(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 8.0' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 157, 7] NotebookDataLength[ 367825, 7153] NotebookOptionsPosition[ 364051, 7031] NotebookOutlinePosition[ 364405, 7047] CellTagsIndexPosition[ 364362, 7044] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell["Numero aleatorios!", "Text", CellChangeTimes->{{3.6034801242454967`*^9, 3.6034801331397943`*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"seed", "=", "1"}], ";"}], "\[IndentingNewLine]", RowBox[{"rnd", ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", "}"}], ",", RowBox[{ RowBox[{"seed", "=", RowBox[{"Mod", "[", RowBox[{ RowBox[{ RowBox[{"7", "^", "5"}], " ", "seed"}], ",", RowBox[{ RowBox[{"2", "^", "31"}], "-", "1"}]}], "]"}]}], ";", "seed"}]}], "]"}]}], "\[IndentingNewLine]", RowBox[{ RowBox[{"random", ":=", RowBox[{"rnd", "/", RowBox[{"2.", "^", "31"}]}]}], ";"}]}], "Input", CellChangeTimes->{{3.603475200192892*^9, 3.6034753390181293`*^9}, { 3.603475411886263*^9, 3.6034754286949167`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"rnd", "/", RowBox[{"2.", "^", "31"}]}]], "Input", CellChangeTimes->{{3.6034752833628683`*^9, 3.603475283575746*^9}, { 3.6034753623179073`*^9, 3.6034753756262608`*^9}}], Cell[BoxData["7.826369255781174`*^-6"], "Output", CellChangeTimes->{ 3.603475285560012*^9, {3.603475342442709*^9, 3.603475393080783*^9}, 3.603475512383215*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"data", "=", RowBox[{"Table", "[", RowBox[{"random", ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "100"}], "}"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.603475395799273*^9, 3.60347551775165*^9}, 3.6034798869751263`*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLinePlot", "[", "data", "]"}]], "Input", CellChangeTimes->{{3.603475449188191*^9, 3.603475469397236*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJw11AtMjlEYB/CzlnthS2q0uexjRUQiSr7jliQ+IpfcNhKb2yjJ53YYE9UM rYa5bZrLjOSyxOZtmXt0kUJGIaWisczMzPc//qetvv36P8/znve853v7LVsf u8JNCJHg+sXn/59Wu+vPtX4e9Xb+QwpheTlTjTu6rPzzs7/R3V0WfQ4d+Er3 gD8cjWiifVHf239POe2HeZtzgmvpvi7LPHvKe7o/+uNznYW0Df2xG3a+pgei PjkluY72x7yMCo9mehDqG3ICauhA+JlP/Gd6KBzkVmbWNwz91oF6c3/Dcf2x 6lQjHYzrRbUeN/kI+Hf/O2ZeCOrT2jKO0CMxr2VxvFnPKOTL85+a+wvF9Vf0 OPeWHo08Lz0vjx6D/i4LX5jrhaHeXh39jg6Ht51e/Ikei/pL8yuMIzAvwy39 ET0O6z3ePa6FtiM/7Lhh7l/CyR23cr0KVlParzLPZzzyKFtZEXNYee4oN/s7 AfPT35zneVCwcGRmP2E+EfVVuemsV9oFbSEvmE9Cv59PKvdHwaJv1Eizf5NR fyXFZvq1V3duNvsXqffDq5TPS2k33l1SxXwK5p309OJ6lPb24l/m/EbB9xwX ipnD8k5b4EfmU7G/ibZbH5jDQmTtnMg8Wju7JIa5dmHM3Qbm0zCvw5xInhcF q8qVa839x8Dyz22ebwVbtr8vzfOcDjcHPKAVLJLaRT5mPgP9p34Uf2EOW5HO K+b8OOD99/eYHBb5C0IKmM+E04qar/+3hOWMwo1cv4KtyqQB3A9L1/fcvdQ8 31lwgoqjpfbuRIvzFKxqnHXV7Idlpk+qeV/Ewu2iY2kJi+RFP1ivtFNLw8rY r33QPtDc32zMjz4zhO8XCYub3jVm/drONd48H5b256xOb9g/R8+r6mr6tX1b Kh6yX1v+DNzHfu3flzOZizisv+liCs+ThMWqwRHP2a/z0OBw7r+l8z/xm/l9 EnOx/ktBW1+xXztjS7g5b7Dwcj97n/2wtGp3cZ6Yh7zT/mH32A/LrkNPmO8j rPYmbSplv67vllVfwv758LgGd75vpfanXO+n7IfV92MO8/xh6Xd1stn/Bajv VbSu0f4Pa65iXA== "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->{{0., 100.}, {0., 0.9991166535764933}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{{3.6034754547149363`*^9, 3.603475519755138*^9}, { 3.6034798886009197`*^9, 3.603479917302352*^9}}] }, Open ]], Cell[BoxData[ RowBox[{"SeedRandom", "[", RowBox[{"Method", "\[Rule]", "\"\\""}], "]"}]], "Input", CellChangeTimes->{{3.6034771486551523`*^9, 3.603477148656858*^9}}], Cell[BoxData[ RowBox[{"coor", ":=", RowBox[{"{", RowBox[{ RowBox[{"RandomReal", "[", "]"}], ",", RowBox[{"RandomReal", "[", "]"}]}], "}"}]}]], "Input", CellChangeTimes->{{3.603475578241001*^9, 3.603475678642664*^9}, { 3.6034767563419647`*^9, 3.6034767676369467`*^9}}], Cell[CellGroupData[{ Cell[BoxData["coor"], "Input", CellChangeTimes->{{3.6034801754638968`*^9, 3.603480175981435*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{"0.4389991319886499`", ",", "0.9318169021535156`"}], "}"}]], "Output", CellChangeTimes->{{3.603480176450006*^9, 3.603480184708349*^9}}] }, Open ]], Cell["Integraci\[OAcute]n Montecarlo", "Text", CellChangeTimes->{{3.603480144198654*^9, 3.603480153063656*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{"Table", "[", RowBox[{"coor", ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "10000"}], "}"}]}], "]"}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]], "Input", CellChangeTimes->{{3.603475681967654*^9, 3.603475732758161*^9}}], Cell[BoxData[ GraphicsBox[ {Hue[0.67, 0.6, 0.6], PointBox[CompressedData[" 1:eJwUmnk4lG8bhiepVCpJkiRFKlTakNQllSQJbbIlSSqVRKFiWohIQpIkSUJI kmwxZF8HY99mzJgZs1J+klTf+/3V0THH8Xjnfe77us6zrHS6YnVWgkQiyawh kf7/p8eHY0bb3wmgsu75Y8c/GZDZTTlns6MDLrePxLrGMTH2wTy0ic2Dkuq+ XQP7aNDbqv9epo4GUoQ2tfNzMkhZqtNbfMJB3T/H4nhVE+zc2o+3nmlFgvnT 13xuPXQWeb14kDMIg6PJ8290dsGx959+9xM+wl/Xam7q/IKts3ZFfA6hgnxK bra21BNwlT3sUv1qkXjBQ+OH9TASBfZ7e8aGQY6Mmx6e3o0ir/lWHaQ21AoP VFS1CkF6+nyPrUo6yF3+O19L0JF4xrjM7NYQLOTncxaofIE5JdI04NAQDPfv SD4UkQRjtb9Xb+czYCzMSgtayoN1BE00L7sL3pvpOsHjZSDLHlebE/8a2Ut2 FGnOEKDeRenCp7geWOy3bg27wIY742jv5rVsxF2f6fRjkQAX5DJaM3SEiBEW 7tCXb8YcUwNZR2cmzNYauy/QaUZWic++ns8D8NSyWHoguRMpPOtfD+3rkFNx Ub36YR8cjXKXBL2tgtHcNPHGLgFG/E6edtfpBvU9DR8EeaBYcYdmPauAAi3P IFpRgOpw1ah7FpUItXRLWz/WC63tGNYW8HDr/t/fDY403N3tP1/xExcTixM/ yCo3IS/Bw7n0eTvU5i+Kin87CO/g8+aNlkJMJIkCFD53gnKFhd4DPbhVf+/9 1OQAnDm8ZTcUmHAn92/TWFGLxv5nbXp7BHC38WqijbTBxidOJ9CICUdvynkF la+Itp1IPnZKBEpcyDrZFgrCBOfSvB8PoWimQ07iu0G4Ts3u87CvgYp8lG2+ 3AccfZS+ZN4pHpwsivU2rheAkjvqVzNGgVv/ZNO12A4kqJuYHItoA303402d bweObpppyBrmQ8Un0Ekx5C1GBBzdiLA+GD4OJ3U4M5D08Y6k924RMY8C5cSv 