpgkqfn5O2uBO6DBwSRy8QBuh4oQu u3XZqsMQszHBrqyXij03eN4ZfTIEVX89Xht/p2ITUe/AHeKDIPBWZeBJGhVv 8WrjcOb8A32h07bXk6lYxLxyIOFGHyT7J9JPJVKxXlXOm7CGXjj8YCuXUAzT Te9FssJ64JrxjEK6PxUPKbue/IS6IJc7yb3TlopFTylFfRhrBw/Wi5z4OhXH 9dRnIJt20F3gD0q8QsVLDXF/fIfaoGfEM8HRnIobW7MURUd+AnvFxQaOk1TM IWn/TXGlBUxcBbcr7aHijMab+XKzjaCtTGqQ3UXFAY4XLjeSG0GBIu9OJlFx 6p4/r33MvgHXjWP9AsJU5vpgdh2+1UPR+TvJDC4qnvlca/OivQaStj42J9ip 2M2idmOpRA28bvLbOM5CxVV/tAcX7arBTifeqWuBwLxvGmg+W6pAXKVFrXSM wLueTNTnPawA7tmeibxhAg89VFla7C0HRvpYTEY/gaWDv+5QPVoOP3axsMb9 JvBAi4H67r1l4CWoWO9VR2AbvwkNrYpCcGhRf/iwisC2IfY5f3MLwOKlzl6X cgI36+b+uJSRDwc4rIJtCgh87Z8nkZudB6P0gAu6yQSWo3ckebFkQ+vnCB6t RAL/Pu8ooyOVBdgusfRQHIFv99UbFut9hojhYpJcBIE9lPfpmZxLB++42p/k UAK/opeUHqpKBWfLn89Egwhcnb090xqlwMm2ifFNvgSeES/XtzT/CCpB89Gc 3gSOGpGQlFj4AGR9NsN/jwms23WvjON9IqxUCmcTrgROq7LF4gLxkJmj6/bz BoHNDspOHV+NghhHY/nGqwTmacx0MByPAF+5y31Vl5j3w2XuvuRkOFxJcNX+ Ykrg18OM64OKr8Hw0lN6xjkCtxjfncu+HQwaO14lfTxN4Dazm19Fw1+BwOsk 7sgTBDYdao4zvP8CWE5nlwQfJXAJ77y6/ycfmOYuc/ADppOFvlzm8IaumnrJ pxoEhhNilEx/T6jxam99qEpgX2wQlnPfA7I1B7xdlAncGCRk66HgBu+WplTs FQnsaZ93zEvtHgR8WRizkSPwSfccUc/w23D/Nnu0lQyBU/WEZx8EOUBcmHBs DJnA2bmew0dWbkJtgcK7LgkCc238eGli4SrMdB99v12UwNwT1dIqGy/Btn9m Cee3E3hWvuvlLx1T0JRy+BAqQODtCl+yiDgjsDn+9GPrFgL/9fBaua2sAwE3 Iz5t2UTgdKqbWnKFOuT6p6cabiBwIJeTSTtJDnoyvqYHcBDYqTqp/LAOP6xr /ZXZwErge+pZzzZu7tc0mei8yrdCwb+RdLzymSHNxH3sN1/SKbjMXu9z9G0B oN1TsNswTcHTwaXqtuvlQbvUzOnZCAX/MBAoiNTXgOB1T11Y+yi4+brkYzE3 HejXS7//qIOCxV+pLf8pNQLFoF/ui00UXPBxkbfN2BQ8Olg979ZSsDObv9Au 1kvwXVT+GRVTMJvAvs+cA1dB9Or5F/YFFOx7ri3r6rebcOvTk5fjnylYn2v3 iA44QBElJdjmEwVf9PjXJS1+G8zc/0VejKJg0Zm9suJj9+Hj1z1vO0MoWDpH MV8xxx3muYzjTfwpWMWyQHG99RMIDUtOMXCnYEr4hRuq7d4w1N2aUe9CwULF efq1Ws9BSWo1+7g9Bdua3qzsbn4BzRlnio9YUfDy+YbkfUavQHzuIS48T8FE KNdOSVIw2GkkVR48TcFrKTN2hSkhwF239G0vouDLgRrFjpQwuMC768cnNQqW 3abv5JLyBpKNT7ft2k/BQWWzq513I0FnIKFHTIqCT+52lXpzJBbCZJr6I0Uo uO2D5ZOOQ+9g2H5hWJCfgpX77kiRE+LAa0l/ehM7BU/lbzarrI2HMv751dWR GRzIu1Yk6vwRNplLsrn1zeDVpIq9JpnJYBl3knO+YwZH+7Em3537BEvy73hn amdwZWhDwfnINFDR0ZXo+zSDdXM3Dt2XyIKM+1GozH4GT7x4IyTrkQ/95dHz b2xmsMrz/Q6EfQFs3RCb5nxxBvesxTvtvFIIrpHvtu8ymMG3NTnsakyLARUl Ev7yM9ihTlzkhSuGn8sZcRcmp/G8hXrtgHYVcB77fF55aBqf+XA18kxvFagF ZG3c1D2NjywuWHc9qIYY0dz75Q3TuLNdyUmxsAauHyk0kkmZxol1eS05RvWw 4FHJMndzGgcvv/71YqAJZGurvjRdnsa/c9tJaTHNYLm5xi7ZbBpHyEuwjcj/ gIp3db8tdKdxKG/zh4WpH+BX/v3zV5lpbHKkzr/3fiuIsf2+HDQ6hc+zcN3+ WdYO2s+myuWuTeHbfof/7lntgYloFqEgyynMTmFrfeDUCyHZAvZ04ylcYMfP EzjcC0N/DguXHp/CATptASzNfeCt/tLZUGYKc9o7TLuf74dqyl4p54lJvEVC 5sxpnUHQNXd8+sVpEs95FbgP2I6CoeLsca1HEzhNT9LYOJcCGj8yp77dncBv 9L7aibASsNvZ/vV5hwlc4flQQ3E3AetyxvpvXZrAW1VNeqrvEVCg8udhuNYE vhltVR8vSAWSZmPWJMcEFniAry5cmAW6fpJYeOA4jhGz8F5dpkO0rfncxLsx LPWLa3EyZgmw+FMR1qhR3KhtJn5diB2ZO106hr8MY7Tgpc7HyoO+qa8MjacM Yr2LM7FGN/mQR/hyenJyP3aXVbOq0RJEZyQuLoqH9OKx79wWL8q2o3PrjnlV e3bipsn/LM8biKJjUiECJV/asfbB99qHz0ogH6sXZ08lteOidSOFr6wkUH3U k6CusHbs67RLu8dWAhnyO25cdGnHP8sTHC8/lUBm7PrsKsrt2D8874NArgS6 NcpBz8xsw8UKToP83JIoJOXBz4Tkn/j34F7ivxuSaEDJOsQ/qgXbW7WNhG4j oYynqc43/Frw147+3bk7SMitbc7oqFsLfp/y3a1ZkoT47/ltXr7Qgp/L9Gov yZLQ8cKcAFvhFvzI98weSSChT8D5XC/iB9Zs+OOZep2EBiPOM3jlm7GpEad5 djYJPVSfzKvhacY/RHtenM4nIYGexy4ek0141+Yp37FiEtKR+ESdTmnCdiUn pjdVk1DKh+XJxj1NOMJCbYf0LxK6nR3X7yfzHV/cmOnit0RC6xon6jnJ3/AZ km39Nk0p5PKxgWuc/RvOo837DGtJoWGvlBPfRhtw9R9jh4zjUqj6kG31q5QG Zn1aeSoGUuj5x/Hy7UoNWO+22b/tllKI5+lYvqxWPfaVOmZDfiCF+NVHPxhe qsV/vp7+pvNZCnkL1gzv06rF3ubmZ9/kSCE68YHMT67FE0pT3UNfpFD7R5v3 v0Zr8PSC+KxTqRR6IzgSc9mhBp/wuMZj0SCFdlCHXt9+VI3DFS8v2w9JIXLy gGd4dCWW4Omyf76V+T7nL+ZLcavE60589AkRJCNxhwuBuuaVeKHHrDZiOxmJ HGiJWtrOzJ3CisPFyWhreXmOVfhXTHYRNTSTJSPW3+9GpIMrsJPNaSEqIqO1 ou7Jx04VWGqunpRxlIxWYoVmf5+uwGXcNVrXdcho4eqrNT/eCtypQi2tPUVG BMVDiOJfjlccT744fZ6M8OaSEIdNGGvm2Xo725JRUbvyO8nGMtxHTfjvjx0Z fYlOTW31K8N6h9iNdZnvoxky0VUqXGW4y972AI8LGb0Ft/k1tlIs+zdkg8kj MnJ3VDN/tVCElXTl1BcCyUitOZf0eegLbr0zXn0vg4yGuCoV8pO+YE5hmQO7 PpNRoHaLRtl/X7Ds0IRycxYzz5s2aaTk4SfU0hHBPGYeI+03tpyL31Yx2ByK mfl/EbOSAjn44N6lVN1aZp6Q9E/mVzZ+vs2dmlnHrK83d6NiVDY+5rGjfGsD MzdqkT4imY05M5vmGxrJ6JAqt8UF+Sy8YiVZytFKRmIbFnzILzLwmSKjU4nd ZHTbXeD9/s0ZOJkkNV3ZQ0Z1lH3FEJaOO78p8/3pZeYd/1Es3qdh30/hfev7 mXlCt2loYQoOMdztTR5m9qfQgnM8pGCjirK9EiNkdMdPIOBz9SesQSo+v22U mTsblDe2JOP0jrBdjL9k5KKJd3NMJOEtXUvpXpNk1JDVrc3vlISNknv1zKfI SGLXgiVp/gOuH8u4sneamfPsDz7C9gF3WaxtqJlh5p3xi3dFErB4Q6tMBZV5 Pn3M7x0Xj38JxyW4zDLL4+69IdLxOFjjRBSZxsyTBK5kKL3HvasHGXfoZBT6 d2PY97C3mFPD+b++eTLq3+bal5MUizvfvSdsGWQkpzMgE5Ufgz9xbxSnMf01 Ma/oemcUduDus51fICPeNgl2g4lIHFdCvHBeJCPzdX4GyssRWD/zteEY01Rr q/5/om/wVW2itm6JjA4H1+0Z3RuOd9pedldaJiPfcqU7jZphmH3ge/sbpiUl 1nNGXn6NU9zFXE1WyMjO0Pn0Y+cQ3BFSUZbOdP6j7ggbr2A81zWawrpKRrEF l0yv6b7CJWG6TjFMHxA6MLHP9iXuv3pWb4jpxrtcj1b9/TFD5H7NrjUyutrW s7kh/QUeWUz4e5XpJaWs+PDm57glrSItlumQ4GcHr1KfYVmDMsGfTO8hLtQp 8nvjWGtfKfZ/ZFRuqGCxcsALi/Zt/rmPabN0tpm6809wN1lH5gLTfUIZrHJU d2zEKi7xiOlN7edlqg48wAez/YtimD4c8k//4v27+Pkf78V8pm1PJ9+eL3bG 3u9YepqY3i8cv0/i3y2ceZdhPcB04GvawzM+13DD2av+FKY7dvgFrt9hjvtC wWyRaUmS+cnfZ3XwgfUv6taYTmt/THLTUoALg0d6/jG9zPEyvaHwLIg1Xny9 wnQc112enPbLEPRrfJrO9NFAcvkTw5uw4dnw5BjTo/ytLoa1jiD+9czL30xX 6ZcL8MbdgZRxldZKpsNfCVFcLF2hvjKqKIXpG60O9d3bH0LPs2c6L5lWE6xJ 0G73gGetLPduMc2RxovbdD0hpVBI7zjTDgbq8lwyT8GpoAOL/O/1zNhEanA8 g2OFp7ommfcbgoI5HYd8oI3fJ6KA6eT9pXfiK3xh08vwpSdMP3ARMNzgEQBB fN4p7EwPCqLiw5aBwFH/YgEz+/tD90EBNbEg8GJ8mbjHNO8ja89by8FQVzlW /Is5fr4aMFSfTYRAmysp2pPpe+IvZ952vgaH5nFxGab/4AKL1vwwyDzxXsCG OR5Dgwy3TiWFQ+ZYs88qc/zqWg/XcYS/AWLvprfBTH9m26JyyCUSKk21S9KY 493r+I0tcfti4Qj1e3EGc740dooGrDvwFhSs7v63nWlBh9b1N1TfgUOBw4I7 c74Zf3v7b9u7OJCp0S1WmWPef9oGRu+HeNCYTOi2Y85f7rLh3FcyCTAb3BGV zpzfir74ttanBHiV4nxknCCj+6J3ZxLTEuEiy1aFMxRm+eP9I7dykmAoGFcP MdcThc3FCWIHPwKPzlTy8gQZnesMs27+8hGabm27zct0jP2pXqWiZAjf/jN/ 5xjz/OFf2hbLUyBz0W6HAHM9M/4bUPm8KQPQWnjsWhezvqwbnoeMMqE39efm 6k7m/HuoDZMtmdChkePg85uMaOvdL360/Qy2fnr0xXbmeI/Z38ntkAVXtWvl E3+QUXNVzI8WlxzYsk+6nqOa2X97/DJT8nIgwCjm6MNKMqIHugY+nc+ByM/G OZMVZLT9wln9g/dzYaPSoktpGRldmV5fF/EwD24suIXsLGCWF7yDL3nlQ8Fr uTrWFOZ8XN8QO1SWDwfOb6nWSSaj4gVJ9xvLzOf2yu03nicx+6e7Sc3RpQB+ mdFiluPJaPN72WyP64Ww/3JRf2Y0GcnKDybGniyGB6GtxroBZHRZ+4xf91YM De+Id0eY+2OVcvLNS6cxtLC7P124QUYyu/7pDPljeH94hZRpQ0aMpx2ed9nK ITh3MWSzNRmVXffWfPSwHGoTtlrEmpLRKfn+/AD7CvD6b/7QNHO/vp7/JiX1 TCX8sGdXviZMRn67b7Teu10JBx+59FlsY+63kSpLWq8r4WlsXpIhP/P8D9v1 frdVQhN/ZMiuTcz1E/GPs5tVgXJx11IECxml1gfKWFlVA1m9Qu7NqBQiup8l brlVCzftHR2XMqSQgIFJY7d/LYxxWIJZqhRSK9tJT0qrhYxFN9Osj1LIM67y 6JGZWjiYqnPdJE4KbbVhHfrPuQ5UeXV32wRLoQMz7qRK13rwKzwbnnhbCj1g cXl71/sbsIkLn8zYL4X8dGOffkz8BjcSfw3575VCUUE1NzurvoH7Iw2yzR4p VCQprHyEoxFEWUIiuUlSaAmV1bL7NEJAzZHXpC1SyN2Ti/r6+Xd4unFJxXOa hDzYYo9m+zXDWraCL/8HEtJmu+riWtcClef8+6fWk5DVhlbph79a4M9zR80d 65jPn1u0Oj1GW6Dca05DZ00S5YpLaPqwt0KJTZtoCF0S7dLoXh+GWuHMw4wk 1gFJxOVyLjq7oBVMt4pf1yqURE0jR79OJ/+EJ23B6kbM5+cL9Tu3XHvRDhmN uTdlXSRQ1VubctfoTlgTiLauURVF6BDc0LjZCzMBO5z8h7ejmN+fLCeD+iF5 u1VDvYMg+hpNe6UfPgjH657VLr/iQ04VL8o4HgyDNLv6Qs04D9J1uOR61nsU 1l26Jq53jR19euQpx7AbA7WT8kjuzzLEP0y2v+MyBvl+w2U+mcsQ9aA5k/Jw DJ7nz7xeebwMfnfFDoz5jQHH8oVfqqRlsLMvPNyZPAaxbAWDxLUl2HeRalA8 PAattimygdQFKDhs7fTYchwe7ar6+URyHj6r+2YvXx2HzApGoxN9Dj6pZdJd b40DhcN55HHdHEQdWL3v5DYOJH2TLStOc+AuH+lpHTEOv3gMw5wq6YBEW0KO to1Db/26UjsHGtQto7z1+hPg+PbA35peAnoZQceljSdg/uU/E99sAmZp/e3H LCcgO1RT0+U5AaJTT+Y97SZgmVqg17ifAOeectWVgAk4Nkef4uCjgEgpKiK+ T4BGdYCxk/sU2Hkg3Hl6ElRFvTKuRPwFT7eg0wumkyC9/r69ocFfCL/X/2fb 5UnYdJddJ4btL5Q7PGExdpqEG6Y81EsOoyB4qVyrKWgSDilTqSEnR6AMUNXX lkmo8HwlybltCPhYUX3quSlAzVHPVRd64bPCo0KwmIII/8heV+9eMLIs+vTz yhT4bkttc+PrhcD8A37LzlNwVDn6wbe9PbDRYc+pU0FT8LfB6HaqYxdwdm/9 PtE4BSMTUeYcwr/gA5dRqUfbFLh07adWZXXAMZWX6Vt7puCJLt/Ls6c64Gnw +kD1ySlozTyT2/WkHVh0Vwz9NkxDPIltPHvuJyzljvzYozMNRnFTDTvXt0Dk oFRFqcE0zN8tO70j/QeobbmcdcZkGvoMLB0mz/0A11tdwQ+uTYPlVsd6Fd1m oJOaz9Z7TcNIuoZNbGwjzAQWtN3E01A5ZpdhGFMLL0vmqlZqpiH8qM+iOHst yE8o5QU1TYPe2S7WIvsauHU8Paygdxo6PX4cOq9TDWPL789zrUyDTuPNcaNN