1ZB4WL7/oRsHtOA3CxcW0aA9YD9cdLIMrpJWruwwPsqzNq7SPTmEeBO9W6Zl XBg7ZmdbbhUjKf6Y3+obfLg/TG5bf+4TIkqkGw+Y00HZuKul4fZLmJ03+nrc mgGL8vF7MuOdSHj8KkXtjQDWKlWnplq7YLa395XGwR4YGBTofnhB7Afno/7d o75w239Z5XU7A567/Tu123pAbpBvlJKhw9FY1Z4s2QCB7X0v9+wOmGU63r1f 2Yn6mWnMX03DqL9owCNN9MNwiKuckvgJ+u8sa0LiBZDaeUVp4W4KJCvcmheO c+HKWRPZrdsIBdnsd9zdfNwqDTSaGuyG2aG27bd/sGByV6LP9VEZzB7/VlnZ T0WWrFtw9jUhTPSPnZhoGYD2/RHWfz4lKLqfoV7mMgyTEM+CauJ9JkwJrHeT h6AVx5nzOpANvXfu92VXliI9QU1wYYkYAuWHuo+VGcgxXZzkoEq8T4MfIYIs Oh7u0ZWWFLAwP2u7uoMrHRb0hN+x2XxQyuRX5dtHI8wp5lD77SGYdAVqbdw9 COWLd2K+BQiQe3vNLpI/A4YKfUFXnqRgcFPJ9GA5HtYq63gUSw4hq01lojOi B+zkrEyGMQ8q7w6bypz8CrvST+krX7eDZKO6rz6OCu2QHl1BUT9yLNy6pY2p +J7Wo2V0QYTY5w8ubisUIpx643xPHR20hjUHi9NocFw2dEi6rgkSWWc2S65i weJh7W4f60Lcsvs5I1fQj6k+5ZNtW9oh2ZTtffrIMBzeHjOoOTeI9vUhPoWp HNht/M80u5OGrIiOe0stciCYIReq59kPa5HGQ4kH/aCsPaqTmUpFUNmP+JdG XSAFTvm2XfVCitWSUndBLYLWNiQE/yuD1u7vvR896LhA28T7LRJhUifj6M6b Ijy0/a9pTI0BLVMO+2ypCIYphnJ5r7NB2uqvdFP+Dujtb6NbAlJBnsg/nUnh g1vraTFWyIMV79nOwH1iGLZLkJ+qNGKELFHw+kM/HIdHfS+MFiOcK3f5iNU3 JHzcfyJwej1S6MeXHJtdDdGBmV57tOkYX7L8XHe/ALF2DMNffkQ/vHz7t3rN AEi05NFtF54inabpb/RzGO4pVRb0yEGEuwa2NtRXQGf6L83oauLeBLd/9YwP EXPu5Ua/k4mxwsPrX/3XAWqAlHW5ej6k6qLEMG/D2Oon37YqNIMU6bX9fXwx lO71eY/ZtsNx9fS2vMXvQK4Y6MwtLodZqMQDDWor5BqGzQ9EDUOx+ffJkAt8 0PQTmYYHBkA9sP7ek1MCaKhvX/TNh4NiXeVmiwou2v3ai1rVuNiQM7FBZS8b rkGxya7TGqDHwCKhBQPac15mptsWYsOV1TNunRWA15cWuGo2HxYvZyjxLnSB jrbD5eeH0Dlvz8anUbVI2NLiXvmgCoa/FX8d5VLhLrK4L+9QAcf5Gpz9BQWQ Wc2MtffngxwaHOvi9haGKhFLm+bzsFlGa435ZQ6st/afvn6Lj7/+t4cevB+E y62I7LlnOBjR+Luls/ELEtJbU42GviEq+IbrfIsBeMe3j8wyb4fBQMKBvgoB tGVGZkw9L4Jocb86+dIQpo6kuttrsWFY8vqjpTgN5Zs8ly9/TYf3T6quvGwn 1Po+VplUsVAeW/YvUYoO8rE/bZutAkCasA7s/n4Qkp5B0zHGhQ6Zqz+cy4GZ 7IHLXk4DmDovHZDoPwyq9/WNRaQvCPq36oqt5yA8pbI1bf+/ty9XhZdFsbC1 RykkNEkEJ8uTc3XWD0Nb/HIg1P4ToruCAmrj2disdMygdxYdKR6rrHoqW0A5 bNB37HgbLOLflaX+EmC8N0WDZs+Fwo19Co03qqFQ4iddvbYf9FnsK5Y2LXBz +3iodjEVbsc0kwWOHTA8TP6ZqVAE8lnl/h7zFGS9Yitzg4VQSbb/ZXU1F667 V8ylLCPOF9riw1QRJry2ZAyp1aB4dEmS55AQ2mmYJbOiEdw9Kh67v/UQ93H/ gFkFDfUXyDppe1ogSr9x+usrJgo8/ehZ8nyQKPEHvWmlKEsim+f5cdH/3DJt Z6EIEYlmN/3e8yGjGKi4cXYZ0ue8KfipwUFtKZuzQ5Loo7wM3ofiT5DnHnV6 M87A/Qeee3Z40TGx/ndwlWMvUsZaWjx+MEDZHL5ffQsxh7fJKSE5tTDRXfnY pIyOhB1Bua+tk0BqU+YsOB+OOP/B2CWJbPQ6qn0aP92NFNP1GSeTiJ65cKs7 /xrR4f1KUieMu2CtvcB8+iMRrLZ07BmQIDjrVYsySzcHOlsqLL83EvfL/Djq 0EWFyeruqZT4UmiL7g5VTDVjq8vzckMGH9mfLqYWNQ9jwmXe27HwYTxUk8qT 0SF68fCOXQ9McqBSP7n719c6xOZrpj6cwwJFRqHHwagWrvsSm3YbUmBo4zle 7FWFrLClVg6Xh6EnLhiN6mmG2uVF2tePt8OblLGx6k4HQi/WfQj+KgDp/fOl NtuK4a0Z9rPPrxtBU0fv/J5N3JO0xoM35zpgMc3nz6VgFkhvwq8Vp2ZibdgB 6TSLcrAXsZbdm8tA2KF3wYsjhmFnZW1SebkN5BnLNsnzHkB6MS/49Q8Rwjc7 nSzyK4C+Izf/1HouIlxFM3SLBaBraTYs9WQR+x1rP2Oc2IuMLs1HT0rhaVLo 07GHATda5o/4e51ov/pcvXWlCNXDfM5qIROC/uEfj6P7QGfHFLicTILNq7oo p0cMxEy/aKXn+w3eVvMuujCHkS7V2a6sTvTmhTqtDU9aYFWj6ZR5kAvHkqUG RRN5sDDlt3nrU6GWlRBVvEcErvmKpdq8OmSlxnQ9VKUiqXALXyKqBbEtwYXq +gSn2Gocq5lJ9GiJgqQv/wnWFsjX7h7sgVKscszCBiro+g2xGb/oCDeINmtR LAHZinHmhWobCmw8fP68EcHgbGv8fe8+ULt+9W2j1UPK58XSVr0y3LrwOuxG SDsUSoUVb1IEIFs6de73DMbIwL6MpV+Lkeh7dtWDtTyQji65q2fUhPpOZRWv pzTE7nkfnBUqwN5Zz67M4g4hr0lKYufLLsRteTTndw8HUQdeDrudJPZ6Jtno kVYHPI+Ty/7TFSFmafbyp7/52PCiNc/FVwD11W2U9E4m4nYJ1vTO6MJImZvf DjWCf89zPs6NJ7jRcvu8HOc6pDC4Oz9QCM5WXbw8LaENjrqLly0qrAWFJG6R ON4NwVufVZP3+aiOfCRUnk1DekPZj6J+EVpy7pT/Uh0E5Z+E4fpmYo5WxsYm qoQjzCxr3qNWJlLcZsZc5bKgouvuHkp4zUOpDYnBdlx4DlPtZUq6YOG+4kU1 7RtC5yf35Jv2E8/3w+bcrkZ0DylxYnKFBJ+Xm3TpUiFT5yBa+PILjCftlv0Y 4YLi8Mlh6C0NeUsr8/MCB3BUVRC243UPgva90IgpqoXv6xVZs1NE8L25QEZk L8atn7M23Sa4yLd5i0LnWRHI6799+5nDgfZ2rYRHb/hwzVXO9BF0wyTwbeT8 aVzQVrIfx94bAi1/fB9vDtH7tzK8cxQEULikNF//Wj+kcPnKI/92yCVVPnRj 98Et/VlTu6cIBYsSnz7yFIMlV2raeloIafURb6GbEMa5NrdM9EQYoUzzfFzS Ael1J6d9GhqAqUuh8sylRJ4YXXLlLxmEkmXG7C9PBTAMerUj/fcQ/u7tsNxn zkfRFV31r34MUG+1PZ67sQwR1cEzqk25cGP0701R6Ybr0uSr/oeI99V8t08u 8g0MorTfqncPw+ii6jGX+wSPBlK77w0NQfKTv7PVJAeOSf5tLNUM2FR9aDV8 zkL1Mk3Xe+E8kC/Gt/eFR6P72W5F7nzCz1653t92oxtxHicaXh1qQffCVYFX XnJAPWg5uNOQh3J5a8+aY0zE3AgI/8Qrg0Rp3mjebx5CY7pcS4j3QOp/ZzPt v0EkOG14H3CiD+79mmo71DtAYT02Kz4QDplx+4Xv/xLeRtP4mz+/FdTkNdEN ExyIWs9fWveHAYXn2x2VSBx4dh47IXO/D2T3vk4nrQRwDaI04gjOyJuxUV9v B+GfFRM9BxPeEN7CT2741o/61tiqQ4QXOGo0ddAVhmE+vj3xBeEllw3np555 M4xkP1+yTRgP4alv7XeyP8P4cQbT34yDTIKiHGTYUPEvXL3Y8R0sNhySS3xI eJznCxXrKwSfPDx4XN+XDj/KvJTY6SJ076r3/GHBB7X5077lNiLE9a3+EPpr EBIxzke4c4j8bbe5LjhUDG6v8r3m4XL0lr3byVzPR+eJe8WzzeogtUHG59Gt fuwdkgnfZ8iCdXGCWRKvFBbid6oHCc6iaKdvnhkRCauROUMviPOdX+01apnO R22inCGmiPytoa8MLGQgaPrX02EtYiRkmDeuOspCgYd+//UDLFClFKyKdlWB dCbARbJDBLuW/OCLOYMobjnvuXMuB8YKOwyEi4XY+irkeWs24ROFYVt+Rg1i 5CSL5nmJAvqQubT/uSFsJbmGX9PtwOX5jnP2nmOAvLnrnl9rCVRIBs9zzdrg emRoaSHBkbeajjbdvdaBzRcoAZuyCc8RMf7O3PIVhrpjquSmTARVuM0Ma6jF ZovuK1deEr0avLzj0gjRlw78X1fu06B1WSxTJsOH+aLRPeVyQ1C4Om3mCcKn HT1vH5v+OAEkz/96VboTEFTfHrspvxNSZqG2J+cNYm9Y9q1h31Zkb/Q8Y3qc jRjrR0W2c0XwDj95Q2dnJUhE/H3Y/xomW0fzfy4dgBafdVhy9wDIlTq1T42z cL+n78/xPCoSUo8v4/EIb1Gdrj1omwlyyju28v04aCgWq3ps4aJ3SeQHL1sR OsVVqX4LiR73sV24/EcvsnSuZM4pFaB3n8l+I6leZKfM3qPcwkD0+ZWej6+K QN0aFSXcwYfhnQUbSmI/wIAkdzJ3PxXW43572rWpIL+ePxa1PAUmXCmK9sIB yJ2z0flRNwylLNk9Nv/f/9Hq3n2/2mDy0rb+W3cnzJso6iFVQzBbV+nht57w QX9j+yvE+a67pFQDk6shk6Z7zz3gG0jn25sGBxpBlRi8MBbQBIWz3TPtqqox ERR99MK/Xrh/q76o9TcPVD9h/trNLISLM/zDstvgJpHjtvgqDUZnkluUiL0p ys/cY9bHhZI/5fQi/WYI2mrja4m8Hsv4zXuYxUf6ngnxmHM/SD5ZduGnC0CK nuMhpVaBzd5u98dOcbDrR8Dn/yIJ/qGWjltK8XBf6cyivHKir6WW3z5Ul4+R bSlPg49/geusq7fDWWKQz8Wlh1MSYfo2q8o9hgnu/N7jtxrrYHf/m+2ZHe2w dtrhf6WLgqjsox+v3mTC/a90eQExh1njt34f0m8jPDClPEW5CYGLUx5cI/y5 s3TPntbvtbBOlE1nL2gDzcD7TzKpG+RvvaM9WzvBWqp7o7y8GY0205I4z0Qo W65+fftZMbSba92fb+tBWMyU3hGC7xw3mbXe1eiB2+8jaoGrB5DjaXj1RCgb Dk9DAmeVDcNz89SBcgUxvJ9st5Fgc9AZOv4+cv8gyg9dW3e1mQ25tKC3WXks fN/nN/DmDgfsw+XO+ZZ8mFXI7v92lnhu14DO1YVFoJwxbshofw+p19Tvq8lV 0FfPX/9bxIDE7FNXW1U5MIoxnBngPghqzeIbczmFSFdSU0zv5YHyddH6oezX aPc0CTN4wcTUTsZT6SUCmFja6qprNkD6YcHFC0Qf0JelLZXvbIf7IfL9yeQS HP27aPFOMdE7efeav9RFYOSx2TryFz7iaAmrvPzZKLJxX/I8cAiUzv0J+vkZ MKEp3lDq7YVk/bqidkU6ug+9CTYOYIKqO7w9zJeHh3Oe1AYKBJAp9zfgF7aC 8mtJvOusZGxQ+3xIdTYdducPvNIaGUZSv8Y76wLCI60OPngdIIK67XtZ31Qx yvUpVcpjw1g7vno03bUNZnf69JZIdCPBu7V2Z85HuFZdWeJ/vgoT+SnRDjK9 sCavv+k12Iqiwbo3+w92gOxccTbQpBpql2K9dxzqBq2U2+ZUy4L2L4ehmV18 aNvtMN7yswTG1ZumH9JgwnnFJvmajS1o3MdZ07SCh6nLvpGaxP6mnLk0FbmS 2JMHvp4LqB+R539yWHNbH5SvaRYGbGdB6sbDTVJuFSiITP+Z0MAGKX9By9zT n3F/Vou9CY3wO+7MO0eOiqBiWHsxcFoe8gQWz8RkgnP8r/5W9OLA7ha76GKE AAmPj0V1X86D++xFCSG9VQi99vutySU6tH7fu7x4ZQcePk6o/m7LxMRL7+HL BKcEZWU+4mzggt5UaHvyGhuSOQ8TZjT1YdW16inFHYT3vTR04vwYRn32AdFT 3S7InDzHvhDcTXBT+Dfm9yxoCxnpizewkZ0/JTxG5PBEtvo11s960Ffszvqz sgGkFQFuL1Q+gh4d8G7gVR5G9AoRYtIIa7cKqRv/apBQt+XO/cPE/HdQ3h0+ L0KU7q5pHl85SLn3w0H+cw3kqK4W684T3qdTKbPzVi9cOcdSAm92IGi10YzA r2VQmSbyjQ9oRXR60deT0UQPi3fs8qNXQHp003S/ZB7s9leZrs5rBUn2ady8 C+8gS7siXfJVBEcFL+UrrCFor8nTZA8OweBCsm96AMEjT564LHzQCTqx97oZ 6VB6nii9pl6MTsHbJz2ZRK6lZlVgRzEK2Ke3xVYQfy8oXr6zvhTSAT5T3aG9 oFqePjDrYi9yLuqLfLtbsdbH54vV3TaozFDTVO9oR9y055/0baiIvuk6GvJd DPct/QclFAdgkfz24KN+4jmVdfUjOwpR5P+iTf5yL6qL8jYzdQkfeyXlJWUp Bj1mmupqoyG4iykfD/I5oM+QJFV4F+PCv8aVvWd4cPcJN0/YWgSLO/v1TBcT Hv9CtbJg1gD8OOGT8n6DIP8JsAt/UgXH1j6v/ph2bF21yvdKYQtM9cstzzgQ /q+muvy7fRfR/3Y+RkIWvEUZLv7Ee2VxlrhwXNlwapLQmmgbRpjHzjeZCWKM GaxqvDq/DwXlWwqVjYZRHfurge7QCxrf8eq9VT247+Sva4AW6D0452+lT4OF K+9Qb0YHbj06clDSqw3c48lbn1zuAtf1VtEi8zrYKHRVTt2gg1SlcNz4cQSo wu9Bf7u7EPFE3fJ9pgiX140HSggID7/s3h4kT8z7c4mI25sTETpL7UGKAcE/ MdZyS/YMIGhQ12JiTIC48eLvP4Rcop+pQWX3+qFmPSdwGXHeoOT9bRLbiNwL yr44aMNE7d786zHvh2Gomn2xaH0e2Bp7mmw8xDDc+GLW4d1VsF6qtGJTfQMc 7n75eJXoMdmSK/2HJ1hIa1w+blnIgfmdmis7HMSI/iusOVggQrrJAqdmPsHn B82Xbz9BA21Bz8+0rSxohJ+4rGEkhtqGrKNOS4keqCVz50e2gGTZbWHL7cLa G2LNeINOWNQ9lHW924/OOatFY95cJA0cNlpJ8FLoDm52FGhgkayOZB0nvGjX AYMXaY2oXlDqnGRVjsANv+Of1wxhsmOj/pKnYiifmzF+bSUPZkvn/EvI7YQM 5VK35cZ+yI8te7XCiw8TdeV9/06LQDe690juRwu2eikMnWzgoiAi22sb4YWJ cTmVpbEcbH2NavmV/UiQjDq8BflQsN/yKtS3Boke10d6dglBUv1yLenTM8R5 xR14O4uL8Uu8fvFZAdK2qdRpXuNjvs3eu47WTKxdp3fBcUMPJqO/DfW4M+Dq qPni+us6uOvI/D1p3Y0R/S01L4QE9/8Kmcd36IL0VMP4HROiP59R8gIOcOG8 OZ2yZiaR+wb+7n5hNIxs9PhdfrgJzpl9bk69AzDo/O/q/I0iWIzOvLLJtw0i UYLhKyMBgpyVUpZtboXxlmULDS4TfnLELie1pB8xPNmlfyIaQC5qYTysJL6X vup8frgYW7fNa/p1iYvaQcbO7Qls0KTShtde74dbxu32A0Y8RLupT6Z7EXx4 3Ilb4szGhQrSuMUwH5lz9swqT+TApEpuhdYPIbKqp9r+epeDJbEh8tLjTngo rFvNJvKevla5Wjg/Bwk1O4+1r2yB0gVKqeidGLFLjWRHtRgwvWk2ryNSRMwd 1fbFRBnCiuM3GlYQvCyVXbA+NBKkAacdq4UBBEfSSmWz2zES/TPAK2yY6B/N f0kn+AhvkX68cJSKwBNcF/MPTIQ1/ufoNMnGpPvc82RZJtLWn6WLGITPF7wd WfeWh+oEnlJDbg+87w9sFEUPIsil1mltDQMx+2P20lLrIDA+s/sb8VwqJ9bO WWLeAuqurbtXvBLDJFkj4kFzE8jn0z3jzxF9tZDyL/l6J3QkvkRKKoiQVduR wpiqhOM2GfWpi59R7rH17JViIoeOP1coNe5CbPVdSuwlJiivXe2cv/HB3rH0 QGHvMKJfNAsGWISn3rmu6ve6GJ3O8e5/eHSMeNSaBsoOoXrJxD4t2U4ELXrQ a5HQTfjaHkbM9XqIxunB7WlMGF+bN7V8Bh1hYTGRw09YSPG/sUtFi4bszpGK JgoTjQtdQ1ocmTA7zwqiryD2zfiBadf9Enh35F25N6sJarWGOuLNYijJpanS K1qhpb/PsMViEL79F5Y26vEh47Jj2QkhA+rydpbKpjw4ts056zmTDUf/i828 QmL/tyvO2RQshPvqHyf+bRIQ3B7mpx3SBqvf9BQ6TwRX2+lZL151Ydew7gvD ccJ7f4Yx8iepcPtFdlvnQ4Xhrb2Nw4fy4Xyd59Wf1IrMvFfmM8yZkKoL2UmO rEKE5bRTJkwhpAr3lnDWNGIs60j6sloOLLJq1m85lYep+T6ZBn790GH2nl5x mwPtL8kMoVIfKN/Cq2dujYfeapuVdNNKqF/9rCm8yIH7GlHY1ZFuFB2R/Opw RwQTSp1RoWUPSMW+x+T/C4Xbftdr+592I0WWJT7RxoLCUq+g8GSCp6ZbDNOH RShyH3q8MGAYjtannAtlkmHXbUrav6wZKnb0iM7oN0iJXKJREk4853ZdyX8/ mMiSY9b0Sg5Avu3JsaSZQqjoPzQpmvMJ3Z15V7+4DcPurKKO9VgvSOEqyzRy HyP77dK6rbJiSNslFFslM9C/L7ok+Daxx60qGzcxcqD17cnnXQ9a4L1O/d0a zQ5kNebzY18S/BE05dvg5QCS9dUAy6NeSGriHOvL44LdFmrv30r4OftLZG53 FkgzWO+YeQ9x947m+8n9DCipLIo4dIzgaEXL+SoCIRQVNbe6NwngebjwRby2 CIb/FW9XnF+GvTL5htGOzXC2VD835ShGSga13reDg8H16w2XtvAhF3gDrzM7 QXZ7/Ox9ZTw6H25yibzfAfeYXdu7bvZBZU2N0klOMpKCVKM2W4rg0eCwZV0m MQ/dt/81KpfBffnLc4kLO5Hw38r6xi/ZqP+a6EPn0OGaK1xte64Nhifu2yhL l+Ehd3z00Co6GuVCZTNOEhxzgzEanV4AmtZQiugE0TP0w+RLxm9ATuidXzOe Ahnva+2z7nIRxPOgbNfvh2PKcvWP9Tm4K8g53tHGhHmNG+wJvq3ffe9Why8V RZMbrFWlOyBJMLxXEh0xNul/V3bXQyWdkpODIlRn57Va3CDu1dRB8qdNLbJ+ ma9yHG/EhQUfX8cV0OF0jjZCqh1Gr+IZx30vW0GdHR2ndpkF6xMCN+VFQljr unwkXe2BL9W9P1dCjDAZaUm/YBEkyU+2jPjyUWDEfe28kQc1QZpW6fAAJB5Y Lpe24OBv+IGnCUwxpNJvXyD94YLk8K0rSZIHZ1bjctfpPWj3a3DYKiR8w/BU 2iKCp0n1f79n8zMwQTnrwrxOnKNmOMPopBg5OnOMbrpyYHN/+uJVGiyslXo2 Nf1KOe5eKhK9+CBEbz/12wZRNxzH66W5IZ2weWw4riUi+E8v5MHJEyyorwte aS3NB3nthuHb1xJBjYikdSV8wda/7FZ3+TZQNjpxfKa3wejgxIauEiFmTib5 kqoIXnbulfn3hgcSZaHHq7mJCDo4/ibchArT9SPydqosFLW7hIyodaGx3c2j 9wif2NPOB3/PEX3XkXMop1mMhBPni9ey0+BO0py8NtSJmEMzmBX3O0GZYyNR hmZw/20I+ZJIeM3ZF2/1ThJcRdvmR+p3QszUqda5+XTQUt9n8nzFKNpJWZsZ RgcruehS3X9tIC+U/Lma+RKGbNo1/eJurD3pes0olfD2lXXGVS97kE0qUh1Z L4TG15h53fpD2FzZcnTWMA8WAc7rg5/kgWL5duU59TIYrFi76chjAQbnrWdH nyW4HpR+8jwm7MLK9pB7iOeTyH7bxBnGOMc4ZNdnIlctGY+ODLbDd+/mfMod FixeXNzJ98lGQV52scRfJqz9L6srENz/fbH782bi56uPtd4Ms2Bg16yGzafV 6ZDQI/lf1BEhnBFz7ZoxDZnmVxZ7NdBh/eDvEwUa4S86L7LVFCsw8pBUcbJn AHqVgq9bHSohGaTnJKvZDq3DrA/2O3pBvnsm2qIoBIaej7/GJ75HSl+4VP4B NhJWiUVPLHm4ZXqp++6Jdghib2w5lU4D9RMp/bsG0f8abrfaXhD3mWPCOR7u hb2zRg7sDm/DSPOp9xFXywmfu91xtYSKyqHRqNopFmTUN2zTMyiG9c9nnzZp VCDr52feiQOFoDXf+hl1YhAxQ+7iHdG10F6441a4Qg/Uvo4plroPoH08ddeo Aw/0f48tHUOqcXyJj9ZG7SGQtuxJDqttQ0xosC0puhvahxYxwz1pWGsslfKK w8B8ntdR788MbB35T7DpcjcmnpQe0U0fhvz6sYwXvXxYsUuprWNMJChWTj37 NYwCxbYbf1tFaGlenZWgwEDc2cT23OtcOMzO5VtVDoEeO4vSmCSGjZX8h/C/ fFi0P7jEeciCUW42u+0VCyPyby+f0emE3JKdH4PMWrD3mQ/9zjYqPOs+5do+ 6oLgdG6O5x0egrQ3mVYbN8DbWW7Z/F+E98c6xD9RGsSIDH1Vc0QvkgId8qqk