lTB40//3R7UZ8LvyTVHjbym8DaVu60MzYLcjoU21twTMy01NBPRmYPHCc8v4 X8XQKrSz9cmFGQhL3uP4o7MQvtaUfLvgxnTtRsMV/i/gMSvFHeQ1AzNFKtk/ 9+aBuvgL3Rq/GXD1HalV1c+F7Lsm1UrRM2Dk2eaVF54N73fOlPGUzECAUErM 3+oMsDQyXtWqmmGuD3di1Y+mw3b3Io37jTMw+MqZPFKfCkE/fQqGe2ZAQSqD cYmWDPr/puZFRmZgv9Ft5mD6CFxy5w6emZ4B34v33oVrJ8ETL4ns0tUZsLik +LU2PwEOZzwjaBwU6NDk+5P1JB4WOicVZHkpEPszYLfSuffgtL8gNVycAuHj pAd7ZN/C5X6jD45AAcGBI/cfiYSD6Mb8oQ8nKBA8tYPD4UQo/FYVk+o5TYFo PrtjG3xDwOjV+FvdyxTo23kobc03EDYWn+71uEmBmD/eA7Qn/lA3mrcjz4kC Cz8bYkrjfAFpekWQPClg60ojGZo9hZX/xjpMX1Dgtc5amTHxBArCDAUDgyng LfFxyyXrR+BSkXuuKpICXAufF1aUHsC+aZGQpfcUuPjZ/2ilyV2Y2u75Y18K BT7sMdo8W+8Mycf+8t7IpkCK0CPB1xL2cM3JwCC2iAL1Ae4T/KdvgERMjv/P rxTIkyw58lfqCnTVCjds+MZsf+zp9ztULSCc9pgL/aSAkzadh+/OOTgrMapz r5sCw1WEj/WcHvCe0n+WNsTMD+49SdcAaLiXXTk4SYE7974pVz1XBJ/47WzC dAqc3FA9ayWyDbSbPNDpFQqs2eiHKbIPaP5zv4212Qi45cLRGBY8rtkb8qHv IicBvHfMKt9eEobi5N+r97kJcNrrPa2lsB8iy3jEQnkJeHdNbqr9EwLXNs3D mVsJ4Lf55brj+ikwmXC2aNhGwLD1dsfV68agzPLBbUSEgDtKDvQyZ0vg2/Y7 kkWCgG0XMgrlJq4ARY6ncAeZgGs6C7KjJ25Civt4JlmGgHSjZoO2Aw5w/Xtt kpwcARtCBHfdv3YbSOJJscqKBPQpyQtZsN2DHgfvUA1lAtxKG/jP0B9ABL7i f1SVgCWtDVoR6h5wbouW1ykNAnTOH7bNt/WEhqxVR4ujBJhJVCcPePuAD1vP 9asnCAg62b7Yd+YFaJ0runjrFAG+Qu5f4vQCoIB+79TDcwRMHNuKGJbB4HLc RPupKQFdVomvLYVfg2K48iF/CwKMTHfmX5kMhSRVQjr6KgHiHTFKQT8i4Ipv k1jCDQKyrCLmO4aiQKwzTSD1FrO9Dc+vrG6MhVC3/9iK7xAQY24rEvojDoy+ nVj86kpA931+fmnOeOARlSYaHjLbp5NqW6uTAF6lg71dTwlY+DPQYTr+ATR5 K9oGmfuC5tid8vOnPsKi1btvE/4EbBLuzvYuSAYnFsvCpdcEXH5n4vwyNxWs jraHiiQSELdY/mi7SBaIhOb4SyUT8EXk4pWjC1nQPhzsJZtGgOxgbsKunmzQ 9zF0Us8lwOKuhIZkXi6o19eeMq8iYHBX+djFtAKYF07SvlJHwDMB4985BYWQ Zet9yLaRgPtKv9UHGopg90YtGbc25vF1svdaWUpB8HQRW9QwAVFu6iO4sxx+ vItYfD9GQIV/nIynawUEEPeIT1MEBOb6GWhu/wpsIcp9hXQCvm0mXcm9UglE W1phJzsVRhoGYup21ECj+Tsn4V1U+EJVuWou2Qj6x1yEenZTYZHv/ftf/Y3w fa9e2Vt5KhilyE5tSPwOTSw0np0HqJCm+dgkVKkZfiTpfFQ4SoXpMucMVbUW aJud7j1qTQW7dX9PWBS0gXHPV29OGyq0/fmPkaTQDu3Vb+Tqb1KB+mztvXlS O3REaD0wdKLCx2EO/dXIDvitGSZw4TEVwlRt80+E/IYev8OnHGKpoKyrlphZ 2wOWLnyz+95TQd0snn/AuBd6L45G0BKpcFJileQ71At9+4JG76dRoR0P+6lz /IH+jiHPp8VUCOfNOLMzvR+GpfwLIjqpsKz/K3pk1xBMF3XuqhSchaonO8c0 P42BO7mS1iE8Czk9mZybt4wDd0BaxYTYLOQihsI313HYffHxxa3SszCoptWz 4eQEXPu3M8xaZRZ+G7+w/7w4CV1HndhZTGch3tqOJulDgbpGzqHDEbPwqeSR enUqDUwPEp+NYmYhUm23m9sMDUZjOz2uxc3CS9a07oz9dGB3TBMJSJ4F9qkd 8uGFdAC+s2e7C2aBi6QodqN5Dr6YxFY86JyFpEsdeuf4FyChTznuiwgNBDYs 2l1eW4H5P/ziz8Rp4Cnh5syivwonB2jR56RoEN/hYSsUtQqzQzlviD00YERf 3Z+qugba48qvZA/RwDHd47fT/X8wSFP2eGtKA+JUqbMJFyuS3HDA0ieUBg9O qrypbVqHXLgFuowjaCBxz1rj6Oo6VMdDNyXH0CBkT4P2mhw7cuLNPVeeQIOY ys1LSn7sCPMfOLWUTYNNniNeUXocyEr8gLpDCw2kDha0P2rjRLHKB7af56WD 5my7190d3KjJEdvzbaWD0tO4gvVnuBFL2snKRkE6uL2iZ3f5cKMrO60djorR oSznmeNRGjfaLRhYtU+eefyreGtyMw/Knf/rxHOSDj6W4uvVXm9CDYXR9eXP 6DBaxK9Sk7QFrcxJS7i/oAOrZ519YfUWtFcp20X1JdM1VvNNw1tQUEqdREYo HYqKK9SsyXzIJHrubnQCHbbMrartjOdD/e6npe5V0CGa4jOyP2krmod1D+VW 6XB9uuhuV50AUlmOZ6iyzsGoH2VUjSKA7n3RdjnGMQci4sJbvwoKojl5L/uL m+Zg4RDnmPFVQUQXZr38SmwOBo9rN3uwbEOztLVjtCNzICm88nhOWwhNf1zi LfaYg4DP1L61MWE0vHk2/iTLPET4qJK2lkmg8au+zXzs87BVcdLAYUoCzeSL r/xePw//iqzF3DZJIsalUyY3Ns/DvYAj3zUPSyLuz4nrvcXn4fIBinxVlCTa Z2RqV3p4HnS7PIJqLEjoUVDJwX0P5uHSrTqzv9NSaBvf8zrB2XngSj9k+sJY Gr1SJTsbzDPNkfnP30UacVlh4WdL8zCSdMg5NVQaLacwbOlsDLiDNg6idmnU f+zmpp/8DDj5K9yy1lQGfbqvdzboIAO4zCwbDa7sRof7eXq4HzDges3O+siX siiPM9lb+xEDWJWaDxhmySKFvcf2unkywMV2hJXULotIbu4e4y8Y8OjMMo0k Joc4BaYl66IY8ES6831Ihhz6caLJ5lkJAzZ+NXNX/yWP9BxseUvLGeDTx8rX vSKPvoZy5tOrGNDXVNwRJbUX5Q1ocl37zgArn5g99x32oqiHmSnafQwgBclZ pK5XQPzxp865DTJA6ZzNqI6CAgqo+7ucNcoA3j+XedhMFJCHoKQBicIAllaS 6a94BcTQKJkzozHbd0wxglqvgJyumL0NYjDgVXjgRzmqAprwpevULTOgJ+K/ kGfbFdH/fU8G//892f8Aaex9iQ== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{"DefaultBoundaryStyle" -> Automatic, "ScalingFunctions" -> None}, PlotRange->{{-1.5, 1.5}, {0., 15.624995408163704`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.603993915402814*^9, 3.603993930198186*^9}, 3.603994595967134*^9, 3.656931606959216*^9}] }, Open ]], Cell[BoxData[ RowBox[{"D", "[", RowBox[{ RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"x", "^", "2"}], "-", "1"}], ")"}], "^", "2"}], ",", "x"}], "]"}]], "Input", CellChangeTimes->{{3.6039941448268633`*^9, 3.603994148133482*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{"4", " ", "x", " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", SuperscriptBox["x", "2"]}], ")"}]}], ",", RowBox[{"{", RowBox[{"x", ",", RowBox[{"-", "1.5"}], ",", "1.5"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.6039941733667307`*^9, 3.603994182863723*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJwtmXk0Vd/7x5GKQgPJkDSREPpQSeq5FSlJGTMkUxqJiGQmIVMqmUOUaJBS KsmjSYOhzCTDPfeap4vrnlOk3/mu9fvrrNfaZ+3hed7Pe++99mond1MXAT4+ vhp+Pr7/fZ2fJIz9+0fiJ07wnX//5CokpmUUt8+QGN5yX9pqUK7i4957R30o Ei1ta+JeNcpVKHa+/jrMIdHwpojL9QK5ikERVm4bk8Qjmtsf5ZjJVXic2WxV /IFE8Ufm4bsLVlQEKfysOBFJov8u85vnbGQr0tLX3qgRI3H13ONDmxqlKrK6 otxNhHlo3NHwM/ODeIXkD7NDG5ZN4a+iKJE9CxdVfDlsplelwMVFAquNbFLn V+zboHBh7ZpJLLfm35N6ga9Cp/Bo3nf1CYy31Qzw3DmFf6JPiP+3YRx11ok7 b7zHxsJw90/KCuNYrsa9ss+SjU5BvhfXrh5HmZO/GpPns/Hb+eh2CelxVLv6 +lP9GRamWRXmkkLjaPHgVMYrTQK3KfI03/ZzcHqL5WfPzC70fXfFfF8+B3PX xUl4WTfjFHn31rH1HNzzUqt7I1WMNlEvkzPWctBgNld/UPgZVkh9S/0pz8G/ Zw6Ez6wowthtY7ctpTgoN/D+9u74fFzjvy3PWJiDczbOuxH3+AZmz6S7BTaP IZ/iqfVUyl04Ijz6ZMexMZx8vfTYdNYH+Ljmhla52yiel8xbVGfSAsbNcYPJ LqOY9yu7bP+7Fmi9ejX7vN0odip+/Oys0QrDnBARhYOjaJTJdyxAtA3E0Z0d ozqK/H4vD+/+8BOcbA8mWg+NoOnQobCtcp3AlyjE5Z4aQZ8p5pEyfQKiDQQf 1DqM4KYCQYX7FwmQmP5nn281gk1/VLceLyBAyYmsst03gma5RnYWIiw4pNGb +379CKZumxZf9oMFmdUfzBJ6hzF8tlBv2aEe2D43uFjl+DAWCu4IOa/SD0q9 ccIJR4dxscFTxxrzfpD8nGHPNR9Gw7YDXwWC+oETVbrwrf4w8gZ0zf9874c8 EZ6z8fphHMkV9ZPzHIClEm4S5weHcFOpg+iOJ4PQv8bWu8RjCD3dIm9sEB2B 5jlnqmROD+Fn/lXa3zaNwAe27+pgxyGM/KZYqG85Apl5STUGpkP4YeqzVk3m CJgp1yu0aQ6hVvqRGnm1USjftL95mjeINxxzNX/pj0EiY+vWXYGD2O5qtuDv Iw7MqRzrqPIexPfnF7cUl3HA80B+uOW5QTR/IHbcupoDJpbS9WftB3G12656 jyEOiLlOuybtGsThrbmRdUrjEJWMOUNzB9Gi2T35WPY4BIwaiCXFD6Bey7DZ 17AJGPLie7EqcgAffXVIdEyYAJvfr2wfBg/gwN2HGgO3J2CboHJBhccARlZr J1S+mgCetIjekOkANneaeZWOTICH/o9LjOUD2DLn3oIY80lwzrDqGczqR32O Z8T4Mi4kPO/b0ZDcj7Vnmw5dWsOF8mqfpDfX+vH5sXvbRtW4IPM30SA2uB8D 5rpEZhlw4YddXcFG+35k1e99vcqXCzvlDc95rOxHZ6OinpwmLkjnbCenMvqw 5MXvtrqwKdhb+u1QZ2IfGq60fS0cNwUX6q3zK2P7kL+JHayePAU/BHytkwP6 sCxyX7vewymIcH7+RvtoH1oFaV1Krp8C7rqNIf6yfRhwrbSCKceD7/dXCvOn 9eKU7jFy830eOIxU8F+40Ytv2+duKSzkwcR/zn96o3vxdMlH++UlPJAovz9U 7d+Lik4lUWUfeWDVqFGbYteLS048fmvK5AHBt+emxmq6/aXQyuLlJHjt7YnJ le5Fy55rZ3VXkiAYGxkuubQXdW36uCXrSFi/vNp7RqAX2202fw/eRILrRgur L+wetIm+ru5oSALP+qScQ34P1m87LXzyEgmRWcKSDdk96H/X4fy8YBKkeh6K 7U3twQcOTJfkcBK2e3D+qUT3oOnix0Lx10gIibhEkGd7sEj+6fvauyQsKI65 f029B+WSoj1zqklIpzZmCyj1oNlgGJ9dHQmqO3+keK/qwe60t2eFm0k49FUi 2nZJDz43Uxrd2kVCYtdt1/WTbNxBSmrQvg0rRYo2YQkbN9++uLRkCQXn2Eq/ rhXS7TpjC1jLKCgvuxPhkMfGvpGayn/SFNi53WznT2Jje8SFHKE1FGTU+lzR 82Zj8j+T21abKBjOG1Nf5sbGobqR44KbKdgefOpnz3E22idZrc3WpuCnuo16 pDkb3VnGmfeBAunrO9q+arLxuNgDBmlEwanTJZfTVNg4fyLfc+1hCl7tUlc7 u5aNB3M7a8GMAquJVZdFxNkYfDRHfr81BUlmghsPTbCwssCnOfM4Bb0qgS3y gyws91sudvAkBVsEeaEcJgt/ci1zh05T0PS8r/l6HQt31Lvw/TlHgYRkVUhj EQsHnxZqH/Wl4PjoHpV7+SzcaaSxJN6PgueVZU3e2SzcevaVX1EABWYXC5WX J7CwcV2CzOcQCnIOrW/qi2ThkZLXdm/CKJhYnx38KpiFjNLbB7LDKbjRer3R 2p2Fs/P279KNooAoWhCsfJKFxXsHLSavUrDp6uUN08dYGNf7Wy09hoIf27yD MoxZ6K4lte9tPAWrlo4que2l+2/ju7U1gQKPwRMNO3ayUKF6YUXOdQoWpVsp dW1k4carut8OJFJwzKuu/okCC/cb6pZcvUVB4QHDwBA5Fi40WJr2KokC45nt 9atF6fUxuU4DKRRkNj4PmBBkYbx3u/lQKgUjjzau/zBDoL6mkVVnGgWxdvIB x4cJvCsV8jg5g4Jfm1MUN7MJVN0qJ3LsNgWqYkvq5v4i8KcrdWtZJgUBvVf9 mxsIlH8RZFJOc1W5gOL9KgJPL5TTt8qiQCbZ/8fFDwQqn2VcZNF8xp3rt+8N gT++W4zaZ1NQauCmIF1MYI3Wt6Iamhes6v0+8IDAhFsLPqneocfPEKrqziEw 2fHRT3+aH0urVLakESjGu9ZcRnNQ0sF3tTcIbHj+tXyM5sPiHmWfogn88M8t VSKHgjUJN16WhRH4Uvu6qwrNkyIvnhX7ERj9zmCnFs0fr7Y8fuBJoOzMPQl1 