uUjRf/GSbV0P7brtR57+HYBpTPf8vQVDyPPhB701H4bZlZtjln/4qPSP+1RK vI/M5s9ntFqHkaB8Z55NFuFhYy73V7G/IIumor3uZjYUE5LDzj4Worp5ZGCt kOjrklxdy9DPcMwb+/B1McEV9jbCF+/C4Rp/863Roz7M929PoO7kQ+dm+nR2 OxNJJWpepWEi4vwb7acIDrc2+7Axz2oYsdpNSbtfD0GhpgDmWynQDrdqO0qv Qpbiq5uipBrcX21veSiCCqlHmgtiI78ReVb8SdWTD6pJ4nxlFT7S89ocF6YN YOzO3N6Z9QwM7u9i2RK5UZQxukmhT4hB7+4SiQQGzKIGRTYvuzHl8LfkqC8b 0gV/JHRZ/SD12s1+H10BC6/LQQ43WdCLv6Uru5Tww6o9q8k/cyH4nVjk9JHo p1ffhYaprYi9Utxmdk+ICV/PYYkiEdw8rXWOGXNw10w6tEdlCFLWry10s9gI d6FEPQ8pI7jM7mW0Ex9ueUNfjmm2Qj5tZpCqF8FxJrk2Ya/yQT4g106eFgp6 /E3TJZqErwY9Sfv2WgTtjNtJxXWlCFpQtdBvfhfi9pVM+5nYDf1HB2c1s4jz dR1O+Os3on502G3e3nYoNebePNXQi72bxzN+3OOA/CzkxH72AKSOFO/VteIQ 3PjmozPhnQn34+K6XqcjKd70lBqJifID6scsj7BgeH2XoYVfJbhCJ5/F7ygw elThcPOlGJShG0pD9HeIWmRGMtkwgN7A6JXSnB4kFPueCP+QDZImp2TX+y/w 5Ja5t8qLkU6vG/goJ4D30sWSdQM8FJ8LG5BhEt50ZPtYyhyCs8if3KLj2LBY zr18opaKoOZj19f6lCPo1dMHTqReGG+902UYJ8baOpff/75Vw2w0P2zkHwdy QQNPDSVoCH+xvGzXtWJQlywXakQQOajO382zoqP8rfYvvXBiH3v+SX3SqMcF XWblRhsxSKFHuZfjz8P4v2nR+4qHQM62nLrdFwGz078+5QnpsGB0V1GsyyD1 /I7P57wakNyu9U94+eH7iinZKE8OrMujldMW9MG36I+eUI4PUmvqlrnbM7FX avb+9Rd74LgxrByXiT1j5U57EV6D9HPPmvY0DCJ0j/add3r9CNp9wWmG+zDq z++eNridhvazB6bNIPpqVeuOyR2FfLim7Erpm9MGk+PsD5qLGjFx6VbCvIND cLxT3Jtx/R28tZj7NcOrocwJGPOpYmAilx821dMPD8vRA2YmTKjZGx2YdW8A pPHxe//pu8HIvtPTkPBKI4dNTMUuBii9xzRIa56AGryg+b/YDtDCZZ2dBlrw t3Zk7FeQGNzXpq/f8Qifv/X6yifiq4RXt112rGmCvtJEpd4SNgJXb9tc4TwE wVi8lEWsAM4FrhO7thHvNcasU5RjiM6gY+vYZ8sQMyo5c54BHeQR2YP34gcQ m3Zmq9QxMbLWf4o1DsgHKWyV6rn0l7DY5mD6vJrwQbK2Bd1lGFIJ6YvSKQSP 6NFUr/84Cdbrc/d2Rg/A9e29CDmJFqgcrPztR01B5yNlV9PRYeTZNT50dRpG Y+rnMcsQEVhJA7IWNziY0FxRmh5J9FHtlbvuMoT/+KwNCL7cBJWzfpEhVwfh rLPiwaOGPkz92yKfeGQIhse8to2cbgUpuWgJGu/iaJHuqZ1X2djVe7Zfk0x8 rippIC/MI+bW/+WPCzlwvfrUiDr9GwSl0U5Dq5kgpXYOZCcFY2TeY365RDPk r5urHqznwHBabcfCx0R/qHaLvE346P4u+9OYyA+pTLfdtkT+k2/Al5ZRDe/h ZQ/sn7bD1HVbnXOhGAbXBhoq/DsQuKrkjIBCzJmqySrtaddAfl6o6qHdABU5 l1PXrRJAqVj3bm1TGZJ3tiu9ZzCQ9WPLKwleE8Ivmj32aGYh88HcJtEIF/Uf hLnmNwbgqBU3kBZJRdYie20NqWz4SWvF/mlhE/w79XhWCgOdL90Cdpm1Ep/3 L7jqnIsclQ7Nn4RvUGOe1U6z6QLp/pNQl/wy6D3ePP1f0yCsu0KtR0f4oP/Q 23W++TVUdP8eOngnFYpJkQsy6nkIvxre7nC3GqRD3K2pPq+g9W96i9UjOkxm CNZv6fr/788d5dwbEkOwxd7gXjPhk/+WbtPKKYVrWshhwYEh+HJFxnJn+LjQ vr9sz0YRZm7Q9Pm9Wgz6M9tfN6+LEV9iIz7mRPTrg4Sbs24PIk9G0W2n+QC4 vTtfXrtDgeLp1bvnHiZ4eYXJFof17dA4G6307JQYg40j239FCECKZVz8MaMf eWTp3d33+pHtMdGjNsZASuL7yjJlGlSm5k+cXZKAziqfG+Er+yFDuvuj6QYL kj3BH1w92ZCc/Z/0Q4KfdPLIZ+bcJPLEXzznG7E3azvKNmb59sK1fhGJq1wP +T0zJ82fDkN7uv23/o7PMP3vRLrlfTEUpE60Vh6pgdGVvKyPsgTfvbfbwfr/ 7wn2G5c0ZGTBtfBE0tzeGsh4ljVeUKuFDuf4n2sePNy1Odt79psY0cJXI73T mBi7WU+/ncREdNOH77c2iDBWdafkciUXLtuG55Qf5kOJtoomVU9w9k9L7tW4 Ujj4LPv8r58BjVxBT3wrE7ek7DPIykw4iS5vz1Viw3BEpldLVgT26OLbCeNE XicfenikIQWXHxs8+Ur4tODishIDZaJ3zIr2bCL82K489OMXwwHkjHHTnrwS Y+t7czXhww6CQ9eP/NUsAuV59zzF3eHI6f6m1FzaDNru8f+OlPEgc75vT3R2 Pbwf/ix1jq9G7sr10aVEThflzeMvKeGD3Rxr9dyWi6SwG/wX/oNINl/yIDVA DBPVQ+ZviLzMWxL66d95BnqL1OX27qXC+cSKM9a5w7D4IhSkLC8B6SZD4suc Gpi0+lEf7SiFU+WHfWrbRKAMHnr6YBGd2LNR+t6DDDRqq1x9f52Hfm2jkzMr hdCLmpRjZJahqMBifGJ/C+J2yyqub+2AQtGvU76g4m/dVvO4WYTHRKiRy4X9 6FZfdfgQweNOm42fPTUVgix1Nv9pdDRIdutyfdM9MVHy40PnRD9GorSULu9k QutnhzafyKdanXi5M2YsBDr52JWkE/dfrpnyK6gXnTXjjWGCGrhLMU1DF5VA Y+aMxKX2HJDuvF4RN9kO0fWzx6NthIhZ0VIg1KkD2fCki+dZNkJ1hmv60Ifq QtvO3FdshD3pDat7w4Wf/VuRVYQQU/T9/NaXVBh1HlzorCiAWbbdiMwBBqJy 13MqVnVAbkssL+FCHyglEovaJtKgt2L0sNedVnj+HjKoP8VAGn9M+dUsETL9 4sxXrBtE+an2sKh/RI/IBHnHufeCltc9J+VBDyym+TlxZjcgjP/pla0rEyMv ykadQ8pRey47UslPjP4zl2uzF4vhvvbjss95xB44BDcwjrSj++Qy0WsJNmSa 2tTdlwiQ0Cj7d9q8j9C4KrFdTkGEWo1Vd3NfslC9Iy0hNa4dhtv+XqJ+rUCC 1/HfWkaNUMk/99d4wXtIMWQGPRyFoF9a/bu0rAfS77SuPprsgvXh1td3HjCQ l5msTyP4UOVRfUXhrR7IqkyMT2kPQu+Gd6DuGj5Uzv3cveJoAiSermmaeDMI TztH1QftXBh8+D7J9+yDrKfa08jZRP+R/h7jzG2B+4Wn5vv/5kBlw2XpWXaE 91MWbUq72wfD3qOD4y+SQFljPup4hQ7Zmn9LZr4menbKz0j4sgpuihrKsUHN iHviI/pD4UHJnKlTtbgDOpGxLspqfGxted3Ef9ONvaKlArk8EbhtAemhNWWQ syy5ypEh8tHS7ehBez7uX993uDGZD7U07byS+gF4u4DHVK+ECf+DbGBFD1xf KluESNMhxfa0ZTfXoVf3+e2mnzQUZJV5/XlBeAcrp/vFmkE4ZqyluYz2w5qb 495n20ycd+b4CeK5ktok+nckdUArOmCWtnkfZnL4F352iXH50JWQt+48yImj Y3/1D0FNXz6nt5QBUlVerkFnHahNlyKaL/IQ23+HErtViN4W/+zYh+3wSGzL PfZjELlhRs3PiTmNGlt2PNCsH4ZGCy++2JsHUmbRLq44GElH7pON2gdQqSu1 mBEwBOql5a51K+sgcHooKPkmQPkJqut2jwGkLek3EPYNofHiTM9n60WIOxm0 2nruIAKpJMvFksS83H51ePJrN/T27vYeftIAi9OdMtXtZSAdUaksuVMCpeCW 4X2j7aBMr07yiygA9eN2Fr4R+69xcJmyBw0U+UOzCjpFmIpoCpZ5ykXZnnun IsqJOZJvvFk2i4G9jroH98sx0X3QIW85WwzvYu/VI9YVuD/prxB/qhnW5nF9 F+TrYbPHbA2PTeTwjJutAWue48IVnyUN5wVIeTTzhbU24WHfQltroodRfSYq q2WICVf91bGiF00o2hTumvadB5PyoHsLCZ79zitPWzyX6D2G6TSSHRfW8s2v 338dgMr7xQutpn2AeajVv9lET6hLfrgytmQQk+9T4vyV+HDZ4XuqeowLsnau y3SdLKJXjKf9s+1GnMoKY49nxM+rzW30z2qHimHgcZKTGL4h5UM/pwnh6LEj 2I7wNmP9c9P8PhCcWufI1d/EBfXYkhjLrq8I2vRTxfwQFdoq122mphVBatqX JXaZ5UQ/ijfOqSC4vv0oXX7mN4QrHuh8X1wL2oI7Rx3JLUi3c1a02srFYLXS puSzRJ4euzgg/bkQdiF2FJ4r8b2staaEYxQ4kiJEy/17YbjngE/O6BuoBLxI DTuQjYTJWsnqI2WYv6Yw7rIxGwnXOQddalJx3yXyx+UDRJ5PxU7mGrGhpvdf Rse8DlRzfO8vvNmHIPaPg42bBqGY7bKi7ArhsZqLtOc+IOZBz3zWWKAjjjqW C1wmBFBr8nyUt6sZoWRv+5Kr/QhUGpGYGUAHfaDneKx9MlJuv85YSNxT5wPd /5ad6oDEs7iczD4uaq+pKU3G8DDCu7wuaelX6CUPt3Vx2pH0PSm4978BGFUJ RiuJ5yVlXffYs98fKTK9Ozw2M+H9bA7lT2MVbP5FHvFXEyAUPntvhw9BskJV y6OwDY0PnW+676aDkhwwu3K9AO7REl7PAr6Atq9hwHxyALdWLklYskWMJEpK 4Tg40B5em8AgM0FdI2+RJRShU2eXw5zbjZBZk+vwTa4bUvX532+er8b9jm0b asb7EbW/99Ur3X7k9jt8O72djcz7mTOFyUyki722xz6gwXk/5XfwYxGSv6c+ X2AhgHaqjtfExhKURV5/82wh0Uf1M9pWTwhB+h0wFMEXgXRWh1ef+Bl7/bOb V2tTsauFS3Xm87DhRF/nnj08WNFWCsV6bPQ2UPWbfVlQ6LhX2BPYAoWRP57n frDhrU32lElmYdfqymTTDWLCF6oG9w82gf74lK9LyQCsl9yaPjynAq4WeZa6 H1qQ0P7MwPZcBXSUfBUXEs+jHZexssuuEqRn85/q1MZhb9ZE4D9HKty/Nd37 