mpPm/cm/c4bAPYYVU7I0n7q84m6KE4Fdog/7/tD9b+ODrGs2BH7N9+NU0bwg 0DEtwpTAzoA9ktf+N9/fl28FGhI4PSRtr0dzoU9ewoXdBP45srRuiF5f8OSX mLM6BJas2eV5hebDHkMRTv8RKFJYum8JzWtGRMOslQlstr1pc42OF/e0RuDh NQSOx3U9/kfH91Ovqa+BDIE6ecX7nGhOcvb22rmUXs+8dZte0vk51Z18bvMC AssX67vN0vnTsSs9rSpA4DNFlTnaNC/8+ev42j9MhAeDlHM6Pb+G1bZLBpmY Hmqw4iath5DDepZCBBNXpYpaJtF6Mak5YfKvjYlF92bnxybT86l8aDDylYnW CsXDxrTeKvfU7ma/Y6Lq0SyVFbQeUyo4O9pfM9F7kdB0+w3aD0o3a30tYCLT M9tZk9azyFYr9Yo7TCztpYSqaL13Fvspv0xlot8x+SMWcRSEPcZV964ycSVz /bzd0RR8yd4vGnqaib97Ha0DLlOQJucq5OvIxCVqLmMFoRScTYuf427NxOHI tmPfgikQS2z4fXQ/E+2mTxAsfwrMI+16tTcwUfPWIUU/LwoUBUOY6quZ6Kko +R+cp4AMyfmlKM1EszaOAUn7Q5pfX72EMBNPqGg9YJyhoNvtPHL6u7FLa+Ok tgMFruZXUvLzu9EosLz/434K7syWairf6Ub/DbrLJ/ZS0JzPqX2Y2o3lVWrm EnoUMP7azn0S3Y0hFaqi2jtp/8n7z/OFazd2imTP/Uv751uy68B7jW60ZAg7 hi6n/eTOsr49G7rx0vmMSn4JCtYbHQj7tLobc3/EXL24mILr2SWvviztxsV9 2tv3CNP1dkPmQOZAF2pIMlts/5CwYov37MvzXciKFTNI+klCRHS31hunLtzy Xrn+HL0/cDoPnC0368IrdtHCO+pJ+Bi5pvXj5i5clliTUPqVBLe270/rfnfi UI5vjM4rEsoDlF2GQjvxveW8MNObJDh86KpaeaMD8brSb8HdJBjsoFw6QjvQ ZLxCaL0uCWovF/NlnO9A0WrfRzu2kDDzYJeWtEkH/uSd/7pPmYSUG7kZ4os7 8JPuS+GWJST8cDzpJhT/C2MdeevaOnmwi29MbOJqO7pUx9VlefBAyW9+QdGl dnx3buiWw2keLObK73E/3Y7LH1a8lHTiQWff4YvD+9rx6tSMqrMZD/y+P+vq nd+OQcMDcYGbefAs06eo/cpPdNKZffCWnII1O2ZNPoW2YaL4EbvkC/T5Y8kO 1VTPNjR//LvyjusUBPX6z3NzbkPDW9/Tc49Pwc9rv0sl9NtwoXtsepz5FNwk uGuPC7Xhf+tiw6Y1p0AwamhK4For3jr57NSecS701remMjJacE7f4hP3XbhQ cKqY+aakCW+e+ZbfuWUSGp2y5A/kNaGPhsec5aqTwGcXY/fzVhPGJL6q2rt6 EixNnNuoC03o/FoHYxdOgoCOeN1mzSZ0FTTof9ZFn/8WelU8edKI9RKJXLeI CVhQ+F9Wbn4DPqvMjaiuGYczk0+PxqTV4YtHJctS9DmgFjTXet7aKvwT03Pq 8+AAiF9qXJiU/gHpw4h8tQILWo67Kj9hleBKucr25ufNcNFPOf7rrUy8/8jO sSa+HB5c02bc1bgN3H+Fn68rv8X406HNDmEv4aBzeULWoRYU5Rptf2TyARQk njcLMAnsvlCp5RNeBTGd3zzYOwdx9PXB9xe/1IFyfWvrzCkOKgh/vuDfUgfr ntuaX77AwaNWjPXBvXVgU39jaE4IB7/x/ouNEKyHgOx91pNJHLynKWV5i1EP r+Jn86I/0v8/JgaevaoHARHu86SV4/gt++KS0fwGMDMR6uWvHce8yDsOx682 QfDuYa6Y9CQ6PHV78ii1CWTfC8yvWjuJMu3bZrkFTfDxTsaLILVJjFerT7/y rQnCjiz6Xr1nEn2aBFryFjZDlC+xa865Sdy79vjBgbhmSHevzWyomMTeckWd czdaoFlJa6LJnovZ/RNRJTktMM/L2PzSaS7aLMWW2Wct4Pz9RpS4FxdrXY54 X2togf5EY2PVCC6WiEQVFUm0AqUWfnv0IRcjbAYUJ5NaQTrI533RFBcVeA/F fdPb4EDwKDEbOoVSn0zWPHzQBv25WU3dV6dwQSKp0fm6DR63vJQqvT6FnE17 jPVa26DdMNrf9M4Ulrn9jFq87Cfwez1dK1MxheY9QrP58T9hzLktkG9mCsMa XfrbQtvhR6KE1Vw3HnrnLiRFrrdDznZnh89ePDzl+XQuI7sdpolgiRA/+l6+ +O+avPJ2OLsk4WxTJA+ljRLtPKfbwYNvnv6iHB4WfXhfv8D7F+RVSCm8aeRh 5zP5t9tPdYBy0rGU7/+RWKPtqbzmYgds3Nitu0ubxLLyj8lCER0g83KnUcEO EtO/nfZsyu2AfRkaKUf3kWhFFK937+qA4Yvb7A7ZkVi3ZN+NHMtO2NLodszx CokVyWn/olw64V/prrNbo0kskhtxdb/QCb99ztyac43E+A03DHRvdILESSu1 oBQSDXf9mmmq6YSeSXJw+gGJHz08Tgrrd0GdfKPJsloSi3nvG8fMuqDaz3fU sJ7EnIBlu5uduoARN2Dj00xiaFTpityQLlhb9/1aYSeJO7MF63XLuqA5e5aZ O0rir5NGK19Jd8MP9Bq8LUJh44Mpc5XV3eBafGKn2mIKq0YyYzKVuqGSkSnx XJzCUq9xKnxrNxxcfUkrW4bClOCkBhOLbkj+pF76ez2FFsndUUMJ3SA8rZb9 mEFhvEGxKH9qN5wIqQqo30PhF/LKDck73XDX1iJ3cC+FOlYqGbuedtPnNrcX XCMKV0r7PEmu64b+m+YMdysKj3zdp/W4rRsEa/hxoy2FCZdkX79ndkPemIRl lx2Fc35WvB8Z7waT7QXPZZ0p7E9b2LxnKRNmOOoRlCuFqw902ljLMEHE/5nM IXcKbaaLus6tYYJhmHhSynkKq20tB1L/Y4Kc6WMlQR8Kn664MzNmyoTh6Z5F O4IoHKz2Cp1rywTFCwJqyiEUrgvcO0/WmQlaf735F4RRmNQxtGivFxPSYjKf 3LlCoV/mlrUZN5lgn5nurxFLYbGxcP7TdCaQdySTn8VRODzbrvo5lwnCho5b 1l+j8Jh96JaJYiacq7vT13edwuRF5m/mlzGhoGnziOZNCn+gIkPuIxM2fWmy 80ykcM+q6v37Gpkw/c77ZGUShQE/MmvtfjFh/ag4tz2ZwpKQ82ZebCZ4mf6p Z6VQOKah1xo1zAQzfupvRyqFSkxJu0wuE3aK/jr3LY1Cx+sDzOIZJuRHecsX pFOYtqvsxFdBAgQjbgr7ZVAokuPowZUg4PTh1PMTtynUN9WaEpYjwG63PCs1 k8Iggfl+8goELOc74a2ZReHLZ22zWhsJEMnQXYM0c5weXTbcTMAzJU+WbjaF G8SDhRx2EBD4qunZI5qdPpjEeesTQNhtiRa7Q2GG17qlMQcJsFRxdnaiuWkt mZRtQcBBTRXtfJrFGr/KltgRsDPKTqCb5n3hGdlVLgSk6359I5xDYaiWuwLT jYB2px3HFGguZe96wPMm4LzoVdZ/NE8mSqiLBBHQYOyv/z9W1e8rXh1BgM82 VuBaml2mXmtvjSegputaxDyaM+/FvjVKIuCw+WHrdnq8C0pGOS23CWC6nNfJ o3n/w4WRTvcI+FKw99lxmleqVZ0deURAXdOXN5I0c4uiD/s+J6Ayi2NSRq/3 m6bh5jllBHi9LXG3oDm7RFgm/gMBOWzxxQQdL59tX2elqgiQr+JTc6L5QFkU K7eegBeKPh+b6Hivgn1f1H4SoPrYtVaXZt67+Y9fMwkwk+jYm0znp1rv83W9 AQIml1Qo9dD5y/kc4fOdQ0CzrZi7Is2+hnttbSgCvt2vkLCl832wZi6j5x8B yQ+/S1ym9UDVhwtPi7Fg+Gnvose0fmot9EavSLLoe0033xNaX7mtcxoWr2SB qpy09l1af8adYRmKG1lQlK7qcorW5zrH3aFPtViQF0Ud3krr9zeL/4SuLgtq 2nvP/ab1fXcgRN30AAs6Y0Q3HqH17+fKkOgwZcFR860fJuj6ODT2jzppw4Jt NicuhtL184cb9D7wNAs2T5Uo+F6l0IQv0KIgkgXnDC1Fv9H1p3hZV0frGgsW dnfMm6Xrc2buzEpMYoGdowZvXTCF+Qv9+xvvseDArFTOAX8KZyUv+fN9ZEH4 ZdWcaU/a71K1HWKqWDBjBW8rPSgsWEHpSTawIOQLcS/8HIXmay6KqRIsaDUq r2o9TeGDjd53jvCxYU7N9C+mPYUhRVoRxHw2LLX43LKb9iMLTe4Zt0VsuKww cDHJhkK+bV5al1ey4b3P0sRlFrSf6Z3/XKjLhh9l6k8891MoaOs2MvcSG+r6 NRfcVadQ9oDlKs1QNjT9zf/OVKHwv+1g5nCVDfOmI8IXKVHoILvkdWkqG+Jb O3J0VlH4tv15uHspG2wMU2ZrF9H6OToj2zbNhrM2+5MHh0iMM+oxnifYA3qc 66br+ki8q1sbqinSA0+kPiYdJEhsWJHdF7eiBxoP6GefayVRo2NP8e4dPZDq clRw8AOJA3Yxho+CesD/Va93RTKJfMYXAtsiesDTWxTHrpMotdOuaN61HrB3 z1QWiyVx70p1ScesHnirZ39IKoTejzrrmcsqeiA/66+s40kSj9rLXArm74Xi kyWKSO+vtQ4F903De6Gq2kk5pIyHYWuDdaZiesF9yb6Fi17wcHOveU3yzV7I 19hwJf4xDzPO8k3+yumFeYsE1O0zeXjW58jOk+96QfftnK97g3koFDu3yX+2 F1TdJq4o7+Th7peOAvd8+0A6qi1bvmgKeZe23jII6QPhv5sjXuZNYYGuqNJg ZB8E1ubZwe0pXPz+1UH15D5QTu6vWRk9hV3Vi1Jfv+gD603E6hXOUxhAvFWv neiDe5LW80WWTuELURk70rUfhpY8089w5mKvyt4srwv9wMqWnXK04qKUoSdz zL8fNjs13Fp+kIsBEd9c+qP74c2V8GTTLVzU++d3ri2/HwRuGS+dL8TFek57 8Bt2P3B+x6S45E/iaMPtnOCjA9Ag9De4+dcErpr4yp52HoCeXIuGhO8TaLqY p+h7dgC+43M/nfcT+MLI+KGH3wDMCe94ant/AgM+zRY7pgxAXJiOdpPHBC54 af9pT+MA3A1Utcrmm0DFtNX9840GwS15V+AF8XFMVbjoq2g+CLLHPHTeCYyj yNNqIf2jg7BEMyT79zgHJz9f3BDmOghljSrGG39wsGKq5sxM7CBwExaHZMVw 0NbEb4RTMwgal36Hmv0dwwShhom2Q0Ow7E3sbbMHI/jHJ/zvQ7NhqLG592A8 vB8XNFWOgO0w/B5Lzx227UcZTeHOBqdhKGzz9Xz3Xz9uG4srnz4/DNsnpE9T XX3oezI5+EDCMLxTPZmRpt2HvCMP+Ieqh8Ho3G21+0QPTmj/mKu8dwQ0bHgZ qdIsHPojK5avPQoiyyP/HF79E3UrI406GaPg9KJ694LiNoy/PhktsX8UlHXt B5z12lBDqWp+qPUo3BRLGiBdWtHHwo/fxm8UrCV8u7LuNiNfUSt3YdkozJH0 HWxd1ICSLrfa3WEMDsz4XPfS+YzZJyMbZddyQKLJeKb981MQ8j9VtXY9B6yx yW6srRg84ve/V1HhQIZ8kG/syAuAFwuLtmty4Dmh4+QiXQqdAgkxtns4cGHQ yLl21ztYkZmyO92ZA55bjXq3132FlMaCIpm7HHisVJa39kMTJOyqjpVWGIcr NZdekOZsEHN/uPvDsgnYnrfyldAyLpTrvXpbIjMJXSrHRVr28DH+utlvsRTj wkJplV0rBucx+OfXp6r85QKzi3vcbbcYY8s+z/eGfDzY0CZmaJcqzvjz61H/ sgkerFI9JvprpxRDz/VLwkEeD0ZsTmYUmksx4qZZ2lf+8KDNj/M2+owUY5WM 7FWuAAnpndFonyTFMDhydUODOAm6p2VGA0alGIl1LmcSNpPgr+gTdiVbmqFW uXJ4wSX6nr/ycXP7QlmGr4VO4u5AEua4v5Fjr5FlvGNb6PqFknBTK1adt02W YT4nLnbgKglB7oGlW0/JMvwZ06pf0khgtbRmanySZXwpbXG7UkbCFTF9lemQ FYylhpPL3laQYC5/YTw7ZQXjaJtYOfcjCRp9EZmHi1Ywxkh9seM1JGQM2z+v 6VrBkNz8vHB3Jwll/DJ8AHIMh4/fLf0IEhJms9W0jsgxCsyGZp/2knDGbIWp prscQ9dzzaHVYyTUWlBBh7LkGBH8O0mrSRLSVDpiXF/KMX4kWGclkCRMFJQn 3vwux5BZ5W3wZZqEP+xj6R/75Bj//34J//9+yfg/zOm7PA== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->{{-1.5, 1.5}, {-7.499998591836804, 7.499998591836804}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{3.603994183502432*^9}] }, Open ]], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"x", "[", "0", "]"}], "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"v", "[", "0", "]"}], "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"F", "[", "x_", "]"}], ":=", RowBox[{ RowBox[{"-", "40"}], "x", RowBox[{"(", RowBox[{ RowBox[{"x", "^", "2"}], "-", "1"}], ")"}]}]}]}], "Input", CellChangeTimes->{{3.6039939784260397`*^9, 3.603993995703204*^9}, { 3.603994103514781*^9, 3.603994111457625*^9}, {3.6039941538709393`*^9, 3.603994158754534*^9}, 3.603994391219304*^9, 3.6039946037036257`*^9, 3.604065809577277*^9}], Cell[BoxData[{ RowBox[{ RowBox[{"\[Sigma]", "=", "20"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Gamma]", "=", "0.1"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Nn", "=", "1000"}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"\[Delta]t", "=", RowBox[{"1", "/", "Nn"}]}], ";"}]}], "Input", CellChangeTimes->{{3.603994201418584*^9, 3.603994244717202*^9}, { 3.603994303814877*^9, 3.603994308821653*^9}, 3.603994349896648*^9, { 3.603994424834634*^9, 3.603994437435027*^9}, {3.6039944743807707`*^9, 3.603994475742198*^9}, {3.603994535166542*^9, 3.603994579042542*^9}, { 3.603994670215293*^9, 3.603994724565436*^9}, {3.6039948009997787`*^9, 3.603994826177804*^9}, {3.604056739328979*^9, 3.6040567426875067`*^9}, { 3.6040567906396933`*^9, 3.604056824423889*^9}, {3.604056903000071*^9, 3.6040569041438828`*^9}, {3.656931983449524*^9, 3.65693201190416*^9}, 3.656932056159284*^9, 3.6569321172096043`*^9, {3.656932160057296*^9, 3.656932162163623*^9}}], Cell[BoxData[ RowBox[{"Do", "[", RowBox[{ RowBox[{ RowBox[{ RowBox[{"x", "[", "i", "]"}], "=", RowBox[{ RowBox[{"x", "[", RowBox[{"i", "-", "1"}], "]"}], "+", RowBox[{"\[Delta]t", " ", RowBox[{"v", "[", RowBox[{"i", "-", "1"}], "]"}]}]}]}], ";", RowBox[{ RowBox[{"v", "[", "i", "]"}], "=", RowBox[{ RowBox[{"v", "[", RowBox[{"i", "-", "1"}], "]"}], "-", RowBox[{"\[Gamma]", " ", RowBox[{"v", "[", RowBox[{"i", "-", "1"}], "]"}], "\[Delta]t"}], "+", RowBox[{"\[Delta]t", " ", RowBox[{"F", "[", RowBox[{"x", "[", "i", "]"}], "]"}]}], "+", " ", RowBox[{ RowBox[{"Sqrt", "[", "\[Sigma]", "]"}], " ", "Gaussdev", " ", RowBox[{"Sqrt", "[", "\[Delta]t", "]"}]}]}]}]}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "Nn"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.6039940426748943`*^9, 3.60399409954503*^9}, 3.603994233615056*^9, {3.603994419717825*^9, 3.603994420279604*^9}, { 3.604056708483567*^9, 3.60405672600047*^9}, {3.604065795850018*^9, 3.6040657983377533`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"i", " ", "\[Delta]t"}], ",", RowBox[{"x", "[", "i", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "Nn"}], "}"}]}], "]"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input", CellChangeTimes->{{3.603994236042367*^9, 3.603994291878793*^9}, { 3.603994450497312*^9, 3.603994488568273*^9}}], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.006944444444444445], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJw12ndcTf8fB/CQ8EVWoozIyjcjQn356WVT2aHsQjYVIqQkWYVSUYqUCg3t 0jytOyrtvW/3dtuDMrN+t85b/3wf55F77hmf83q+Tt/31EMm2437S0lJNQ2Q kur97883Hws2HdoKKfphtw0x1rNhxywtKfRYnUy44Hwci+YtPBTQ9SGJ/b0p /vtPe43bzTG4Kvd2fd2VC7j+dt2z5TPm0b+3wEKG515uroLLzTMXDA6yxITg H2f1rJaC/fx1SHE8fwwcsgLLarfcf3L2Bozvz7wxvfl/tL+bGD0m/E6692rE aQ/rr3r7Fs6WMN6i0A20/ztoeXDsbMlabfwXyb+Y5HUPXqcUTpRxdOj7HJAi Csls4m7Bu8l2rdvePQBvyu7w95076PsdcWCo7lzry7vhmT4l9NxxJ9xePXl8 44V9dDyPMKdLKUpZaT8qv/d9IQzXJrXgyn46PhfUvlh9f/DP/Zgwv3q6jI0r LA6bLL0td5CO9zG6nXYqensYYs+Rvj2ibErZdLsDh+j43VA1e+tLZ1MjPHXv +0HOvWqvFO0DdD5Pofhp4qrX4j0oz/mqJ/LzgNvizRbi43vo/DwRGnLcbZry XihI75KdG/4MiffFTNbnfXS+zzGnY73lac+DMGB3iEVXDrrJ7Dei838BnaDT xh8KjLBR4+5KQ/ELONo/CY5wMaLr4Y3oQyO+zbYyRNu23j16Y86FE9YHuQfp +vjgq9mBiFqVA7A/3fjjzUcfKElPnLdpxj66Xi/R8Pj8SXvoQ/W2vOQUXuL0 PxruKkrb6fr5QvliyrIrd1ciy3ttdPcvX0z8tP/h8EnKDHs9/TDry9A9Frd1 mN6rNV7aH+HynF1z5ugz7PX1R8+UN1HOFYbMP6UvTZf/8wq229as9gw5yrDX +xXe54xyzkk/xQT0nu7I13i1f7f7LJxl2Ov/Ggc+3tjRPdCE0endnfwbPP0t 1NZSN2HY+/EGW7pa9q8tP8v0Xe6JAdgQMD9zhe0Zhr2cAci4srfD5tYZpvfq 5SkHwuHEMp/Zg88w7P0KxCzlaN/YraeY2fsepn5WCUKbE/+/Gz3HGPb+BUFZ 2/+g7lBjJkOyN8X5wbAYkFXibWXEsPczGIrmU13XLNrLHHdqt8TitxjtOyVG y383w97ftygKdt0QfHgPIzk4ySmH4H8XXwwMfmzAsPc7BDybr5bLvuozOySL R3JLceckmneuMmDY+x+KjiUqZmUjdjO+kqtX+jIU6Vcmt2+9acCw6yEUi10/ l++ONmA+/SqyaJ4ZBnFp5PMTZfoMuz7CkNIxu2vTMn1mTd8CCMOx92sSW1R2 Mex6CcOs6O7Ky4E7GMnN6z0hPFs1YUXeSAOGXT/hEJeFX1htvYthDy8cb/WH 7um3fTvDrqdwXDGbf8vCZR2j3vcTgSW53cLISwsZdn1FwGFrhfxudWXYJmdK VlAEhDmho3Ifa9J6i8CK4e+l416sRqHk7kuuCe4PMY1OtNWl9ReJaOuD3X4L 9TCtb4eR+HB5hFBx4C5aj5F4bbZcyThwN8733YAoXE7N+NcncB8971GIvnnW LlGy/tM+q0jucBRmDzztETPQCOx6jcaQnYd/b1t+GKPZA4R3Sm5AetUxyodo /Dhzysjc9jT6jo4fjWTz06qXx5qBXc8xmJPavuST3HmEP+t8xdWNwQj+2Lh1 cuaUJzGIKT8a8kHxEvr3nXAMzjcuO7Mp8TLY9f4OedNtMiOmWmI7u2CQZGJf NN/GivLnHbaLZHaMxnX49J5u0TtorzimcFfbBuzzEIuNYYbKzrtvoKt3dwax GFn7tmaJoi3lVSxeDg6rV5t4E6t6l39lLJ4fKp5ek3QT7PMSB6HUvnUVQ+zQ t3wPxKFTKznv3oeblG9x2J3Xea9kjh3qrvTekDgY6gqY+Ew7sM9TPDTkffYU 37mFBX0LPB5RmWsD9glvUR7GY/nHJTNyA2/DxnW1ZMnE49QSD59Utztgn7cE GI0pzhstvIt85b4bjJRDMXN1jewpPxNg7eaayN/qgKm96d+eAP+4w0tbD94H +zwmosm76+LTzQ9g1vt4mCZigOrOUV2mDylvE/G/SXNVC3MeIqX37nYnYnCq +tvlax3BPq9J+P56is1HR0eMZB9IxG0xHjm/zpHyOQk3z21Qk5dzQt/l+56E 6QWj3UPVnMA+zwyeeO+YWnvSCX2HZ8mg5pb94LVuTpTnDDCvqzSx3IncTsZd rdPPO3ucwD7vybBVbjMNLHXCa66u5IlORoXyzMo0ayfK/2ScTtjR6q7khK2S p1GyRpGvtzp0bIkj2DxIxsN0L4+rzxzxrVef9GRYX0owdtzsSF4ko+bkJplN 3Id4odj7QKRAv2vaCy/ph2DzIgVqvkWPNKY+wIa+G5wCi8jIHfne98mXFJSf WbR0psZ9fHjVe4ApqP3W802e5wA2T1KgsLMoZ8JTB7j1Hl1mCsYcKx3y6KQD eZSCIGn9gZXHHdC7uLSHpULOMU7r4gwHsHmTiqYt4wZs49ijN00KNqXC+sCJ d1es7MmvVAj8Ts3nTrJH72qRLBlMPeCy4u7Ze2DzKBVMZmCKu8td9J1uXipO vf9lFtJ1h7xLhUvTx8MN4+6gb3ej0/B1TrvTd5vbYPMqDaV6CUsb7t1CXxzp peFbl5R2rrUd+ZiGPbXTTI+32IKtD2kYviJh3d6cG5RnafAyzfNZLLZBXxyU piH85MBSmS/XKd/S8DFTEPPd/Dqs+wInHYFfF4w889uK8i4d9pemV/7edg2z +h6gdJjELz08zMCS8i8dsYzskT2DriK3r16kIzLMtjPN7DLlYTqsLzi46o2/ hEu9j0N1OmQrDpj4TjWnfExH3PmDg4TO56DUu5wncyB3Wz5HqGdKecnBhpgE /fUmp8HrXX6GHFiNWvDPMqXjlJ8cXH4ko7ku7BBM+gKSg5Mb3fT3SO+hPOXg CrchfX7cdozre+A5uHtnT+rA9A2Ur1zodZ8fkv9DHX2HN52LBxltOS9TVBg2 b7kwDVvCt562kTna98MF1+D07a8PdlN/4OJ8+J7wVZqHmN7yJElYaMU+fnaU e4xh85iLR40b4nepn2J609GimYt5tZuuhMafpb7BQ9l6/qfh1abMgb4d8vDt Wen+kl3nGDaveXhb27pnefN5RqYvoHiwcqi2f5hhTv2Eh5JfYaHj7C8xvXdD 7i0Pr2ult/jEWDBsnvNgtLFwZpHwCtPX7jp58LBatzJx/TXqM3xUP1ZUcNS3 Zn73Pm4L+LCcaxpWnX2dYfOeD81JcSPd5W8w/r3L+Rwf/Kiqqynzban/8BGj qBZ7T+cms5k9YdQ6/8zQf2THsB7wschGoNnEv8V86b0dn/lwWFaqHfzsNvWl DDx5nnl0l+Ed5nnv6WpkIJT/X2ua1l2G9SIDEaHNOllL7zHr+i5gBtzWHJrk 72pP/SoDAkM/7R1vHJiOPh4yYKyTfhQbHjCsJxmQK5szVUPVkXncG+8/MpBy Rc4mcK0T9bFM1GQNspFSf8T0xfPyTNg4zxidM86ZYb3JRPemadHrS5yZvni1 ykThn6BRWxxcqL9lImrZVvPII64MG3+ZUPvg2G126DHDepSJG8OMBz9a94Tp i5f+WfBzq07YeMCN+l4Wdr7/dEPG2J3pe3xXZyFHZahN5fmnDOtVFl6EnOFO PubB9D0edlm4mn+l31hDT+qHWXgS+FNvzfFnDLv8svDSa313/OHnDOtZFq5n 7p/6apsXU9x7ewe/x/bjdslxy15Qn3yPpatljCd3vWCu9QXgexyO+z5PIdab Yb17j/PKWy55GvswM/oW4Hs0SVc9zZr4kvrne2Twvn62zn7JZL/v+4HhhM2Z avt9GdbD91h9Xbz14E9fxrwvULOxV9/r3rAgP+qr2bCoi0/8dtCfmdS3oLPh bLumw2DIK4b1MhtqWjMaT2a9Yjh9r1fZMJvVz+vWrdfUb7PB1Dh2RK14w5zp C+hsyB+8PU93VADDepqNL8Jy/mJhANMXV3I5mD0++0aUcyD14RyYFihMjdgY xPTFwa4c5G0657q2K4hhvc3BXP2FWe3+wQz7+pUDRjzY+eymt9Sfc7Bo8u2K 19IhzDD2gcNJwSipcyUhDOtxDoQlV/fY7Qll+paLYi6ycuqajFNCqW/ngj+r StR/XhjTdzv25UL77ow/Qx6EMazXuRh+aoj/aVEYw76e5UJvgLP1nbXh1M9z MWvf4Teyr8OZvt3V5qJldMLSzOERDOt5HjJ8z963OxdBz3seyuEmnlAWQX0+ Dy8T1Q6or4mk5z8Pijqjmmx8IhnW+zz47bL3L/oSSXmQhwaLOukD26Ko/+fh oNKNrjiPKMqHPPgYX5A7KIpi2D6QhzyNtNOLZkRTXuQh0NLm2qAL0fS+kIf5 72aZ3SyMpvzIg/cjnxHf5sQwbF/Iw51bDRFvXWIoT/Jw9eYTn7A/MfR+kYe1 M8udrpx4R/mSB13ZRfVjCt4xbJ/IRzEaRw/XiqW8yceWIL6eyDeW3kfyIb0/ vGbZP3GUP/mYMqna8O3pOIbtG/lYMSWrX2ZCHOVRPtQNVqw68TuO3l/yAa0A k9Ea8ZRP+ZC6G3zqo1k8w/aRfFyeF7bX3C+e8iof/a6KL3/LiKf3nXyc/iYT eOB7POVXPgoHNY3eOD2BYfuK5PM3Nw9V3ZlAeZaPw1M3iBeeT6D3o3y4fngz sP/tBMq3fPy2zXlX5ZnAsH2mANFDq5RfpiVQ3hVgPL9Uv6cxgd6nCnDd3v3c pCGJlH8FkPsyWOuQeiLD9p0CSV+beMXoeCLlYQFqQmIGPniSSO9fBQhr/rh1 Z0Ii5WMB3ut8C6quSWTYPlSA2uRmrYCfiZSXBVDdKRfQqZhE72sFWH/+3AqN hUmUnwUoT55YnbA9iWFvbwH6/VELW2qSRHlagBWewvGznyfR+10B9MsPz9iY kUT5Woih+QPW5oqSGLZPFcKytbmtdSBDeVuI1+OyP60cz9D7YCHU+n1NzpjO UP4WomyZbuWXxQzD9q1CqLtv3ztnBUN5XIh/3M5/vKnL0PtjIWCYKh+yjaF8 LsRehbQRZasYhu1jhbBV3DLATpOhvC7EvtXbn0v9xzBsPyvE7mFb451WM5Tf hSjkyDjob2UYtq8VoraiddKstQzleSHOLOB9+VeLYdj+Voju7tSr4yTHy+Z7 EaRXHFg5Yw7DsH2uCLMyPz8+osRQ3hdhedWQw4pyDMP2uyJ8OtEy00KWofwv wrP4BcbVUgzD9r0imKx4s9n/exJ5UISQDA9zDRmGYftfEZ6X/JroMYohH4pw fVTNluoxDMP2wSLMPrU3XEWVIS+KsGhtfXO85HzZflgE5UWDD6ScYsiPIvBT ZUs0njEM2xeL8GO7Q+61AoY8KYLCvwmD1/xhGLY/Sj5v9viyv0Iy+VIM3sAV W6U1kxm2TxZjoO25YWEGyeRNMYxV/YZ+vprMsP2yGPLn5ecJ3JPJn2JI7Xnv 6J6azLB9sxhPs7g9yi3J5FExXtv/UvUZlUJ/XyrGv8MiH/zRSiGfirF/7eQR RSdSGLaPFiMq5PIkgUcKeVWMr9fevM0rTWHYfloM99nbtAtGp5JfxXCOs9a1 