PJIHhaO+Q51rWKDPMWpjybRj157q1z/zeTDYahiuMt6BlPoO1Q4HglOtpkkG XCiFzvC5By89BDB8omUi71EPEqtYvPOxNaLunJ+p4k94VHcHIcTEvZ4lGz9K 8YHFvczlawkOt5DNWCU8w4KzyoxLevVDsFML+qflOgy9z5OrtDd2Iur8VIVU Yy+++xspHLQTo16TcrP7AwPaqjbzHo8UwiRRT/43uRXJ0VqM7BImElWP3SY7 8aAg0TmevqIRCmVLZEYf8RGT85fes7oNY/6qbTvuDCL8fMOSi7eYyLlzJVex mof5fqcLQgYFqDTNkVbsGoR7TULMQ1odxjzYknU6RD4OuzaVraqC57b5Qj8r Io+XZCU4P3uHGL17Vr1MLi7c3FNcEMVFls/pLAP7AjjuocfVuRAcHZBVuHSc 2Mtx3djWECb0bKqOZywdRtCbfXt3hHDg9vd+3+Y+DsLntL76ZdyF3JaFek6v mAi1TpTcl8qGwrAfumaUwtAzOV6iUoDNLWcWkPV4CPvxXhw8jQuKoCU+bPID LJYuf6K4vAKKtrfrpIsIHxdYqnRRmiGXO4sdFd6NVe9Kz3aniCCpxUwI/8KD 78LKPG44B8pX23OtrZmYstwf81hMR1Bd/cp5hiJoMwfW3u7ug9H1TsnUS4T3 Xlo1kvEsCbSzG931SQO4PD57I0csRpqp1aTdcsJLeWv0V21JQIt7osRIFw+9 MxfFVD7pQNGeCZueQ2JsVlqbGpfEg2FykXeuTDEG84xu0zZwEXopcbL4CJPw 4H2lG6v5kDntEOgelQOrGTpb6j4PY+RdmmCvTQnMDj2eO202DaxR28jFXm0E X0kfVGwXgLqeJ610vRvO3Tu+jTKp4Mbdk0unV0HxQcgplosQ8edLmSWhLIxs HRve2tgID1ZcfymR3zGGW5IzFbtQ/1Z6zzzzFhytu+JtHy0Cb/GdMLMWPtr1 DvOlQwg/uBjv87aIDustnpoBw6UgPYk4G+TYAMfWfydSS4bBsn55ZJEEFSrq Ydeef+IjWS7/6GSrCIakNn3Pa0T+/fde0S+eC5XK87maTpWw8iy93ryPD0Mv hkMsNxtkHa8FC2o7cCEsdnjGDTEkNPWvD63ng/vza3LG7zJ4exW84C1ugMJm +WsnPnfBLXq/bWwowd39C6KiZg9Df9nf758UiPOa+0uYhB8qlNQ0yaXzYVrC +STbOwxpN4l251ctCEoty7ii2wOHeazFetYi/N3y8oHnSTFGNIsK6SeIPjl1 Wu/hEMEnp9xmuqjWIKWFl3jF4htaPp82cZHlIn5NqvssKgdy03Z6FHC4iJtz 6Fj1NKL/HTfZM08mglw8qCCxLhmGrdczy41qkKQrYaT+jwqbInPemBwbzlv8 y+0km2GY1Hxl0DETZLPtI0f6AsBdS9bo4lfDecx19KRdP8jWJ+tWuybhuHFw ndM1FjxDdw3eJnyTe3pjhrMtG0EPaPeWeg7C4JBuT8DDLmSFJx78GN0KR8Wg Tyu3FyBu3blLThf6Ue//wXZyJ+HZdzrvncvOg+F7A12WVjiyZqRFG0/V4m+k h9OVaDEmTKMi+xyYSFjusdOF4GPz8tD6JhsGcm53BWRSqKj9Zzj7YoQI3tZ1 /Dc3BqHy0eOgOCIDE/nCvZNne+GZU5I57zkHE7L2zKbMPrjP33XsYC4LE0+a St1buhE0tOZH3G0hMpPlF4q7+FA+arjPp5MH58a4t2c6hXBbnd7QtY3gT1bq +5FnQzAY/fVrUpEBmaUt3s6nCB/9WmWmNcbEdfu9tUsbhFCRz4NreRtoiy2f JVkQe/k98dbO0TqUS28rE8+kQit/xY4wwx6QV/im0jc+x8il9Czsz4aK+HOD 5Y5UOPZk1XQol0Crf4KVPU5Hrecuq0e5xB7P8w8/kseA2tmtdkObiLwrctf/ k9kPjVTTNwvyuSjfJrtpC5FTa10GN6g2UBC3TL/4Bovgmi81Xy34n6DUKZo3 EcBAtWnv0xJGPzwenVQZKRHCe1OJ6V6HZsgYzPs4157wkWPTq20IPp1oCZ+j tYGJu9Su8iaTIeQ8ip8z/3EfcmS1rb2IHI3NPrR3ixYLlR7Uf5FCMW5dX180 Z3ELYtJjBKaandCZd/3kq2ERRlanpH9n1UOxodAusYYOFaWGjTcdRbB+kuL5 so4BikL9kMkfNgZtl847XcCBhbqP8NBGIY5aBHac28mHu8aRQHOnIpDrQ2yS BzLh94//xErAh3ZpvlZY+2ekrUjhbZzLw8w/Wa+E2mxE/DltUbn2///PMhwp G1YGvU110nbMbkzI+JreaWgHqc5BatuqeOzKcvC1mknMi0xcx36rVCg8XzUS ubQbpEchae5TOZBhdqvz04dgVvO8upNJh0ZZmUvKcQ488ncIK7cNIiI+Q+FK GBusTEcqbyXRDzumv91kyEJRwOFLx/RaMSH96uB1MgPeR9SzlxN+4JlnK80+ 3gHS24pJTU4VVBYXCJyYdZhi10xdC27D1JuX1028B0H5r87IWT4b2mfqaWea aqH3WJrnsasJWaSknefbSxAudfBg8moujp40vBY2qx3kS8dGDv14jUrndqUV OYOY+pMW7OIpACWxvar+fQTcI2e//KtLA61r2qpToYOQm250enJ7G2of3AlQ oHNBF7xV/7OzFxFvvjyr305w5ZK7j5gbhhE2WxB5PooP+sFr112LUkEaZGja 2T8HvdwsTqomGUl1pV1bSDSQe8MW+uwk+qUz99O3vrcokiM3R6r2YmRSfUZM SCvmSCTk2tcI4a5zb9WpwF6o2Uy97/kuQODVzHOT6iJi7udR7H+0QPBohvPV yA5EZxj4j++gQzSqyLw0nQ89UrrZyxE+bt0+cGFCgvC10++5CyZbQHcNsWeU JaLl9UjLGqI3k495PG0h9tz7r6PGn7xvUAivOTDlQnCFpOCIJZGT+oLiaPe9 QkwKauXJGSzs3f22w2y0E5WFvN+BQyzo+Rs8odMYSNf57RfePQhS4pDl7IYC OLj22146QMzJsLlX4MJU6Bir9yzcRHAqqeDo+IF+hLvJDvSdpcCXmeqwlPAU 2c03buy35SN02ZxSp2AWKHS9+vLZbyFTP6mhNJ8Cly/LshtPDOPo+5XbFSqE +C5rtzb+JgNjP64yLEvbIafaVi4qJPpm4w3yx45B/JU7Sk+8QPDycXV/xqMc JLDFM3OHmqEy/7EK+SjBzace5V124OBC7oLSbyQBju7ZZ1gqw0Gmg+2Yez0x l6+qv1V2MbDhe8F5r1c8SGzU3VB4i46UhDY7YVYDpG8uNWMG8lHZPBlr8IuN lnSDUe8jRL6+XQYxlYEo3Xz+7D0iyDyve3C5oAMKly5PHW8Uw1G+0GPao7eI 0vSnPeT2IJp7yuX+//+9LWeXQT6vDc6UEzvXnu6DoUXoNcqNd1CpWutzMrgQ Frpfz3nM+YRq2sXFq2b2wG1nk8GcL2zkuH06WhDXhynrtjWpm5iIiSnebnus FDK8sIUhf4aI3lm0zlGDAsHW85ld2jSUPz02Q12pGwkPmia22wlhWJH7e+2C j2j5c27BGUsG3MKTRk70t6N3VZjtqcpBpKu0Rr7Pb4V34HFj8fQ6aCu6qDRo CaAyuqDE8F85LGj6yS//fYLMw70FSXmDmHilsfuUohjup9ozijOIfj+Q6b0v qwb9g65K+4nPp2gn4+Sde5DF6IgojyXyqanc/3NDAqqnNm07864SrODTV6cT vETTHZebcY+N8L5lOU+J/RzfWLT/aCkHSjslP9Qc60D/NsbF4u08jDnruI9v 64Hxo599218KEFSya+G+Ng6mVjIV3s3qQG42Q3H+E8Jn1mr/DrRsAfWStddO wsM6L8VPpp2qhXtD4hm19wPIM91mtzSIeO+3jzsc6M6F6xUdDdvSMki1Hu63 pzTA+YLi79/r+OhVHv9nAsKn1c+XdL2jgrL/u+nm30S/256iTQtpBul/FJx5 PFRtGIZlKSlLSJKENklSKdJyqyRJhWyVJKkkoU1IkiRKhYRKJVsq2besY981 9p0xZp8xlhRt+s73p35hzvs+731f1zhzJoWurZQeQAI1vVr20CDSH3Q1L3ld D/nRKs+balQIih+L0dvKhfLr6QbvLhICpjMFxHI6Ce7+udonLxy2gUnS754O wsRbwHrJQA8S5IImpt+MgEIS1LningqfNey6WdtetIaefLTnKRX2z6JNO46m gvT58XBQ3WcI31bD+N1h2HS4dSiuJIOWV5nYb9UH2mpt5rWWTvgLKClsL+bA Pe/sGaF5VTDd6HfCZ0cxKOXav6zFEjAjdNbdrbkaMfpbM2uPjGJhzed8J7Vh 9D/5vFF7PwfCi5/8OtY/gBgz68IS4R4Y/33Kd8mmQUArykUrqQ2k0L7lz/Pz 8ORKoXDiVoK3B9f1bU9rhnDq0JX/udPl8uv7yzhcTIasSbbijMDP1Sbz4PcX EFhl/0ViuhpS4zInc1WIHF7Z1LTCMRpTMxGfNJzJoCQ4/SNnJmK8k5XRWZMH bbVl7eeqqKCVLmuO+szFuMa1I949lajNuPVRtrYXKYduix0uIvbnJ3nhs5bX oAh+u+F4vB/kQJ071g3dMB3wuD3nEbEvKtIR5oYNUMzQu9xytgP65pffdGYO gOy9PO/CWAUo814K/X6bhb2Jgbs8DxJcFXw8tW20Ee7S3L3bR3PQzilMC4hr h9FQQvaJ6XJEhI4WG/ryoOax2iThWT2mrnHOuDCYWOi1rP2aORsCR3aHzqNE IZ3BurT6eh7R63pfFmWVgZxv3WT9hI6HdPXlvg0c+N8UHGaED+N69K4zbhc6 4MfWkD2UmAXlG4Wbdq+vQrL/z87kMj7kqRdzbu3uh8fBjhXp+hzI6bsFLZXj IZpkncr8/z7YoHc67Z/54F8wmNIm8tPR9HFE3vNhUGOVYi6PsFEb8eMK/WQf 1GfIYUmho7BZvU95bWYNBBz8uyw/NSG5JS/+z99+7PR/F7mktB07x4+ked0a Qn9HgepyIrfzS/Q9L+7iw2B45BhdhQHyHf0/MbmFUNNW/Hj+eiU8pd+G/lrJ Q/PvminvGyPY1jOfNMdhFOlfdinvqiqFmF15YaoiEwK72LrftaoQskvR6BmL iUgn2udNBC84WPiM5nI5aFTwkJaZw4Fi+odvW0NbIfCk9HfW4mKkh21Y257H AqP2ZQJHiY6Z8Z2mq8vbkWDZpdXp1gLHXynrRQ63g/OMYXYmnwWpfcleAhlZ qA8r05D9/74hdaOVnsf4sH97gpZyrRn6LmVHzR7kgJRekGKfTqyDa9jX/rg8 RAbdpIje5mKqYW8VLWwM5HF7DUvpOugfS/e7apWCGJYtR6trEDNmTdGXituw Tf37FturbJBi9JgPdIjvM7HUSybyhxSRSrpj8RJ2Y3I9G1+ykW9aSCozInjv b/GL7ct4CN12I/IowRmuA+6GeV958Ag6zF34lPh9K0QVL8U3QX/pwdZX+7Pg