3JbKsH21GA+KTo9a5ZJKnhVj8G5pWf2CVPp7Vgk2zBsc9mFIGvlWgtIjzf+l r05j2D5bgrpdSSs+W6eRdyXg+Ad6jYlPo35bgrMPA9ukO9LIvxL8O+Ss97uJ 6dR3SzDJ5olmgXY6eSj5fNuNy/3M06n/lqBg5hyFlZ7p5GMJrq64nTYnI536 cAnMZ99MTvqUTl6WQNAo+nhjEof6cQniDa4fEOhwyM8SeE+5uOPbWQ715RIM FZ7sr/WEQ56WoFXvg84ChkP9uRTzo6fKfKnmkK+l2H3b2Fzwk0N9uhTl+l77 fipxydtSFNwMbZBbxaV+XYoljg/8fu/mkr+lCIg1nvLjDJf6dilMdap4/7Pl kselaDNsv/vNmUv9uxTRmgMN/nhzyedSXM5JcFwexKU+XgqLCH9LcSyXvC6F c+bFf70zuNTPS9H+7PJehSIu+V2K/kf/vbq6jkt9vRRJl889/NHKJc/L4CbX LJjWwyXPy7Bk2vvtPYN45HkZPsWprjeQ45HnZdjQMHipyRQeeV6G6AnXPTTU eOR5GQbXjaw/vpxHnpfBaID45ePtPPK8DJPKxicFHOWR52X4Yj15+E0LHnle hoOL/G0O3eWR52WIxfl/p7nwyPMyyXu67vvfHjzyvAxJbfnSD7145HkZrrw9 NTfch0eel2H6IGVZDcnvWc8l57dmi76aO488L8dny7Q7T5145Hk5Gtz2O1jd 5JHn5XjqGbr0o+T4WM/L8SRSc9YMEx55Xo7W7lKt5UY88rwc1gqmCljLI8/L MWSSmW6XCo88L4dv8tZJ6oN55Hk5pn+w61GU3A/W83IMfysSXyvkkuflWKnk tvdlDJc8L8fFcxWdi59yyfNyrJIZeVvvHpc8L4dYe9a/q65zyfNyyOxwWbHu Epc8L8egJwmq289yyfMKdEuZSWvt45LnFVB5f/273XoueV6BU5vM3dYs5pLn FZBKSJnnNI1Lnlcg2EeG0zOGS55XIMOz6LacDJc8r8B895ogfg+HPK9Af7lD Crs/ccjzCuz7YFf+oJVDnlfA0PlnzyvJ88d6XoHXQv1ucQGHPK/A3ck9vwLS OOR5BVyfaG8cncIhzyuQdnVebGEChzyvwPqYV+3Zkm3W80rINW085pDKIc8r sWD1aAshj0OeV8L+/rq81lwOeV6JJbfNNN2LOOR5JT4MaDc8X8ohzyuxLmt7 q2o5hzyvhP9VU5nRNRzyvBID+IFb9eo55HklPnbdPXapk0OeV0IhvejJrC8c 8lyyvUb+2lNJ3rCeV4KbNNvH4Q+HPK+Er9O4MO9vHPK8EmbvJp3Z/4FDnldC WLVeqCPZZj2vhN/5A2MLv3LI8yo8sj2byOnmkOdVuGI695ROG4c8r4LBzqqs og4OeV4F3Yw1nTkfOeR5Fbz3lPlc+Mwhz6vgYbHtnMt3DnleBb2VNw/US3HJ 8ypULdk5ffAALnlehdhbLR27+nPJ8yo8t1ltfGMQlzyvwhHV1faTR3DJ8yp8 fRB+8Y5km/W8ChW1Vuaekm3W8ypoZjre/jWSS55Xod7drf+YcVzyvAqTdAJb zKZwyfNqeLq6ztRR4ZLn1XC8/25ZuzqXPK/GU5FedPB/XPK8GpseybnJrOGS 59XQHbOn3/QtXPK8GqWzZEXJkueH9bwaHM+xW/49zCXPq9Fl9sp1pGSb9bwa SU5LGh9JtlnPq1FnNGfAuCNc8rwaEUpWuWeOc8lzybaxRnG8CZc8r8bc/vsc ys5xyfNqLMiJsna+yCXPq6GoHLCy05JLnteAO3vl8de3uOR5DfI7nkebPOaS 5zU4u1SsnSXxhvW8Bpa6FUdNIrjkeQ2UZfVj45K55HkNtu8K+fYtl0ue1+Bg rWVHYQ2XPK/BvACd38EfueR5DUT9Jmxc/otLntfAqPPUqSBpHnlegykp35KC h/DI8xoY28ePGqrEI89rsNDg0AwlTR55XoMPI7//XKTNI89rYCHyrjbezSPP a5C5bnBM2QkeeV4LfalgI71LPPK8Fv3bZ+0qteaR57VQa3nw+PJtHnlei8EB 76y/SLZZz2txLCYzSeMWjzyvReXwJRP+3OCR57W4Ok78eZ8VjzyvRdOvkicz Jd/Hel6LtQenfAy+yiPPa1H/aXq2leTfs57Xoit7uFSr5PtYz2uxKvrSfF2J d6zntRhalfPFTOIde3iS/c0d8LrxGY88r8UL5mF3pyePPBdgetv4/5k959Hz LsCHhMiVX7x55LsAUdvip8r68ej5F8BV+eOwjKC/3gtgO8c4WzOeR3kggOya V8fWZf71XwD1PLHPyxIe5YMA3NzZ6u/r//YBATZ1/TFRbOVRXkh+HyP0Cf30 tx8IsH8y33TmDx7lhwBfBkjlfhvAp74gwJuRbx9uHMWnPBHggfcIdanxfOoP AhiuPFc7WolP+SLAoxCl2y8l22yfEGDer3Srgsl8yhsBnj1zl7WT/J7tFwKo bZXfV6rMp/wR4HRVYHmKCp/6hgCXJmRJqS/mUx4JsNnsgdyYlXzqHwLIjNN2 0NvMp3wSYOf3D2ojd/CpjwgwtsxtbMguPuWVAPwzd8yDdvKpnwgwUuGy4SgD PuWXAG2jm3N26fGpr0iufyFPKNTnU54JEH3j05jlkv2x/UUAodTx7ybb+JRv Arzsca27rcunPlMHzZ5VLpVr+ZR3ddDWm/6pbRWf+k0dPirIHVVdw6f8q8Nm 393rD0l+z/adOpRuGLYmdj2f8rAOH+S9//OQ7J/tP3U4/SunMVxy/mw+1uHe /15F3t/Kpz5Uh9xlSiO2Sc6Pzcs6CEcsHINDfOpHdXB3ty1bdJpP+VmH/P/y 73Rc5VNfqsPvWVdzLjrwKU/roM78z9LyMZ/6Ux2+c4MtzrzkU77WIcb83PgA fz71qTqsX3XaaZxkm83bOkyuePphQyif+lUd5lj8+Hwnhk/5W4eb+m4LkpP4 1Lfq8Me3O8aRy6c8roNXtMfe2mw+9a86LJZROJ9YxKd8rkPF0DcTdtXxqY/V Yeso+eawdj7lteTzf0Y/ef6ZT/2sDtyGFWNVvvMpv+swNknvwoUffOprdXg1 f9zWs9IZlOd1aEgOMU+WbLP9rQ7BhhqncodmUL4L4Z5w6Zz26Azqc0KsNllb sG9MBuW9EHEdbUEH5DOo3wkxuXzmvKpJGZT/QvhvPur9fWoG9T0hyvKXDN05 M4M8EOLexSu2YZJttv8JUbM2qNFzWgb5IMQHzeR9VyZnUB8UwncY5+KQcRnk hRD3hZcrXYZnUD8U4pXzvM2Kf/jkhxBrdr/08erkU18Uwk+9OjK1hk+eCBGo +DghooRP/VGIGTy7ryqpfPJFiKwfijfPBfGpTwrhKXBa/MaDT94IUTqH8zXk Hp/6pRCf2h5qxZzlkz9CDD28EOaS54Xtm0IMv8n38lTgk0dCFPmsPL+shUf9 UwjpO9u6ZWP/+iSE9dyvgrsSH9g+KoSGaa7H091/vRJCaTTv9YVFPOqnQkSo dNtVjvnrlxDN6xe6jP7Opb4qxAXV3W2Xa7nkmRCKgg7ByCwu9VcRWk9Oj5r5 lku+ibAxueyZjiOX+qwIh3W0TquYc8k7ERbMOKAWK3kfZfutCBkHJk59uYJL /onw8X+n7vmpcqnvijBlRSOWyv99vxWBr8kd5i3p82z/FWHLdgvNO5K+x/oo wuwlk8fs7f7bh0W4dsTgmkELh7wUYTeaD3wT/u3HIhQ9WPtgdSWH/BRhr/XP PX9y//ZlEazaFFAl6fespyIMNfQSrAz7259FePv691UPVw75KoJ7VFDCyMt/ +7QIRkq1ckf2cchbEZwsGWk5rb/9WnK+2bcy9CdyyF8RarY8dUuS+tu3RZD9 JTXrels6eSxCqIn5vo356dS/RbA8dM7HKCGdfJZ8PisoSOibTn1chFu+/of3 OaWT1yJo7b8U+fx8OvVzEdaq1SyW3plOfotwvksnVU89nfq6CFHvNRWaZdPJ 83qkmfw0Ta9PI8/rYa934umr5DTyvB4qCZmn4l3SyPN6pDbP+dl4OI08r0fZ m6gQmXlp5Hk9vFyWu6t/SyXP69GTlz5ZLTWVPK9H5feL6qcdUsnzejzoZ2G5 bVcqeV6Pq/sVnn6dkUqe1yOmXvPFoQ8p5Hk9lmetWbmcSSHP6yE/buH+uHsp 5Hk91natW6iqn0Ke1+N70QXzVKUU8rwe58feP3SpPpk8r0fz6cELvP2SyfN6 HONHp2QbJ5Pn9Tg0M3h95pRk8rweslLTdzjEMuR5PcxcLkYErfr798J6NI2J 0hySlkSe12OqdYPC/rVJ5Hk9ki49Nu7HTyTP63FqbvHXNbqJ5Hk9ahyNO04U JpDn9dDK8nvafSSBPK+HKPPbaKnv8eR5PWZ7zbE5fC+ePK/HxJB/vyyYHE+e 1+PPhiU3MkPiyPN6OA7ZsyP73zjyXIzIoyp37F7FkudizMoKNH6u9Pf/P4ix vvTM6vqn78hzMTTuzv0eMvIdeS7Gkj9yv/3vxpDnYvRXe3nx2eAY8lwMlYp7 G50toslzMaR3W2Rv6Iwiz8XQX7PR5eCxKPJcjBl3Xc4mNkWS52JEPfEpCjaP JM/F2Kyl3/yPTCR5LkbJPashGs4R5LkYTv0r5gnkI8hzMR5s3n0r2DOcPBfD e8Dy0h8q4eS5GFkDClMWBoaR52JkJH2RG6weRp6LkX58SNar4FDyXIzim1pV 4dNCyXMxZFeKb1xXDCHPxZgwgpN2pj6YPBeD63dgpv3rIPJcjDHGhl5brAPJ czFqM7eVGO8LIM/F+LzF6Zi+zhvyXHL8GQW1gzVek+diFPbXLvVVfUWei9F9 /sICfxV/8lxy/dbFjj0yzY88F0Onebanj7oved4At34lddM3vCTPG+Az6b7x LR0f8rwBEc1vxwya602eN2B59IexJcNfkOcN8D5dZOqS84w8b8Dbu90fFXU8 yPMG3IxK+bak0I08b8Dra52v9xs8Js8b8C5ulmdmqTN53oDazQ//GW/iRJ43 4NYEy7JBXffJ8waU1yjFKV27S543oGSVzo6ny+zI8waU5ga3DZW3Ic8bcGhQ 3cYCs8vkeQOOcHdaaMGUPG9A3Jwx0Zl1e8nzBqisXXf58/4VYD1vQPpnr6ep GkdpXqsBwrOpbsozL4D1vAHdL9SiAxuu0bxMA1RT9KR3xdvSfFMD9MO9d7y4 cAes5w0Qy9YvPLbVgebdJNdLdbN5u+9Dmq9pwPCKEN35T53Aet6AzobiLdoa zjQf1gDf4bP1NqS7gPW8AS62jHzGicc0j9OAmHNX/VIWuNE8VQOOrzuSwvR/ yt7e/o14afkuvrXGg+brGrFbtdIgxOMZze80Yu2ZgoUlJ7zAet4I/5tGa9pf vKB5tEbMP3xvboiVN1jPG+F3eZTM83U+NO/TCI2Pz1PuffOh+a1G/Ng0TzE4 4CVYzxuxnimIGHXWl+b5GmEuH9sWtdmP5oMkx2N5YdP2df5gPW+Eaeuh8TcM XtH8WyNuuZuKOIdfg/W8Eckfi9ar2b+heaJG/Fu4KdfVL4DmxRoxNPGKUmx0 IFjPG+F6OfITLzuI5gcbkbH5z9SdtcE0f9QII9sPZQd73oL1vBGO/lfeJMuG 0rxdIzy6X1k/8AoF63kjFKRttBz/C6N5pUY8/r6XP7A6jObTGmGbeFtD2TQc rOeNqDINKPXoDqd5xUZYbvfM22QfQfNNjfBWfJ86bFIkWM8b4TBPKcrcL5Lm +xrho8R9cH9GFFjPG3HIYZGb4EUUzUM1IsL/7LnYWdE0D9eECxbzu3reRoP1 vAnhursa5qjH0HxkEyrnF+6sDI+h+akmJDsYHODPe0fzc03Y9rPz6zTvdzRP 2IQJ2ZzceSNiwXreBPn6R7L3r8fSvFUTimYd9fVpiKV5uya4jwk/Xq4fB9bz JvR3kLtrkxBH85hN0BCN1B4sF0/zWU0ItcrwSzGOp/m8JoxRj/G6EBJP84tN sLJrXCz+FQ/W8yb4pxk4vtdKoHmuJnxSyxPqX0ygeb4mfIxVy18XkgDW8yZM vnoofn13As1/NsFQ7cinS8sSaf6rCX5VJ6desEuk+b8mZHASQr14iTQv2YTP F/MMLf4kgvW8CQeXqX7etCiJ5sWa8LIg1S7WMInmBZvAWHoUV7skgfW8Ca/m HijKKkqiedMmjC/csdV8AkPzZZLzNzJNajBkaL6wCQNTPQONJPHMet6En+Em giNiBqznTfihLjrxTjaZ5tGaMFdz9A7Tuck0j9gM656Jdt6bk8F63ozl7sdj b51MpvnWZuRGKi0/Z5tM82vNsK2oXpz0PJnmF5txdO6gfmffJdM8aDP0E+Ne GeYng/W8GevHhDR2tSbTvFszVB1TGLl/UmjesRkhTju2iWengPW8GWNfxOw/ qZtC87TNeJB5y6PVLIXm4yTH2xzG3/woheYjm1Fq+ChNJzSF5k+bMTg9I60s OwWs581o/efOgICOFJqna8ZAu0XKw+VTaZ6yGfE9uQV+S1LBet6M0MynzYbb Uml+txnOY1VKu0xTaf6uGXsyps74ap9K85fN6Fmfal3/NpXmXZtxx8mq6lpx KljPm7FhS90GwZ9UmtdrhuWDuPD+89JoXrMZFjMPtGvuTQPreTN8VCbPCn+Y RvPCzTjfwxnQw02j+b5mHB8UMmvcxzSa72zGgPtfBAHj02m+thnTlnv5eG5I B+t5M07j/KtPV9JpHrAFKi8mzagMS6d50BaMcv6wLaUhHaznLdivqTxBdjKH 5pNbML7JrpTZw6H5wRa8WmP3ueUuh+ZHW/Dk+4v/1CI5NM/bAr6PwXrnWg5Y z1vgm3RvYtRILs13t4DnfvD0/hVcmjdtwSUXZ9dGUy5Yz1tgteKzifANl+ah W8BJH/rCupkL1vMWZEdrNbmo8mg+tQW589U7F57l0fxwC5YdehF95A0PrOct KN62eKjKRx7Nk7fgRegow+LFfJpnbYFR/+Rtpy7xyfMWLHyhorb6HZ88b4GT cdePtu988rwFZ1apVE9al0Get0D7sKKTxsMM8rwFQdbCl3OLMsjzFuiGTX33 TDGTPG+B1kZDk6ojmeR5C/xtq69XBGWS5y24HndtU8WXTPK8BeqX2/SGrcgi z1uwM3R7tevdLPK8BbMN/tjrF2SR5y244qu6YvLE9+R5K7x1t9ZrGL0nz1tR mNG5zuHNe/K8Ff6NA+7ebntPnreibJq+y/CF2eR5K1zTArU2mWWT562odsky Gh+QTZ63YtSA5g79pmzyvBX1/SefX6ScQ5634tC4qEjtgznkeSvqNh0z4Ljl kOe93396V0BODnneivEfdy5Mk84lz1vxZI7I1VkrlzxvxSrzJVV+F3LJ81YM Ery5xPPJJc9bUfrffodHebnkeSv4LVFuP77lkuetWDRwzJGG4XnkeSvuV42s XD05jzxvhXXBbpvPqnnkeSv03m531V2WR563YvvIUv103TzyvBWHvxWPO3kg jzxvxf9aT2z5appHnrfizYRsxS7bPPJccnxj5e7aO+eR55LvX7Q0cMeLPPK8 FTsbvM8/CMkjz1sx5uegfTFMHnneilvq/+xMz84jz1tx7tOdpZOr88jzNswo 2TZDtzWPPG9DsP/B4y6/88jzNhhxn+xLHZFPnrchhklxHTEtnzxvQ37wucRY zXzyvA33lxbZXt+ST563wdBe5lL88XzyvA1nng254ncjnzxvw7H+ERUWHvnk eRuq93HT90Tkk+dt2LVFLfFxZj553oaSxuL9E0X55HkbVA7J75zZk0+et2HO Qp44ekwBed4Gv+tGrulqBeR5Gxw32fyjr1tAnrfhw6T2oM9HCsjzNkjtrHnt cb2APG+Dj2X+vnOeBeR5Gxb1u7zHP7qAPG/DyX2qrnsLCsjzNgx9Grovq62A PG9DwpyEXxdkCsnzNsg6iKugVEietyEC8tLzNQrJ8zZoNfTc+bKpkDxvQ2j2 mIZ1RwvJ8zYcnbO681+rQvK8DdZRgypNnArJ8zbM899f4fmqkDxvw7hwua7+ TCF53oYly44p2FcVkuftUGU2tij/LCTP27F3iLWxx6Qi8rwdoYMijAatKCLP 23FL85jumcNF5Hk7NrhajXxiX0Set+Pn6oq7NeFF5Hk79tQfrf2vqog8b8eo myX/mEoXk+ftyFVWPmI3t5g8b0fZhuq9J/SLyfN2zE2e/DTVppg8b8ef19Ef 1IOLyfN2OO36rpVVVkyetyMh5pm3rEwJed6OO8pJwwctKCHP2/GkUXNU7p4S 8rwdXYIRmldulJDnkvMpq3/Y/aaEPG8HozjKoF9hCXnejtHKeS57f5aQ5+0w OFKk8lKllDyXHO8vsVzNjlLyvB1yDqN60q1KyfN2vIpf1WP1tpQ8b0f00IEb NleUkuftOL3McnGkTBl53o5+DgcHnlxaRp63I++GKm/k2TLyvB325l8iNnqV keftkvV+qehPXhl53o5Pc3M3mvUrJ887kKITP1FqYTl53oFrnkodDw+Wk+cd sDaWml7sUE6edyDpgubsRfHl5HkHznwZcS66pZw874CczdZb4QoV5HkHAlYt vv5zQwV53oFJ26vNll6qIM87cHPL/+a4+VaQ5x0wuO6OuSUV5HkHTr1f/f7X oEryvANR20RdVv+rJM87cPLZrRoFs0ryvANL435cf+NXSZ53oFF3U5xdWSV5 3gFfvxCjabJV5HkHerYtOTx3dRV53gGvri/G6y5VkecdGLlb1jYusIo878Db 6a2BpbVV5Lnk8/ev1l8YW02ed0CVe/VN1oZq8rwD/+upPTbqejV53gH3eq1r b6OqyfMODM62+T22rZo870BeVD8V0dQa8rwD7a+O1Gka1JDnHSi+EmR581EN ed6B2cZGFwtyasjzDlR4qd2cLVtLnncg5HOJSohOLXneCYVlTV/t7tWS553o WOZ9Y3ZWLXneiXvdT58ZDRKQ550ISdH1blARkOedmH8ic8hzXQF53olWGe0z dmcF5HknitqHGcU9EpDnnXjuqhcQGy0gzzvBH7mp+nqlgDzvhN21wKmBfwTk eSekZc8v9JheR553otoj0LNWu44878RxxeM7FEzqyPNOVKhN7Yp8VEeeS35/ 7GTe1ug68rwT41vHjppaUUeed6LFOcxq9p868rwTgaVb76+fLiTPO1G1wLRQ XUdInnfi4O+Z3V9MhOR5J8pOLnv43UVInnditMJSX6M4IXneCZ0p/LXiWiF5 3gmbW2LhuwEi8rwTkz4GLjCdKSLPOxFgLTKfuEFEnnci8Z+YdQEnROR5J96l aHzZbC8izzuxcLWufECwiDzvxDmvsJ+KeSLyvBPjplv9yu4Skecf4GW48nnm 2Hr8H0nIUO8= "]]}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{}, PlotRange->{{0, 1.}, {-0.1964933292373881, 0.627660092442074}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.603994238819023*^9, 3.6039942994965687`*^9}, { 3.6039943819686737`*^9, 3.6039947468071947`*^9}, {3.6039947801009502`*^9, 3.6039948504444323`*^9}, {3.60405677197409*^9, 3.6040569644439173`*^9}, { 3.604065813265573*^9, 3.604065830801384*^9}, {3.656931973291375*^9, 3.656931993279855*^9}, {3.656932023291686*^9, 3.65693206806291*^9}, 3.656932128655881*^9, 3.656932165761448*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLinePlot", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"i", " ", "\[Delta]t"}], ",", RowBox[{"v", "[", "i", "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "Nn"}], "}"}]}], "]"}], ",", RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input", CellChangeTimes->{{3.603994236042367*^9, 3.603994291878793*^9}, { 3.603994450497312*^9, 3.603994488568273*^9}, {3.603994765573957*^9, 3.603994773752555*^9}}], Cell[BoxData[ GraphicsBox[{{}, {{}, {}, {RGBColor[0.368417, 0.506779, 0.709798], PointSize[0.006944444444444445], AbsoluteThickness[1.6], LineBox[CompressedData[" 1:eJw12mVYVF0XBuAhbcruxu4CRZ9R0c/ELuzOV8DADixssRVb7E5EUA5d0g1D TML00A1+A3vJH6+5wDMn9l73s/Y+3dc5zd9oyOPx5EY8Xv2/Na8LE2evm4uM LYkJG34+Avu8BjXfBJ5Der7iqo5u+7Xn+hb0C3o102/4D/q9M/ZPQeIjeTAO tfrwP9HBPYhIffm+y6gX9Pf7se7IrT3PBH9wQGE9rPG7w8h6MSy5ceR3+v/H cXTRs0keH19x43LnXLq98wQWO4RsvmgTQsc7ha7B2Qcsg4PhO7254QD3M+g2 5cAhr8HXwI5/FmfaddR0cX4J228Rrv6PzsM+dERtn4vB9H0XMfJRtNrGJwk+ XU6r5vlcxuoa/lDRzwT6fg8EWV/L7DgrHPdDun3ateUq7l/dowwLfwZ2PtfQ Z26f208m3IKgsuELsS318vtDHx/R+d3A9YA/8/y6fEbHIdm9TN1uwjGuKGjh xwA631v4VjGm14DTf+C4oeGIGJmXbu7X7DfdnztIFm5puVGXwHnebfjBqrvO A02PRnHsejwRf6LS/vLeh1xGbPkCyfN7WLd53PaU+y/o+u7jYou/W3pe+IX2 xovNBn15gE1XA7jw7yF0vQ/xXihy27ckAkvZAcH39blyI/IdXf9jVFVZBD9f /5CbNebcxDWyx3A46vStDy+QY/fjCdxaW65tpvrCqefVH/EJThgOTFbb/aTn 9RSzSgatS9jHcRd25Fe/LnyKF8rp0sPdkzh2v7zw69RCgxOmydwA9zb6S/BC 3TWp+q69mGP37xlcVwoGLbso4/48meJdXPsM0yc4+Yw4LOPY/XyOgonnLKuX Sbj6u9XO+AWO+fTccP66lGP39wVujbLe2i8ij2ua5uU8vulLrP/s6x6dKeHY /X4J8+bmbmnLk7g39Zdr8QrtpiXdWWXvQ/f/FXa45sXd7XyLm1F/uDavMYVn fn9K+XOw5/Eam6c4nGokDEHD7e70BjzNrFvKHcvo+byB46jkm5fTP6D+7sX3 eIszhyZljEqMAntebxFVtrrYwzIT/VZcCSrt+w7v0geczVKn0vN7hwkWw46o fQWI1B+tw5D3+LDMfV+vrTn0PN+jXVD0u44zfbDlquYwRn1AhfO5iVzXlxx7 vh/w9NSYNr16/oL+5PSX/BGz0h5p77l60fP+iNELLjsVL7rGLdQPHv0jxbbi /m2HtHnNsef/Cd1thubMaPwEz/R3L83rEwYqGj1fvvMsjYdPMO/0ctz1tm9R Upu8X2H9Ge9LS+IeD/Ki+fIZITaHOzhwn2DfMAA+42n1tQCjaT/AxstnOFbu 0X5xj+L0D6/+gpC6G8oxJ3xofn1B4NwuNlFz48FO7wuynr0ULXMVgI2nL/jf 1V0BrfT3b0TDz1d8/BzVu1KVSfPxK7Z2t9u5mR+LkwFR+hH0FR+4ISNnPI8G G29fcemq/L+w2Fgk6Z++/p5gjI2j9zl+Cs3fb5Al+p8d1jwMPRsO+A3Tu5bX 9jwZDTYev2HDGBtllks4djc8gO+oc3TY8mfSD5rv35GxvvHY5stjEVzaV/+E v6NRt4G9N81PABuv3hh+1r0wzUwMK3aCmNB+7vQeA8RUH7zh8OVrF36bPDSc XYQ3LGeEXBePyQUbz/o6u3zexK2jcvHlge5l2MwfyPpqdbfrq1yqJz8w+5DF hT03pDBsuOAf2KZ757P6kxhsvPtg3VZns8pzYsxnAwYRl5K3uFjkUv30gcc7 g+hjk4V4Wn+5yT5IOW0bfd9TCDYffsKuzYVfNSfTUFR/uKU/Mex68LjQI7k0 P36isNqp1QtBEibVD3/BT5z2WjnkskMQzRdfpG/qmHnnxyuuYfiu8kUUb6yi 0vk31WtfeBkv9x47NQmig/UPxBfRhn17PR6ZRvPJDyke+wrPCkIxrGGA+6FD ic7N9nY6zS8/ZLocMfupzoLbzcn6IeOH452mJZ5qL6X59guj2s19G78+Hwk9 Gh4wdpkL41raZdP8+4XXKa1yDl4Uont99df8QoqvSy9pj2yaj78x6eHk6Ds+ IrjUTw/9eVc9tYnbowqj+fkbe1usNZwmT0Vg/dMt/g3J2tS6TYcSab76Y6T3 pIONbifBgk1IHKzJv5qZGUH12R/G654sitL6oeH2Vfqj18weZ322RNN85uBS HCML7B+GhtM7zOGIb9cpteVxNL85KIrvKmaPCgCv4ScA8R8ujZlhE0jzPQA/ lKkWTV1TuFdhM/UzOgBKt0fNxx9Mo/kfgIQmAdsjihK4ufrZqB+jMCrOamnn 9Ydj9SAAM+bWvdxhn8RV1OsTEoBs4ZWEZbaZVB8C4FZ2xWfbszTucYf6CRGI +TO0j3YHCThWL/SfTaP7u3aI46Y1POBA+I+fVxHaNIp8CYTKzH3Hz+V/uIKX 9ScYiGvl2Te8yr5zrJ4EIsvm+JApo39wd+rPLioQwnMGi1/82UYeBaLOdfiR DnsCuPrBNb15EML7LzdveyCc6k0QhjrvGzdvZiBXX00SZwch5VqhS8v74eRX EKxOhPcZuiGFqx8t+iEDv1rJ+MOemRyrR0GIn1lrmxmcxDVcbnwQCq8UlzX9 nkneBUGe19Kr7+xEruFwVsHo7ua9oVO/HI7Vq2DcizR3mzpbyDWUowXBODv/ aM0mfzn5GIw27YtfzF4s4lh8CMZAq3OT0vdmcaxcBGP0gbNrXIdncw3lIC0Y 3jyXDiMnx5GnwejWuNfNBV1zuGMNBScE5YVFNbbWmRyrdyFYO3paz4wTsVyf hgkUggo78xHZF5PJ3xCY+9VkOQSmc3EN8SIEgy8L/H87ijlWD0Mw8NLZb84f crh99dMhOwTOcw5FHy2WkNchSPA5p6u8LuK61g/nLqFYlrR43PvDQo7Vy1A8 OKYw+5Qu5MLrh9+aUPTnlS08Neqf76FQjA5JqxyRxzk1FMhQDN1tMtv7QBbH 6mkonjy7uMwpIp1r2zDhQ9H89spOhZlZlAfC0CTTvus+z1yu4fR6haGl5/GZ G5xkHKu3YegwsuqNh3Met6nhJwwf3w5vdY4vo/wQhgsHxQ52X2VcfXjSV1gU NeHJWwZncqweh8EpdnGv8XcFXH113K8IQ5Wh7aKX69Mob4Tj3ZMrWwVmadyq hgOGI/DEiuHnrqRzrF6HY+jAADvjedmcaUOBCkfVtn3QOQkon4Rja+M4RemS RK7+abT6EI7Nn2s27i0Ucqyeh2NLhVeXld/EXEO604XDrbbv6EcdhZRnIvT5 ZtnQa99EXF39dBsWgeSJkk9OFlKO1fsIRF2pOde2n4h7UT+cd0WgdZMxq85O ElH+0X+WHbSWGkg5B3bBWLDidYhHiZhjHkTgf+gy36wygyurfxylEeiW9j2i V3Aa5aVIeEqubsuxFnAP6y93TCQ2WNnuzAvO4ZgXkcgyvd/u3gAZN7XhBkZC cvfObrckIeXdSITwjF62X6DgtA08RMJ0wLGWsWYFHPMkEjGzTzo6ji/kbtWX 9+pI/Hqxe8LjCjXHfInCm4fisrZaFddQnsdHYZ/hT/tl/HzyJgqeZZfVG23y uIbyejQK083fb12zTUn5LQrmjTe9Xlup5Vj5i8LfPdLzynQVxzyKwqtLgsmh VoVcQ3kx/IO77v1/tGlSwDGf/kC6obNhgHsB1zB9J/9B79KpNmWfNRzz6g80 ax2/m23Qcg3TQ98HFOkGbpV0LaA8/wduM/KGOX7Rcmz4/YGz38g1pU01HPPs D4qP6W75aAu5lPrH2zgaqT6+ya8nl3HMt2j8nllh3XlGBXekoQBGQ1m844ap eSnHvItG7LOiNm4ryrjeDQMwGobne3Y1vlbKMf+iMfrbOdWi84VcTHTDD95Z VGv+21nMMQ+j8clNN1PmUsrtbSioMWiXNW78zbJSjvkYg/jI9+radyVc54YB HYMH4TuffP5UzjEvYzDW9s6wHmllXGhDexUDm24zXaf6lnHMzxi86J9mZuNa yf3XUKBjYH332mKv45Uc8zQGThMKdqW9KeUaylWrWAz6nX2t9EYZx3yNxVbz mK/dRpdwDeVgcSw8en2+crZFGce8jcWc/IINNgtKONZ+xQIb+o7NXllG+TkW rUcNTYm5V8k1ZxMODvNatO41sJpjHsdio6ksOLFzJdcwXDrEIexnl6kLTlVx zOc4WDls6/fLpZxreBwr4jD54VP/m+klHPM6DoPet70fXVzOsfYsDp8+rhwV 2KKCY37H4drDvjUzUiu4hsPlxqHw/p1PfrcrOOZ5PByW9z0zMqaC5ns8fL+P LfRdX0W+x6NkxvzXA03Laf7HI888+viIWyXkvT5Xr2h09lyHMqoH8Xj4zMfo U58i8j8eG/q8mH7tSCHVh3gsnDvB/JZVAeWBeJyK233LfUIx1Yt4+Lm3Pmww t5zyQTyyFtYN9U0tpfoRD4Pmtzu0nV9JeSEeoX9HTR3TrYrqSTzC/p7eejmp kvJDPFyeD7u381wl1Zd4tLzD5S1aUUV5IgFcdeM0h46VVG8S0PZZC2Vn/wrK Fwn4mecUXtK4gupPAtYGd4zyv1xMeSMBkX0f2q01KaB6lIDcBd8H3nujovyR