PD4V/Y3gjvqTjT5yeYRfrj5V/eAUFSfSbtT11DAQ+3auu9LaCniGy4T/XUkB 46nUtPMdCqjLf7bpidPRLnnw69/3I+BU75O8ps2FQF1Aq+O8BzD57m6ceagF whn99MeGBAeXbFts1FeNyViZ9Un1TGjpPH2hRMkG66a1iNcPwlO/VUm8CK2F K09LMyCI4P7g1l7qbDdWfafaHCT646G58tltqqPQu1cgoPWIA+md17o5O5hw Glrb17GRBdrdIxMB/9/nKjyQKEPJhf33sXIxRjWmhNffePqM4CjNCVa8MQ1+ PzO7V7ACULRFyaLmExf24pU62WkfMCj4sFZQk4M15378U8ofhYCOx4Zkz3S4 e14vbjheDT/Vh/ryO7uRO8iwEtLgwo8x1ryyvhGmF+MuNYpUI/Sh6Qub3E7E FSgvvs0m+mt7tO3OYDJW7Zg55KNPh41lkFHwJg46f8qFnflAzM+irtKRFSUI KlA7GN7ShoTz08dyBQagcFXW+7MhwemHhcKf+DdCOVxSycmsBq79E4vjwseg 9qpJm2zOw0uFP1a7LzLgJ1EssfH9U8xE/u0idzYiwHxTpYcrC6TfoXpL3Otg XnQfv05y4F0R8uTtPyLnr3y4KbXyHex2GTos/TsGgb3rE19diyd8Tf6Q4Icx GFW0LFPdyEHyl9mfdk846N8/GGr7moGSiKWPg3tZ4ImvjHx5aRSUyE19fdM0 OAw5lv1bzMARWVnl04uoiFBkhs80E+t8c1mRZcYHhO6s2v+7uRat/g/Xbiuj 4mptsxX1DAvJU3tl44fIkApX7mu+XwVPyTubnTKGEFnL3OXVxwAlPSNzNPP/ +/qkVsk8LgFflSp3/iAPRq0i0pUTldASXDwmOFSGgDt0ib9lZERkvhYRvkvw 3tx5R4blXkF5iWWT8PViGOlqrl/e3ALPk55GG66OQsPG9T77YSc0twXbWn/l I6amtjC4bhhyNqqWt5qpsNG8WupErNvLHPXXnw7wYRugbziX8Ek1kx2ix1Lp SJFnlniqDINFO15frzICizeflghLU3A9uUhqLKMHU+ErHc5OM7Etyy3Q14iK mJCpuogeCtw9qkr0zLtR29jUHqdbD8G9v/KvnCP8+8g9jUvfc1B5alnFiuUM OLIG3T0ukjE+IWt8egXhY5tkk0p6yxCS2Sm48Vsv2q9lXMmu7yT299Hodmo5 nDXURoX2UxDkmjfzlOBe5cgvi+aJDKFxwaf+MHo/2sWE688SPNttzHzlLjKG +rFV657cZkI7le5nYNUNx7y0Qzr0DpRUP44uZzJgIbrB8kUi4fumJfnzR3pA S+6RutjeB/3f4kk/Sjqxc3PLvwXTBOcoHhU4dZsGVpXVqkpLOrprutlZd3jQ Y6vwzqRQ0L76RYO8HBfJP5Y8eKVbCVpbYeY8VRoiElb7nlvdDftmSvRroQoY vX9qtHR4ABb/zG4YETkSzhC/MNg5AgPGnWuzKxjQumM2FhRZBJL6QadLIc+J 9bA01hEh8mrPvYVBBwj+eH6okqzdjbnbnJcrWRD5Ezo/bV6QNmz5vRJpWRSQ bw5sPb6xABFrV0wJ2/KQLqSXLD36Fc5CN48uEmNB+W9K0gFjPv5ocpPPaw7g fENveN2zUUhXnq82CR4GZ4V7j3M3E/q2Cdtadj+HlMiO/LlJ1aDsaPp9l+Bc gzzTj3pE38v7jb2VNvyKCBk6I0e3BUHO94sv+rMhfODPgd51PXiyw8rvCYsK xXOSQUf66HAS3L9G43QlyBdSRRZTe6C1dOk7Hbs8+Pnb6T3oTYLUjU4tXZNG OAgPKFzsokAsXOdB8VoayHK0z7e8mYh5I/4pWpXwae8qjcb+J6BolQwmJvQh dPMSipcHE60kjVO3L/ORaX86y4Hw8/yJV0OvL41gZlC49GooG7E7565c5l8N hWgTbVN/PjgXzJq5cRywvH4v0F9ShogH8qTwJjKS+isTAt/SsSYwt7ZAnw+/ kt0ReDwCqUytNRZ/SNgtHCM0sJGHh3s7TW0Oc6B2Ii2UHERCkFOPyDPJerxZ 6W7qLkXHuNI6l4w3zXBHyo7DHv04whzTMH7GwayOm6N/JAvjXreLi4i57BRx unJXmIv01AuWPxoLsMqcfiXqUzv05/a8vvGFi7nn1kWbJRKv03uz1LeERoTX HCiX6OTBdefR4ZodxP6KnmgPzuhDo0Wi771DxNwa9u7K9IkHeY969qtleegO Xbf5UmM5arlrJ5dldEF3x/KHqwifeyOZ2LXXlw9D/pEc63NEH+nONBZLZECA fOd+PdUMJsfcy49k9eJJgOBjUWcmhFOSOp7M7YUfekaxlIdaMccDCcS/6yne 3Xhslgvbic5H0aHdUE6bb+P5i4ePpLPKTMJzSd/idre6v8fOl+kyb7hEvw/e OLRxgIeAAYs4b3ILNE5OBWw73Aq1+2kb05SIvr6wR3QrwQ2OF39Ryz5R0Svz Tycmm/Dwv9ba0/tGMb7babJflo5fC7f6i+6kQLFz7Pv0RAv0rVgn/nLa4Xc+ 6enll8MwevLXeGiUBnlZpaB3iTWYuq97fR6jhfDj1UKef5NRvmv2crcGA4pb dH+cKic4+J/ryrIFY/C7MhCU1FIMtaTANFHnDghMm6RGKXtDf1xdJcSyEoq/ fUS2TjMQ+JOWFrKZh4WJgX5Tv/jwLhwuudVDgwmt3khGYhQm366XzvNlId34 xb4jyunI7z/WeexnJwKtH3a4Evwn2/BXacqeioLHE22C3qMoYm6cvGTRio/t 0QdM8inQCKwV+hLCJvrE7VbU+mLsPOjybN0eFgRsWpo8T5+CfpKzCGeQ4M51 Dvv2e7Gh6nFof/3qEejudxKcTCfDaWVxhnNNPR4uyNIoXUNwbMm8iN1H2Sgv JM2xjqQhf7WXzQ85wiOePBdx+VqM2CVbja/8IOZ2v3xTTwQVuzk8uxuCTMR2 VSqkS2Xj6vZzqod8mdhdV3PriA4bnun0Ns2XdBh5Xd1/T7gL5AU5Pk36rTBe dluZcnoUob9zJnyYXMTiNi7pjIJ010Qx7FMX3MuPpmjKZsElu6lnq24HtEYX YNRwCDbfRiWTjrdBP0qhIvJ/n6qxUWk8NgJSQ2F8a+FXmNDN2w32shHx8Z+x dDUN9jl6/vwz9ZDaZdWkLEx8fT6Rm+ZYD0X/UZOEQApmFK8ckwkegt/WqjrW 2hhEZ1dnNctUISK+9Mz2hB7kn9qxL+oXG95Ziz0DJHlglMYsKjo8jJl9HiOH KmlQiyqd+JreCPl/f63LOTxYkAU60+4NQu3QwKrNLSzsXndtackYse5KZ8Oa nHjwsXp0nurdg9mSZxVem+hIErrZUUBwg+/DaRU/YyYo9cLihiEjBO+a57Q+ 4kHVSMVBWZIDsQb33Id6BEfHScR/jk9AM5l0qeo3k/Dmm8nlv1lw/2CxyiaV Aer8sM4P8jyk5h5537WcCtbhwJVPHetg2ma3acX+JrSWNakp/BqGQEre7tjU McRKn+PXz8tG7NLuY+N3+qCVETSrMlILG4GMV/te1IGRKzF2p5YN+05TxQa9 WohyPk49UqmBB2v7ce0rBBf7U7YVluTDooVqs6OOBt6XRzIKmcR13sEja91u WCRoPhmaw4D3Eo/SkhMUyFvp/fA724u4HmWV+H9En3r8cveu5sE0S/Wsg08m cql1bywHmXDn7qO/HyFjdoWRSwZjDE590+2W+U0ISN5xUZjcDeeVrw5f3EEB pdDTyPniR5CXfOz2vzKCiCWmQpKBY/B0+3CpXKEfdoqr837NjEF5bsGnKr9+ DI7PWUCfS8GT4WJHqgkTnq31kXlRXdDoiQ34/KgHlKB3vkv9shEjefl0mdoQ wceq0TrTVRg/kff77/ZKpF81feWtWoTYaTfjDgs+nHpfGB8M7QLvmeucc05U hM7YV7qJ98BeccecgL3lMDhmMeenWCvsTe1eJ//KQXpCT84hua8wkM5feUp5 GClHRW5Hg4XJvzaFjXfp8KRpSbOrmAhV8fvefCUfMzIfcrYdJRG5mxGcot8C svv+/dpvshEkJxyYu60RO7l2axVlqBBQ1V637BAJId+83jVd6IeUMkuaOUL4 r43l1M02Jiy2XZg59WoUU35Ds7mdPdhdPDeB5cfAZIEZaSPBn0F93cpXDzbD aeEvfrArMX9xTQeDt/QgPeitkOXaXqTaHBXTtBlG8oNEjuOicoiSZMyyCc6l XVi6SWYvcd2CUXk2kW3YiTWT/9+/z7r702v5+yq8+X3nsvX/78vVPB6W6epF Qm2w6TnCH13Mpzf/GiVy61g3f2BpAeGFzW5l9RzY9lPMxe+0wROZ7j/M6dC4 a/Dm1PAwSpIpS1hreIQvchd7n6lESPDKXYcJLxctS/f+fa0CekYTszIVHDhm ze/JqeDC/ZNkhvJ8Bs7Tl116yic8PGjxulObamGk9v57wXYybNPLLX/ZjULh 9z7jOzU88AeKk4aTiR7YU6Aq6UZ4QkkMb/uhKESI3vROPNuPiIJl/l0LhyG2 LKr7LJ/4PdwDSvKN7UhXWCd99nw2FJatzzjawcTskg39PyJGse2VWnzlkxFo lmoODF4ZhVPD+R1rL7bAPihMclPzKFqDL7zf1EgFpbaRf9GK6JMDxqelfcsg d0RSb6POMExDJ+Ok85iQGu68k/IrA/kfDv24It+DVdY5Fo6tTOz99/n+qoV0 xDWWpbzopSF2n7Jh//ZRWHivUesJ54Hi+Dp8JHYUsWaO8788T0H5X5/NkzJM RAdp7ptU6cPMTp5pCJHTTkt8dXOyCO7xbHfdGtaK2hPB9bdN2Yh5t3LLxHGC J272z1udSvCk577eevNGuFfLvb7ymQ/aQ4ljj1tHQHaUxQHlIUgEMRNfC/Gg JhDpaNrIB6Vs5S/P86Xw3Kd8ZPmXPjjKP5V/tLsPO59dCt/gwsbC6NTUI+4D kP8lSl/+gQ67jQomXsT5MZoVp36pLEeI9FCiWegw4YGPcy2Wd8PBjary0YmG ZEVzrZH/70vZ/WW8Yn08Xk4P3JFV5EBg3UHbt/9SIEqPqa5/3QO5qzh56QEH cZ+GVZ0Jf1CefnNYfX8Zdj6kvL8txoB22IGQ88cJn+g4GRKlWwSOecbAcS8O /GzH0/fPDsBP69LanI3dsA1nrAiyIubS32zfaQEujkR6Ct4pJdY19unZ45V9 SA7a3Fm7ohnRqwvXBvhV4tcpn5nOaDYaN11ffIzII4vl2huzS0egPSfmagTB JwK37gYlkmNgtHhfc7UZH1o/zt+ZTK+CwEh4xQLvx9h57EvE2hsM6H90uLdl ZStC6xcOegrX4qrc876Rv1Sset3gkEEmeuzCAgOje5mwVeAp/V3ERoKbg8Cb wl44XZi7x+NgHT6efb49vJ8Bn9Qvs1+ukmFqs5wsYVmHzA99wc+E6HCvkQk4 LZAL+wSLKZIB+//n9IoYk2pR/0eu9b4QA/4PxQsjCoh+SUkN+CbWhnG5bR9Z eSzoh8+71/6tCIaVG5sY+5gwyhDQ5+6igOc6EiGQ3o7anMRVYSvISB6R/CJ9 iwkBJ8kX8yK6wBIXnLD/OQgjzfyXHAcmujeU7SdPdEDZqd/nfG4cOKrve8pH +LATcT955TkD8j81u3YQOVC7ZMlnjT8NmFQ3UgCXAu1mN+nw750gD/4c2zbW jT/KkQw153Zk3zitcKaXyMetU2XvnlZAI+muTGoXFYFPHv47xKfBZs48o6fL BmB4wvWa9Hse6jsu8t+dpEFi8Z0NhXV00Gy+lge0cdC45k3LLZtekPUnvD2F GmHUs+PMyXrC658ed5gmpUBA61/T6T/REJVdenbpWAf2RkTu3rSLi8HWw1J+ B8eQzp64+403iMoH898EbCf6emZf61wJYo7919ybNuyCcvvlx9vDPkHAwMHl kdUbJI0t+mZMnGNTcwOBtwtHYBNYxzncUY2YHYdL0vZ0IeXb6wnnLRSo/jTu ELAfRohfiZiFEnHdI26/QzM6EK2wbn+2WRlcN0dvM5ngQJkirmZwoRryh+94 mqxuQje1WIc0VA8DR7WCgk98nPCtlD5qy4Tu+LEjXvfLodqsG3vhLzFP63dJ WEjFw/mQ/4VrrSzYL76yQu97HkTlVwfFD5ARcFn2zvuWFmgV7TUf3TeEPyke 5H+zo3C07+NkkbkwWuYVv+wEGwInNLT3HW9EivFNqxscJkLM+ZIXflGhugdS k0840HLUWbU6q544xytCs2bY0KqN7Zd2LUXnMcOhU1QmSO9t3yvZPIfCt4R3 ehVU6O9+snhiogba5Evj9y1GQc586hwVyINzmELOeoKTXG1HHmwhOEYAv6Jf XvSH2LiilIY5Fbp1PVkvFvRiVUOIkudNBsxn1u2UMaBCVGfkrdejBqJH67+e 0m+Gn/icaPHgTkRndi4oj6Nh3FUcWbf5iL4youkm0o+UQVbqYCEPLJcTcXMk aJgN2eBx1Z2PotwzMjyCs2LFFzLdljQiSMxbZKULCZ4VBT4O64n1aSiGp/4Q mp+td2++yUGEQ2zP80QqHP62FB/byoRcQbTRkCUH16VOiYe38ZB/6M4Paws2 9O95JX21K4VA+/HLph2FCLWki4CYy6Cyi/6ZOe2wbzr+NvxZFWIjDnGObEmF ne/23qrrPIRUDuafT+hCkmtqsOHvEfxJVDE2I/K7JMuuaFkCMb93CjiW1omg dNzz0Ez6/3l/zXrfZEYhtoPfQBtmwyhMMsBSk4pk86HhrbN1kDJy+a61hor2 e6ZW/hXtUOSvlH7JGYDAy9wTzlnh0NP+7a+oTkXldeZYfjwTM/Xp+zbN6wGp by59MiwRynqPMvfHDiLWPt/xmm8dZHsVqnzvDaFEyHgxX2UMCVGCrl83t0Ha vypwhMtB9OwngX0CxPen/05a15mH5kEttWdbOSCrK158OUL4b/r85C42FTED 2jcbvEbQqeJvJf2PDv/zJnVrnEbA2z6URFrMBWU6V0qwNx4xb4q5x3YNwMn7 Yrj0IANO/b+G3AbbCT9y2vo0hQeO2ZFdVXJjqJ3JXktfR0Gsv+l7V7kBmCZr tt8LbIayS+mkyJIupFPT1ZXSR6A2v6HjcSsxZwWPFVzfpUEr6GrtgWfDsF1n zT25eARGKZOPhZd2I+iA9cS620MQMKSsrU1tgpxjCDP3MwOVtrz6TVk8aA8z PT49pmFSoiW5JJPg14Vur/I7ShE6tOu5XGc7ZiaKpEjvOuBMTthru5HIuwwf sRNLBlF/jFd1vIiNnfSy2043B9E+KrnxyLF2TK1cwE30aIPgz9qu41c56Ixj LevRG8P51VvDjQzpkI8hLz4V1AdP3cN0L2cqzH9Gnn27ko8g34qNuk+JHku7 OVe6jY4QMwGpR3s7IWUvk/25jIM3q+atWPWVgocpQRm8LXSs+W2ZMirCIXid UjMUMgCJXcpzO14Mw36Sm3vhfQ6aM8t/pEvwQQ5YQ3ORaYbtth7pzY1Ej/pc iqitjMdC3zn9x0ldCDTxXkuzpUKZteThkeRsBKSqfYnd04fa7fW9Zd+qsHlK 2LLvEw07BatPGHd2I/NTQu+eq8S6Zz8XX7G0AkYc95hLEp1wXtOeqrWPi+4p 38nm+B74FLuM3dPnI27oNW+cRviN0zvNN518+D16y/11wo/Yz621TI/PiH0o n2xB9JLFgRuvpHe0QHZQJkXEpx0k02N1Hw2JuRdxCnY/OACtTVd2vt5DeM8e cotDXBzG51crvRjNgL/lO023QC7KF1iUWTyjoui3jE/CPh4qqw0+CAeNQv2L hJO2Chd7V+F1UicTWjll0gs/dMGu4BlrrIEBAeU3mlfnqSA96c+7d7cGMCgT sfuAOR/+bX8HPNeO4s9cLsMrjOBPsXVbGv6Q0f3DxcDoXzNM7Swi+BqDMNA/ l1eUSuTHTUo8k+B3MuvGTg16LexXTqkHlLQQ+3PlQD8tGfqx7xg2JwZBym1N /rw9Cn432AbLvVvQ/Lc7a1/TKGrBPBpK8K/s5RP2C9gdCFmqsDe0mwlTnm3c L/MCJIj3ui72G0bksscpq+czkfJw2WaKKMFdzDCZ5I73UCtxFPlWQUIyM8ld mUKFUrzg8uEWwrNc9SL3P/gE4ZibAfcqBhC5x3w3N4eL2cHjIXef0RAjKizD bRpC4KrNCsmvmNDQTDK/4N4KRw/RnsepNJiPRf2yVmBDu+FHoPLjUSh1DiSE BTKgYeryuozOQD2n/2d/CwW6pAOBXwdGUOmcumHIdgC167NuJ/zqhn5vlsXa jiQi5xLeH9XPQ1FvhOzz7+2IPXdZNSLuI1KWKNq29/fAYMEmhydXBhC6oCXo xkgv/B9tjO8UGobanc1U53eDqLX45SXRXo7YotKTSw7Wo13r021XLheZqb37 wj3/z4tDTWsa3yOUo8adE1ABpV5XRucFFhSa7GnXq4dBajV+kPOKOB87fj27 uaUb+fVVS+eNjCE77KN388kObN7468MqcQZI568tqX2XCdPnZQvpklkITAve UBfNQYCw5cSVhe0I+Dp4VpbVi51iArxmAx5k03Vu2j0ahemp5q702Xzo3fg2 KkUjfDZGaIn9DB3R3KE9LSk1cBY32UR/yIAf49CfYjESTL8+vzdOeLRUesW6 S16D0A8sMXoq9BamV1bxoiTY8HmVvUBEZQQk0sy8r9vr4CcTYLHUgYHcc+4f DVRHobhYZqFcSg/GPY7KSqWkI+jDk9maoDIYXnXTvXyODkpJU5ZZ9Udk6+8J JvlS4Lk7MclgLx8mmbn63us5aO1aQZtTwEX+1xUt4v4VEE4aP2ZU0gV52ew1 U64tUFwemeQr2AVaoqh1+ZNuDA4tTkz8RnC325bY58pM9JeEXPYU4WPNN/aR YE/CNw987l41VEL0je9ihyTiXPWfOByr6YJYd1XjzuBCZG9o+Nt2igOKHtnN WbMejfqXeo68YCI3/tO3e+EckGb3r5yTHQfBxaL+bVtH4Osa5ywQwEP6hEt1 jnk25AaqTPNyafCM3FNeXtsB05BpOSEiJ5K3Zhu0RY9ihnm7PFCP4MZCy6SC EhaMjlQk0ePKQb3/Qe3TWiayQ4q+jHaRof/7lKW7bhkMlri/+UPsk7AX563y yW4kX3xXyvzBweyFozusghkw/FN9tEicjST+MrP3f6iI7VNSVoxmQXervP/V nGrUSp9cnFtTBy1fNa2LR3LQr/PqpKdxL/wy3n6w8noLSpF4sYphCxReTJT2 sXkgvVwv1H6yCoxTNzYo5lJhEFFKnkljo3c0miL6kfCQ8kJFo4Z+2Jj+ybH2 7UNlivPAxL5uSNRfnRf9cASsfUm8S6vLUH5T2UH+FAvaMlNCiqH9hN9Uhphf 4kHKm/1avqUe579eMPe5y8PDDULaafIMSEg9LzJZSoFSdnDQ+TsEv73eXSVt GYMi920Rr/+y8VL1rZ6cNAWC922HClayEd21wz/hZC1Yj+xOLmhkEz611/xh Mh3SItm7rZQJj5f2Eb9PIuam9VXdvLc86J++1LtZOhF+P2d1bpU0IGHPWiPV wlbEvj2w+en9Ubirn95aKlwF8tP8nK1FHYixnoxfp0lGvvVmJ6VrgwgXfucu 08TDJEX8wL6DhLfsX9B3YBMbrJopAXJdGYya5EkypwfRraxYFU6jwf1HrpLc eyqiq0kZBqJd+KEy/7n6ZRZaj1e/3uU7AsdCa16/yRjIm4IZ4aeqYMX77tb0 jANRF3P52I1Ej9CjMrdoZsD+0sCZNjs+ZnrrW81yCU+4p2kUfrkXRemmY2IE /1Nu7OUNxBA5fqNQ8JpLCZ5EinJqqFz4LQwXjBZJwrifo7pO8AgirW9/7rbh wLV6g0OMzQj8SocuFQ00Er1v8VFbmQH7BlJ7kynByaXf6W90cmA6nnB93koO NHY7nal42Anlxe3WUo+/IKUqF1GsAeRPrjukforw4cg/obZODKTcnM4OJnxf +REjkJrMQH+e6t2JtD4YDV+wzdhXhsg/pY8NZ2jwK+svl18eivTYte+l9w8h We9rwl/mCHRPK73fsYH4/99nJVXURuFbvsj5kOgI6vf0vr9BeK38pxSK8WMi R8yartAiGrGKEnrz3/t2FEn6X5pbPIhxHROpY0pVoJhZTjhv5WF87BolLpvg wtdlA5N/hjAl9WZz7pkxaGw8KW+9vAN2ZGu5f79Y8Du0fq3QWjqsTE8/rdlC cNbfF+OSl4agYXOT9buVjc17agsVx3kIqvk6YDSX8JNNsW+HiB5SZS0KnmWw UWu5qfW5cwMavf8tXSw8hvCNPpLblPgQXqisVuzNRkSiXMmjQiamvuHOuXVE Pu+hcu14XOQetKSck6LAKd/TuIngtmRB05lv5yhIUvgSLb+HyC8X6sLD3b1I yasu+ObcD8XoxCxu0hiKBGtFN0cQ3HN50CNzeR9Ma9bN8X6dge5PNqErRskg v1/Ret+oHcYLjEZfe3Gg5zsde8WdiViD8uKsij5EPF2yKX/bKIratT7OGyL8 6raf46A9F54fd6dt0ugGL8No2+VAFgROm5/V18xE7psaD+uPPExlKbmL6BEc v3GgpvGULwR0f1932H4BPzYeH31RwYHa5mCL9qX1+Gh9Q3bOGYJvdsXY2L/l I7lIfEWdOhche0XqpuYOQPjNZR2zECIPL+iFySxvRkhX5PCUbRt4w/OrfTYN QPmLoOaCve9QOaZZOD3aDfLkiUU3HUsQGy+RcjmjEqGqY5xsVg1CB9ZuaW/M g1S1gqrwWoJXvvU1k5Xeg6aglRq1lYF8k2Z5n0E+Fs7//s+L3Y3seBHHzQOE z6S9zk+yqQPN0/FPOWMA3pqBcwsPj8KftP8h9zPhZwpZuucUGQgS3KvzsaAJ nZ6Mnx7nuFBvVG9ZcZvwf4uWzMddBIfOD/hoy+YgUCXyz/Pvw4hOjl4o/q8R CUmpZUNrOtDeJ9r18FU/1CtqWb3/P68xdL7S1SdkCCh8/r7XLARSn3ZdCHAi