gAXH77UQ+aupPiWge3T4sB19FJRHErBs1TnOJFlE9SoBG8c71sp65VM+ScDx 01IfVamU6lcC2mU3nZGblU95JQH5dsHZbxZkUz1LwLAlpx5NWZpE+SUBziU/ Cq8tSaH6lgCB/b0IkVZMeSYRqdXKnBv+Iqp3ibiw9b5Fr8FCyjeJ6Nl086Lb XlKqf4mYMezMosdCBeWdRJw/E9U/oPG/epiICXY7/eaUiij/6D9v66y7kSWk +piItg4xp8PaZ1MeSoRL4o2XUVeyqV4mYu5mRZrcL5XyUSKEAXPqDgblUv1M xImvIR1FiQLKS4mQhv98skWZR/U0EWuSO3TsbCGj/JSITbIx4ubSDKqvSdDJ HatrXwopTyXhcY+Mr0byBKq3SZjfOStw7IEIyldJKPvfRO9mYfFUf5OwavE6 s6MFwZS3kmD0y8XGpF8Y1eMknLLw93vSyofyVxLaut56U1kdDVafk+D++9L8 kf1DwPKY/vt5B6YsHXSU6nUScOndox1eIZTPkiCeJH62vCiC6ncS/CTXmt/O DAXLa0loLxuVXzHNj/qTJCRaTrNv7htI/WkSrHd+bN7hQCBYfU/GzhGmybPk EWB5LhlD3kdv0ej7U1bvk5GzIzXT18Cb+tlkNHf7tmLStSiw+p8Mh/7dTYYO +QWW95KxxuKb5fELEeRBMoQT3VRPJ4RR/kvGCtPofYOePyEfkpFweevgh1wq 5cFkrNc+GxfyN428SMaUNxe+vz4voXyYjMYvR9xLt5aTH8kw3jonsb+RkvJi MrgmK9SRWTLyJBke6iYHHLcoKD8mo32/e0+8XmrIlxQIHBwiP8p1lCdT0HHM r3sjbArJmxTcMnz89NEYDeXLFEwJSBh+WlxM/qRgxv7pXDuHYsqbKUgK82vU cXoxeZQCF67TiLvWZZQ/U9BMm/01SFFCPqUgVv3UUOJUQXk0BfbeS6Su9rXk VQp6x+acjIiroXyaAnnkLwuju3XkVwp809YlTpvNC2B5NQVOH6sXYW4deZaC 7t1y7xhbV1N+TYWXV3nKdLsa8i0V1YOrFhWsr6U8m4o9hsJlydk15F0q/DxL 7iTmVlC+TUWIc+kkLqaM/EtF5lXEHTUpo7ybCqurxV+s2pSSh6lYuPRJqUX/ Ysq/qVjufmiwla6UfExFn6Aj7tOmllIeTsW0Kq5jdH4xeZmKHh3XN36ov38s LqaizT3D9l8fFZKfqTjjfKLA5E0x5eVUrPXsuzXKrZg8TYVNmW1sl+Zays9p CJg09lXBUC35mobfsWPzH/UqpDydhtDSdduqnxeQt2kY2jVtg71jPuXrNMw/ 1KXsyikJ+ZuGT2sjz3UOklLeToNx6cdTy5cIyeM0+LhePTNj47/8nYbhbh5h ZwySyec0fJ2YFFLxNpPyeBomdfvv4BXfHPI6Dc3/nPrJ7UqmfJ6G0xFTZVO8 M8jvNMw9H3bfXZdMeT0NOS4vOnIvBOR5Og5c3O+Uaiogz9Oxf/W3GW590snz dLR+XLEk8X4aeZ6OUsfkFauScsjzdDTdEOg7MSSDPE/H3Av9Fr3/ICXP05HG Pbj15J6EPE/Hc8XpAWN2isjzdMwYfCZ6/AEheZ6ODQMPfprOSyHP0xHfNnxU wedY8jwdnc60v/Mz1Y88T0f2Wdth70/4kOfpGDZvu5N0mB+Y5+ko2jW9z9jz 4WCep+P4QsPEwU9iwDzPgP8Og/JXnhm0vpSBwyFZp408Uml9MQMXeg8zvaWv 88zzDOyfW5FV2FcA5nkGrGdvdx+6WEXrURnoc8FwgIGXitYjM/BkrGezr1U6 MM8zMOuBedXVrWowzzOw4Pwe603m+bR+lYGoXZEtto9Q0fplBvr6jx0j+KUG 8zwDExctfzvSNBfM8wy45F1xVbz+t96Vge5jGo8wvphA650Z2N595Xefwwlg nmcg5Er86g8vRWCeZ6Lq0vUPvuOktD6WCcNQ29D0JBGY55mA4QrbUdNFYJ5n 4vTe/9zCXHLAPM+E7PjX0x97C8A8z8SsJsde9bFIpfXUTFjbbumS3jMSzPNM 7HxU+tN4QAKY55lYe2/6M6W1gNbfMjG972tNmWEKrb9mQtis57g+XDaY55lw ntdlhHraNzDPM3HxrfTJzhsBtF6XCZ7bCSdTr6m0XpuJk4+nDmrmHEaeC+CW rzoxLD2EPBdA7jTp4vENceS5AL72ufmrpgSR5wKYOfvbr5jmTZ4LsPrlDNdd kjfkuQB3KipUGT2CyXMBzs54Wt7EKYI8F+BDuur14aAU6rcE8DOZ+MyuWxSt rwhwpU7gHjc0kjwXYMXmwa8CjX6Q5wKEzeR9/G3yB8xzAZ6PqQle2DuePBfg +Imt6Tc6riPPBViksPNotCOG1mME4F8/aYhXHHmehYqbwx1+2saQ51l43GTF 4pYZX6l/y8IWQZPHIyf9oPWaLJxzyi04f/QX9XNZWN+hs8ukTgG0fpOFxmZr Xgz3iCbPs/Bm3FHnAz8+kedZeGfHmxr65CaY51loZnZjZtiwEPI8CwsHf9xZ 8jOGPM+CcFrc5yrBOfI8C3uqas8knVlPnmfBs1azxPfic/I8C59Gn7wlDw4n z7MwfOhx+5WzE8lz/ee80c3ePIslz7Oxadqsaad9U8nzbLRrE6HN2RdGnmfj 3chF6jujksnzbDQv4O65fE8hz7OxurtP0pZbmeR5NgwCu9XGNIskz7PBG5N4 s3XXrbQen43umya7KOKvkOfZ6Df5VeDWbh7keTbUh2Z3NSsOIM+zsWLnz+Vh Z6PJ82zscTWNXTzXhzzPRn/xuUGXev2m9adsLAzZ/PS/1AjyPBvPaqpWPapN JM9zoM7oZT4lIYc8z8HQjzOfCwankuc5uPFy/v/sx4rI8xyYDHrXsXN5Bnme A4faHT7XQ7PJ8xzceu/U+pVRNnmeg/VmFTuLt4jJ8xyYzVZVSa6nkuc5OPC1 60KrpjHkeQ62zW25avClYPI8B1fcbRN7ZEvJ8xws5UmH3jsiJ89zkLx16LmF H4XkeQ76DfeLdH2US57n4HFtzey+FkLyPAe+m32n31yQSZ7nImt8m+M/n8ST 57noVDXr2p+EGPI8Fx4DFn9WH71Mnucis7nu9Bn7t7S/kQvXWzsqj/T/CeZ5 Luw2TQpZ2z4IzPNcrJC23Lx6YDSth+eiesGzsG+fAsnzXLTKj5d4//1Onuci Xxu+c8Hmf+truTjnl+GZNSCdPM9F3Z3t7w7q/pDnuXh2zXfL/jFfyfNczNrR o2243UMwz3Mx6dKS1S1OvSTPhSgfNSdh3DE/Wp8R4hu2jTjT34d8F+KpYkyU 9fBYWp8Vona9l3jy8CzyXoiB1a2nX92UTfVAiLM/+nm3tU4n/4UQ9I8LsX0p oPoghEeO67MHTyIoDwgR9UmxbvnPRKoXQuB3u2kD7SIpHwixe+dAE+HYBKof QgyNKVhwo1Em5QUhuvC6jPIeFEX1RAhuNn9t4eM/lB+EuHP5q2rfq6tUX4Rw /z7Vasqpu2B5QgjdrZvfzKJvUv8gxPLOI1bVFv2kfCFEi+gBHlUdw6n+CLGx e6OtvNnplDeECHl58u6LYf/6CyHGv72QrhBlUP7Q/94weohkSxjVJyEWjz28 2vHAN8ojQthlVPKaXnsEVq+EONBt7P7t375QPtHfj9rbnhH7g8DqlxCdZ3d7 OCg4kNYfhGh+NvY55/+a9n/019tD8G1IYBDlFyG6b97S/IFVOO0HCmH72La5 Wb8wyjMiLOm/XzdJ7g1W70SwNz4+6ZuTF61XiBDQfmf343lvweqfCLY+ie3/ CEJo/UKEop7nPR0W+VM9FMH17Z0wXj8fWs8Q4bJd5peAqndUH0Vo2+f3hvYL Yml9Q4TCkWEluRuSqF6KMLCKv95kTxKtd4iwU31/yTvvHKqfIky8U9SoVW8h rX+IsHJBx1VtrydRPRWhdFBw8/dTM2g9RIToITeHPp7+k/olEQpWhbtVi69S nhLhmgcv/z95EtVbEQy3bDVoPT+a1ktE6OYSkRUwJJrqrwhfX75IvngmltZP RDiUeWrakAvRVI9FCBEfDbyQFEXrKSL0M51p288zneqzCHVvtDaze6bT+ooI zhLDZ+4lsVSvRTDOeRDW76kfrbeIcLTd8OAXJZ+pfosQF//T1uBsAq2/6M9P u5cbZHaK6rkIrXpEtHe69ofWY0QYbLV5wbtZkVTfxej1vJHWJ/Yxrc+IoUu8 bnf46A+q92KU3hoXxZ8UQ+s1YszvJBnStGUA1X8xbh46vri1SSCt34ixdPX3 kyuunyEPxEi1yxprYOlD+U+MkBNWb7RmIbR/LEa/xr1XGlrGUB4UI2dUrAO3 LxHMCzG+tmtTvvx/WZQPxfBrom12e1wOmB9iqH4dHxGwT0h5UYxJV3+mHDgY R/uTYiR4FLqcMpdSfhSj9uYM74EjZbRfLYbkgvTzrQ1CypNipFzOX7ZJP8+Z N2LkruflSOeqKF+KUbH43Sfb3iVg/ogxQPw5NXRLKeVNMdIrBL939Sin/VAx TrYdv9/XsILypxjfhncpq3xTQfvjYmzcsTkkuaCU8qgYrwtbv3XvWQTmlRht iwsNL6boKJ+KkXRqeRu7vkowv8RIizRRtvwrp7wqRvTNmN43tRLafxXjjZN3 8Ac7NXu8hhI0eiTltH01tB8vwYbeac4bjinB8qwE4xdI9z+OUoJ5J8GIwHF5 54/Jaf9ags0tqvs+PyYF80+CG1JpSJhSSu8zSDB06YmsMftyaL9Xgu69rV8d vZEBln8lWFtSm7+sWwT5KMGdUyvPNL+bAJaHJZjXqp/YNS6avJRAdmbrX4cO sbRfLsGpMV/6jzRIJT8lmJB+xvXatzR6f0KCS33fTw7oLyZPJehiWWx/lKei 9TAJRq9rlHo0V0XvG0gQ8yUk5x5PTetjEkz5K/Uf4qkB81aCyfbvlfL9BbQ/ L0GrLsVhd4uVYP5KsDjXV1cVIqH3NSRIbDEt+rqHkvazJYiQVr2w/U9K+VuC jm1KDWsK8+j9BgmqthvO7WkpoTwuwZH7A1qNb6YB81r/WXXzSa5YQ/lcgntD ZDv77i4gv/X377+sS60iCmn9TQLHdQd6510vof1zKRzDk0NbPS2k/C6Fh8op eP6uUnqfQopKP/Pj49PKKc9L0X7U2MWGc6rAPJfiw4qnFZbTqmi9Topg9/Lo L6urwDyXYlpTQ9lrfhWt30mxZvwxx2bbq8A8l2Jf59FnJffKaT1PCmG5p6F/ vyp6f0OKcOehK/G3nNb39N9f3n2lwquS3ueSom9VfEn+wEp630EKG4c7w3uZ VYN5LsWZU33HvSquofdfpBg4M2zQrQ915LkUnguyHcf3/0v9gxRzzRxnLsvg 8Znn+r/PXjPW4B6PzzyXwid0se8dk1p6f0h/v0Tj92/t95fer5Di/nyn06f1 x2eeS/E+5txpiWcdvW8jxZznn/7w9tSBeS7Feh8upnJSLXkuhSs3b5ekvIre T9Ffz61fj0ocq8hzKWrfLb1ja1BN6w9S9OtY6dRuWxV5LkUrbf+4iSVV5LkU 8/17ZOSP4/GZ51Ks7W7+/qQpj888l6Gg5ntp2S0en3kuQycTiw8+I3h85rkM h92XWYhzeHzmuQyv0v1fpB/i8ZnnMkxtM/1q0vG/9P6IDHkH93uNv2nAZ57L 8GSyodHSIB6feS6D1ZknY21u8/jMcxniRywfdUtZB+a5DFEuV1vPaVtD6x0y 3F0gc5k6sRrMcxki4jdb+zauofUPGQLtB6wdubyO3leRIahoe89VKbW0HiKD YMYWvmhCDfVL+vMvXeN7+3sdeS6DUUbYiO2La8E8l6FXgI2pwTQen3kug2a+ vbV1Go/PPJfh5MP1G4+sNOQzz2XY1XyJUqo25DPPZUgetEbw7X9GfOa5DPIv 9p0n9TLkM89l2NbvlOxUoAGfea4/3vFjJ7r78vjMcxmal/CavI3h8ZnnMgwI 3GJSPY/HZ57LkOY83P/mg7+0/iLD5iV3xfOkf+l9HBkCWge0WWVfS+sxMrg2 9q9rx9XQ+1l5iEqSvb1TWkfrM3nYpxqyWrbDgM88z4O51O/wSncDPvM8D3GX F22cXmXAZ57noZHGbkjpGyM+8zwPZ6anNE3hG/GZ53nYttCTC1xtxGee56Ho aXrS4YtGfOZ5Hi5HuVoWJxjymed5eB+dOfDIWCM+8zwPxrPveL/ZYsBnnuuP tzWqdeEjHp95noeR3f3svw3n8Znnedjrsjo1rpkBn3meB11VV7+IMgM+8zwP z/p3azy1iyGfeZ6Hn8ZGW4feN+Azz/PQ9bL0/smvBnzmeR48zi93b/TKgM88 z0Ok7aGYZs2N+Mxz/fcPtXjCf2/IZ57nobXrp+lRuw35zPM8WO3e9Mqgdx15 ngcJLztvqXEVea6//5V9M73iq8nzPNifSzzuPbqSPM9Dgl3xdYtxFeR5Hrgi s4Lqn5XkeR4O77fxvpBcTZ7n4a2q9Z4Ta2vI8zysjFvfZ4hFLXmejwzF+H3O vavJ83w03vSjRddRNeR5PqSn4/wnx9WQ5/kY3X+8t8qymjzPR96RI9r8zRXk eT6upRvLevuUkuf5KLc6Puezfyl5no8LyfMDG2WWk+f5cOzVpajZjmryPB/m Q4WxqbZ15Hk+wt1jgvr/4vGZ5/noEvDd3mguj88813+f+NGanEaGfOZ5PloG BWzYZWfAZ57rjx/2OyT8LY/PPM+HqvuL4P81NuAzz/Mxb/JnyfgvPD7zPB8B Kfu3uU814DPP8zE7/ryVKsSAzzzPx/WXjTZ2e2/AZ57nY9Hkvxe8ow35zPN8 nNxX1bJ9iRGfeZ6PF2/aXrMpNeAzz/X/f4Nd9J3mPD7zPB+/os54HThlyGee 5+Pw4EUWV6IM+MzzfBwd/OxG3Asen3mej0jBRK/EKX/J83wUXNwbE9qxjjzP h5P3ba+KvTw+8zwfAs/p6f4neHzmuRyrpv9u0b4nj888l6Pia+2YNgP/kudy FAy6cmPVxDryXI6SX/v/rlBVk+dyTD3w9fPz7H+eyzGhk9WiE++ryXM5eE1b tZqiriDP5Thofk6d41VNnstxY2NTebPrFeS5HNtmdMzduKqUPJejqMSyZ2Bx MXkuR7vzZ42H1xWS53KYdI1+c9i6mDzX//9lM/uVf9KR53KMWD3XvlFXFXku x1lJj41volXkuRyer3sPsvUsIM/leBagVIY+KqT3P/Xfb9a9zsKiCMxzOdZs P3bkaZ8C8lyOZSceVMbYq8hzOW7mz3OeHq0gz+Xom2XsefqTjDyXI8j8T43v XgV5LsfYtRYbR43RkedytNnwI3gNv5A8l6PpXN+1w0oKyHM5BKcW5RuOKyDP 5VibfGxjROcC8lyOLqsWJ6SsVJHncqS3U372/Kuh/lyObBG/yHhUAfXnCrib ZFimjFdRf67AdnX847pFctp/UOBGwifF0FdK6s8V+FHouOldawXtRyig9XD8 U7ZCTp4rsEB9b09ikYL2JxQ4XdbCsMV/Gno/WIEhh670+2Cpo/0KBTwarWpe vrKAPFeg7FefwR1jishzBbaM6dQp87GOPFeg08WRf62machzBexz2ox+l6Um zxWQ35d3HWhaQJ4rcPvhmKqN44rJcwWsS+L3ddL3P8xzBb63Np/0rYOSPFfA pEd1tVuylvY/FIjwyOg9cp0SzHMFeiev5MtaFNJ+iAIblLr/idOL6H1XBbJe jFabfSmh/REFdmS1/Bhzpozef1aAN1r05GDLMtovUeC9WeDwYY8qwTxXALsL f7epq6L9EwVSFvw5O9ajBMxzBY7Zqfd1X1BMniuw9+/KK822lpPnCmzufHp5 1Y0K8lyBN+OGrbgQW0WeK1F0jydZn1xJnish+T5+/FFeNZjnSqyPfVcT8bSW 9l+UyBz26XmLxuVgnitRvdR9YqJXCe3HKJFz//2XlUNK6X1eJV557mt/urac +nMlwNNVDZ5STv25fhxtWdvF9Ws59edKOP/99ORwYjX150oIbtUdDDD/S/25 EuI2zt2G9/jnuf78z3/8cmPyP8+VuPBw3hqH/Brqz5VoeWyF9dDT/zxX4mav mDHzQnjkuRLvSs3cOhrxyHMl+pm3vrv59V/qz/W//xjEL2nEI8+VSNj+olp7 15A8V8LH5MHOsHQD8lyJmdrMmy1TeeS5Eqsf/Fe4YrgBn3muxNTkiF9zuhny medK1JhaTXG/bsBnnisxZEPnvcUWhnzmuRLPLze55p1jwGeeK8Ht3dOsVYkB nw1nJRwrrXtPDzbgM8+V+PkkvsbQyJDPPFeiaVzRtSB9/maeqzBnTkFLT30+ YZ6rUPc/xZMljjw+81yFXsMTg20reXzmuQon/s4b0EZcR56rsGroOeuhftXk uQpn41blN9pYR56rIFEIL73j15DnKvgahJquTaolz1WIvWesXWVZQ56rsL71 r8bxc6vIc/333Y9c01PfjzDPVahtXnYvYGwN9ecq3Dn0ZrF6UxX15yrM67E8 f4t+PjHP9eeTea1jvxVl1J+r4LXRodFMv2Lqz1XY5cL168UrpP5chR6eEZsv lumoP1dh2MrjYRX+SurPVbBzbGHYtURD/bkK6V/+V6ppXUD9uQoOj7VHs0cV UX+uwvC+h6bKOxdRf67C3+nZD5Vni6g/VyHy6eN1b/dpqT9XoUvN7i+pFXLq z1V4N9Z9m+DXv/5chaB96/JlV3TkuQrnZi1cuthFRZ6rMDDGY9yNag315yo0 Tlzq4ftRRf25Gh+eHTl0IaWI+nM1+pbFHhWGFZDnanw5Upu4NaOIPFdj7+mI oP59S8lzNRydJvt1nlBGnquxQdvj2FWvCvJcjdTHfwvOOFSS52rY3t+xcceE CvJcDeclebcezv/Xn6sRHel62+NTGXmuRheNt+ho0b/+XI2Y3eV7/I6Vkedq 7Or5dtag8gryXI1bTz8dXrm6hjxXY05ns7WmxZXkuRqfj0x/oDSuJM/VqAm9 0qSdvp4xz9VI+LrH7+2QavJcDYt9t7+H3qokz9Vo03LQ/Gp9/888VyNicJf0 vgmV5Lka3vzZU16aV5Ln+vNrs1nbeXQFea5G+c4rUy6uLifP1TB8NiM8TX// mOdqBJnMVx70LyfP1VAemVTxaWE5ea7GLLFmvENCEXmuxvammmWFL0vJczV0 TwL7fs0oI8/1z1d+d1NZag15rsam7B68SZl15LkGDraX+yQv+defa7BmyPre vrH/+nMNnqdXdwqeZkD9uQaeM7bYbbxvRP25BjyHkIl5g4z4zHMNBLPfhN4Z Zkz9uQY2NcdH7X5qRP25BpIT6rs7zI2pP9dg0rW1ZXP2GPOZ5xq42JdvvP7e mM881+Dih4HTlow24TPPNZgTcHm0aJoJn3muQZddk/vntzflM881ONo7+c+s amM+81yDQTZFX15vMuYzzzVYGVhednWVEZ95rkHf0BoxphrxmecaVO6+/9u3 mTH15/rvuz71tbn+epjnGkxe0Wpq8UMT6s/11//4tn3oHRPqzzUoCLPP+73X mPpzDarGGrdLnN2I+nMNjrcVldtsMKH+XAPvmcOLQ96bUH+uwcOldW5haEL9 uQZjTt5+vMOmCfXnGkw83e7RpKaN+cxzDWK3G+a62jfmM881OP0oLmjzy0Z8 5rkGWeYzzvh9b8RnnmuRLK8ebwtTPvNci37WQQ5/OphSf67FOZfVFzc+M6X+ XIvX88defTC8EfXnWjh9PSlpXWhK/bkWbc98Me7athH151osuWD+d8INU+rP tejlt5YXYm1K/bkWi9KO74ka1Zj6cy3cevf5mDy/MfXnWgxpLRWYezWh/lx/ vHI/s+cfm5DnWvy0HLKgx5sm5LkWj7sn17inNKb+XIt2CSZ+VYOakuda9LcO 8hfLmpDn+uM5my0d7dyEPNefv8l/I7/cb0L9uRaNdsQV2+1qQp5r0XLbyYch +uMxz7UIdeo4bJVlE/JcC+cdmrIWtU3Jcy02Oy11+qr/e+a5FlVH3nY+79GU PNci5vWeyYOmNCXPtWhiM/e0wL0pea7F9mrLRKVrc/Jci6xtizVWu1qQ51pM fjXE301jRp5rkScfs3HipRbkuRZe0p0dJQPMyXMdumxZ9Cvzijl5roM2YqZH IzcL8lyH1JcLY4pWWpDnOlyITDO5XGzBZ57rUG6cdKO6qSWfea5DIPfSVPDe ks881+Ge5lj4i+uWfOa5Di49EySTSy35zHMdWrbruM7rlSWfea6D8pLLMJsm VnzmuQ6/Jz3I3jzcivpzHUSRTX4MHmRF/bkOIaWrjWrWWVJ/rsMqL+5cx/WW 1J/rkD6Lu/7xsCX15zpc2WlwunNrK+rPdfhf65Ce77taUX+uQ06TOeNXnbKi /lyHblkTD091tqL+XIdh5RWjplpZUX+uQyur5fzEyVbUn+uv78wy8ZR5VtSf 61Ald/yx4Kgl9ec6mJuJXd309495rr8/nt3mdHaxoP5ch/3yGeUT1llQf67D wqUZn7f+Z0H9uQ7XbM68PhpmwWee69C9WfWxbgkWfHZ6OpwLyVq/udCC+nMd nl5eeMyxtSX15wXw8/6QYfXXkv9/gAEF+g== "]]}}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], Method->{}, PlotRange->{{0, 1.}, {-2.0377365528501885`, 4.62926574511445}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.603994238819023*^9, 3.6039942994965687`*^9}, { 3.6039943819686737`*^9, 3.603994805108428*^9}, 3.604056854094108*^9, 3.604056969861659*^9, 3.6040658406165943`*^9, {3.656932153156517*^9, 3.65693216767492*^9}}] }, Open ]] }, WindowSize->{740, 551}, WindowMargins->{{4, Automatic}, {Automatic, 0}}, FrontEndVersion->"10.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (June 27, \ 2014)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 146, 1, 30, "Text"], Cell[706, 23, 204, 5, 28, "Input"], Cell[CellGroupData[{ Cell[935, 32, 98, 1, 28, "Input"], Cell[1036, 35, 165, 2, 28, "Output"] }, Open ]], Cell[1216, 40, 319, 9, 28, "Input"], Cell[CellGroupData[{ Cell[1560, 53, 131, 2, 28, "Input"], Cell[1694, 57, 14630, 421, 230, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16361, 483, 299, 8, 28, "Input"], Cell[16663, 493, 96, 1, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[16796, 499, 346, 9, 28, "Input"], Cell[17145, 510, 183, 2, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17365, 517, 352, 10, 28, "Input"], Cell[17720, 529, 119, 2, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[17876, 536, 399, 10, 28, "Input"], Cell[18278, 548, 234, 3, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[18549, 556, 350, 10, 28, "Input"], Cell[18902, 568, 121, 2, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[19060, 575, 368, 10, 28, "Input"], Cell[19431, 587, 213, 3, 28, "Output"] }, Open ]], Cell[19659, 593, 385, 11, 28, "Input"], Cell[CellGroupData[{ Cell[20069, 608, 102, 1, 28, "Input"], Cell[20174, 611, 232, 4, 28, "Output"] }, Open ]], Cell[20421, 618, 373, 10, 28, "Input"], Cell[CellGroupData[{ Cell[20819, 632, 129, 2, 28, "Input"], Cell[20951, 636, 13670, 386, 231, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[34658, 1027, 524, 16, 28, "Input"], Cell[35185, 1045, 162, 2, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[35384, 1052, 252, 7, 28, "Input"], Cell[35639, 1061, 205, 3, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[35881, 1069, 572, 17, 28, "Input"], Cell[36456, 1088, 162, 2, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[36655, 1095, 303, 9, 28, "Input"], Cell[36961, 1106, 231, 3, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[37229, 1114, 631, 18, 28, "Input"], Cell[37863, 1134, 231, 5, 52, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[38131, 1144, 120, 2, 28, "Input"], Cell[38254, 1148, 135, 2, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[38426, 1155, 356, 9, 28, "Input"], Cell[38785, 1166, 232, 3, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[39054, 1174, 882, 25, 28, "Input"], Cell[39939, 1201, 251, 6, 52, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[40227, 1212, 122, 2, 28, "Input"], Cell[40352, 1216, 235, 4, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[40624, 1225, 415, 11, 28, "Input"], Cell[41042, 1238, 183, 2, 28, "Output"] }, Open ]], Cell[41240, 1243, 616, 15, 28, "Input"], Cell[41859, 1260, 323, 10, 28, "Input"], Cell[CellGroupData[{ Cell[42207, 1274, 181, 3, 28, "Input"], Cell[42391, 1279, 169, 3, 28, "Output"] }, Open ]], Cell[42575, 1285, 158, 2, 30, "Text"], Cell[42736, 1289, 210, 4, 37, "InlineFormula"], Cell[42949, 1295, 737, 15, 80, "Input"], Cell[43689, 1312, 869, 20, 46, "Input"], Cell[CellGroupData[{ Cell[44583, 1336, 473, 12, 28, "Input"], Cell[45059, 1350, 16407, 278, 229, "Output"] }, Open ]], Cell[61481, 1631, 198, 4, 28, "Input"], Cell[61682, 1637, 1456, 36, 63, "Input"], Cell[63141, 1675, 457, 14, 28, "Input"], Cell[63601, 1691, 486, 13, 28, "Input"], Cell[CellGroupData[{ Cell[64112, 1708, 130, 2, 28, "Input"], Cell[64245, 1712, 15862, 271, 244, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[80144, 1988, 407, 12, 28, "Input"], Cell[80554, 2002, 13757, 236, 241, "Output"] }, Open ]], Cell[94326, 2241, 250, 8, 28, "Input"], Cell[CellGroupData[{ Cell[94601, 2253, 367, 11, 35, "Input"], Cell[94971, 2266, 9972, 169, 237, "Output"] }, Open ]], Cell[104958, 2438, 635, 17, 63, "Input"], Cell[105596, 2457, 1012, 19, 80, "Input"], Cell[106611, 2478, 1151, 31, 63, "Input"], Cell[CellGroupData[{ Cell[107787, 2513, 487, 13, 28, "Input"], Cell[108277, 2528, 16403, 279, 229, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[124717, 2812, 536, 14, 28, "Input"], Cell[125256, 2828, 16435, 280, 274, "Output"] }, Open ]] } ] *) (* End of internal cache information *)