g7dq9XbzpYOEN5mt9cmiQcnHV1CbzobeRsqNHjcKpH7Txw64ZCG9XTKkbXkt PLNmkrddGMNM3+2UMx0t4D9eOmRKeIhP0w+pqh46SpIFkpqruNB6f8Yil8gj l21zzia/J/aHpqkiMacFUqcvqP+8WwL96PG9LCYHhpqWkhuuMJC8+8BMbVIj QjeJbxerzkN6NnPtPOMKBM13rjr/rhEmsepe3AV90G/qexXg8BULJx4x2MaE B8U9X54ZPoAUimb/X3Y7rHLexVRJEHmiUTItd7cYC1Man6gQPDEu0XcsKqwI KZv/JHh+6YeE0y1RzS+Ex8e9KtPcWY7ucypfhTdXIv/uzTurQxoR8IyTIY5h +FUqdt4+HgVlxdWeEjnDWCXbodLDoYOcQ17oFV4AWkPZgyEQ56UnpnhfKtED DirLLpNYqM+WT1ygyYLsmuphV0nCUwzERhaYtRF84jtbsPQuBF7n3lgnNADW v4dTS+ZUQcv64wKqSS6MqG2HVPkjxHmO0t/PHIRw5oHfDO02kL1JdfINRJ/d 8no2M78FcT09F6830mE8sKj9kBHhZVKSiV4GNGg9/vRD8eEAPu798M1g+v/3 K9P5NCInDfy0m2crOtE/WvOvhMuCIHtZY7UVD3752npbPargylkuZnVtDPpp BjIpp0nYyYoit/eykf/29krdjS2QPlT+1ucBF8Zemt29uQT/rWDvkjPiInT8 83a9iRHoD/yRXlEWS3DodW+/5Q0I3zR/wwsuG87Ue4H/skdwvuL8stXnaAi0 Nz/gXECBgLl14UL7NxD9q86WKCX6KCLKrXDLMFpttxlb9A9j/ICvZMTPOoQu OaqwR7UcSuKvHc4TuUGJEN7S+DYL2syRf9OKfDiZ+w//UG+D9y+TiRe/eDCO afnWZU6DRc4M/5oCFxq5rVP2mWz06x2qfnSpH7rvknfRwon5Lpavylg+AouE F2OnAtvxS6bVOOwYH7qFl/X115WBXM0XTCbOkckTGRXRN1wkSEkPtRJf+1WO T7Q/fgtyk3+uy9NmPHkUwk2cYYJywIORsp8Kkt9ohW5f/v/v35DVt3SCYWh8 8mANG05/SkT8tlQhP3NaviOlDQJ3n324psXEQty0ys7px9wND69cG+DAaXPm yLqPY6i39gvRIxH+KBYwoHg3AQKHu+K9fj5HZGrt6xs6NCR0P1H1fdeG5ANq t9cU9ePNZ40j0xoUKKcHzj/hloCpW+pPpEo4UOUIe+sN8ZBdeLs/bBHRX/zS 7cvGCE5OtLcrMafCc1jugmNHGygaX7In1tEQ0Fgv9WN1O9pVk/rGzlJQpOb9 M5TgPse+nQsOZPThycYK1vt1PMSOzWO3LcxEc2ncYxUyHU88F0ed5jEwoz4H osMDSM2PujtnDh+eWhHJv5/3wSVs7WCyazvSX5xeFSZOeJyz28JlaISW6EHW 5+pOiL29O/VNneB8VYn1JvO7IVtYc6VCj1inYJneoGzCA2++uDm+4AV0pRKX LPVrgahuwT6Ry4Q37e3H3dkmkOq9jz8qqYGUe15v9MdRxIqILLTa04XIsfvn 9swfQbpEyGIdZhNCZRKGnT6zIeAt9NnoTC0oD1b4mRz7CI0dezbUHG1FNn1z wY0Fw9CvtipZsjEMir0FT482DiL5/OJNR8CHlsqd2rc5Rfj4doulwhcGLIbG aIHreeCXRvi5ejHgs0+x7EU+HazrSeuSEyuJHqv5uPTzF6hllQS+vdkBd3H+ a6XGXhgpVQ1+3FaFqcRqma7TbDha1VaknGlD+61/5stLiH0g6521jBwG44HY sl3pdMhLGwTqG9UR54x6R33sLVyO3Ll6i9OJXJmXl/cMMNC9/NvWbq1KpKt9 cf89W4J0o13HzE8Xwyjh/UGpumGkxIreil3NgdamLQkcs06sytzGyDnCQEJK zRyPjC4EjTtf8xobQWxaZIr4nQbw3bgXSlfSoNY/K1/Y0QmLmyfSnPy7wXr+ JNrauRc2e73C1s/jw7Zq7RbWi3Z0+zdEuB3mIjaZ6299///PQR2j9MWzoUqy XytybwzuBlv/OPTXwftRwDpZXQb0444NbIrrwtVjL5cxH1NAmR3wytTn4o2z 88THtxTYyJm3128eRUgtOSnSrw+bfe/Wd4mMQDDgyKJJOgc/+j8fSPxO8LUO t700uB7698XNqNRO8Bedtd61hg7tOI3J1W0deCIW++f8bYLXLQ53njAahH20 9vKiHVycH7bxHVvCQFK0wcmsJ0y4aMup9OhTUCmR86uXMYiYH6RWg41t0F02 0fymrh6e5gaxiQrl0Dxa4C5yk4LZpK0XWqZYsL8ibCZn1YcEtzKdxOt0NLqe vcgZHoKYgNqt70S+utfcfx4fTILA0q9F/unl0L+6z+jt/TokvRD5oaxF8NQm I0sfASYM4u7dLhXnQp6xUC/ejYV2Wq3W3uM87B49wHtL9IhclFRO6kEm7LtD whR2ErnAu7pqoqUOYi9CgnPi+DANvfK6zLYOekt0n6vw6bAVDly2/sYIBM64 65S63UCtgGqNWGsPzm/4oxDPp0E77BHVPr4Fu0ViHl7lc9FPk5c9NNAH0SGB QdngPuQHq9+4uXgMETzPqsN1DIjl+Kvb6vBR2zFfRVGyCaJLS59TRbjQdwpb Pni5FKyROJ993YQvr7P58PIAC+7FDyXMCD8kCZonz3JfEP6cpC9+hA6+gN/l P4Ms5Ir7SUlNDYN2SLi68mUH1oxeVqbYDcM1mTSs+40BU26ixDuHdqz69MNR s4lKnFffNxrB75BE2v95Wz0L1ZkSFantPBja+atf7KDDaIne36suI0hmmuzV 72RBcXu87xODbuQ/4IgsGe0AqVm1Uv8+wW+Nn6nfH5ciWbR9do1sGezrvkrP Er93r+f3RcuaiL68r+F2aN4wpC96Pj+wlPDoVtsSlaUcxPTmOO/+3AufPEbN XWk2SAYvQqPaS1GrPrh04XpiHjefX/bBm4eA+521JRdG8OP92fF2ByaSjy5W PBFbgfRzP5aH32BB2XF+4wMjFk4cOWfWIjgMTtgKxcp+HuSeJx60dKGgfXB2 +b8HbPAWzneV/Ufk9eCOldceVGOhaNkW3nQfyKbHaxu2diIk8PJQ2nzi5+Ue cmwWyIa8/jqzJNooTliY01qCGMgtCEuf4YwiRnz96v2Er+UWHS78dHoUWl33 vjWxaiGFr0LN59iw9cxzSxnsQqzLfZvx3Ar0ipy1lL46jH7FwxO94t1Ib3Jr fy00BF+z6kdZ9ynwG1Bi/LmYi/TMKzcffOqAQOWt+2rnRyB/xTphgV0rvDOE Y7VLiX0/vnbq8MMypM/d0F9DIzwu50xakjVxvUrXjTU/jYK10tDpC5Ennh2i f2Rc6DD0vSPUwyJ4s+T0Xvt7rZCvtcl5erQMwhbzSGY/qcj2EhMSFWHij3ar lvPObsjflrHr/UBw9rvHqXqZnWAlb+ErPmjDXEFnN24KAyyVnj1HJQmOuD28 ymE9MU93FO/qulQR/n1Bc3DLV1TO3pz1Ue7GwjCj21zFYdjzZA0t9DpBKuK1 hc6PhmmUR1S5OeHnzIt2bNtGCBzbPiMp742YlaqlwQYMSIwb/TspxIZ/tAV1 hMzA7OzyQ4ULxmBf3RK5L6scopffil+wqkXsriizc4++QkJlbHyYTAPlno68 +ucPsJ/8+Cj4QgaUbQfarz/mIDY06mrRZCacWnatHZFogPLwv5zyA8XE+oZK NHi1w/ekyEDXUipCW8/+YR+gwUpD69zdJcPw3ORNd/xKRUzw781tezohqm2k /8FnFGrB2t9lvGsxNe/vveWSXfBeLTJ30m4EvcPtow7CXIildN+Q3EeDnc+L KE1dOkLjLf3rXZgwBfOv+ySRh22mAodFObCXNLTLm+Gj2X/nfJ/1wzBYfkxs tyfB2dcP1/hJ0YlzXLX9cgMPL48aJpxpYEPZ4yRr/+1GZDYrfOud4ICkT6N7 dbwG/8MfA48mOnyUmjb/JHdC8P3ptx8rqPBxOlm/RpuC/q+F9WvU2uEUGbo/ R64c7md2UkK8KrB7FbtziQsLwqmaeyTHBghPMeZ9yG+FifCXJdSGQejTJLSW iHyEvl2BqbN5NrxPGr8SIvgi2Wv21inCk+XPUnr9S4eI13UszNGvHnt3b7Oe +P85G6/X/JLMrsd1cect8n9b4ZiyxO0EuBCwiGDzZa8hYcsCwScNA1AX92fl lY3gSJrV2++TXIyPPn+2xbkZyetPOtdvr0RyspUu+RoV6d+PnWYE0WHy8Org 0oRBFJjETcyroiM9dlVWYXkWLGTmDd92G4GVyZ77KkN00N7bryEZEX4/4M04 rUTFjwOtcrdfMaHsL7msSZvwmvH1XWddG6FftqdLeLgS9sxjehOR3RBYIEVa VfIJ6WPNXpNulXj4+Paq3LsUeF53M3HVY+FlaYu5tSUTtRHpjwWfE/sbZPTp GIOB7DWL5l+j0aCbX3BkszWxjioCF8wlB0Ftbmk8rUWBlumcsL9KJLh/DJ17 JrQUyh9O3HdIoyGIde7mJoJHU8Q8tA7PEHPqPt9DZ0MPtCysj5y8mYVauz96 L742Yir9zO7rUq0oKC059+TFKK46q8id/M1AieFiCDRwYNElfkFzfAhSO7ao HorOgD9X+t7Bc3TI0lWyr8b3ovN9wXZdWy7SHTpabf2J8/rqVlDR0i+oV6OU hRBcnZxmpLBBng2btqyMgVbidTQv3nvTowWrDLJRr0qByecXq/9QyRAefNV8 /fkAXlpRuamhdDhOSJi5bh6C2sDsErznoejH1E5tgguMwi/J0uzH0O3SVVjh NIRq7XGxz4+JfDnB6D74rgs0SsZ5Q2LuM/+V8J+rEN6R7H8kvr8GtZkNxWqf iNe3Qox04/EXqG851Nu7mwGybHGI5ys+Cv6+D6jrJs6L1ep72mcJT6SaHxxM qiV42yHLfQ4PPN73+Wb7WmBjPaGaPtIO59rVpy/soiHWh3Y78CwXja3Plgk5 dqCk4q/Qx1IqrKa3kYIUeFDzLl+9lN4Fj2PHRR0yOKh8funogngKZmTuF68/ XA8nElt4eWcN/IQZ8U9MXiF2UcmuoKoyWOw8Fd27uhXRR28/zZ7LgHNv9Jeq GCqoSpYL1nozoZvJuiDaQINjNNN/PqUHpDWrJn4SvMTZu66ddY4CNZPSxsVZ A/BMEvnyoKMdM7kv//SeH8Qq3f1vpE8x4edcLbvYiuC6I9xjUxmE181xbP5o /AhXM95djpKlwMB1kt1WOQj3+QL701wqoObEsCoP5INXMi0TT3gxb/izncY9 PgajttweJPxF1OSn44svlbi+UFrt+YcetL7NzZj3nY1Vu3hbDsoSPnOEXnk6 moVuKcVwRa8WTPlc+Z73sA+r1ObVHVhHQb783mhZgkd/BBvahz3joHxqpinv 2xge6r0sWTQ7ilmp0aeKh4ehLBab32eeAgrX5fJtOhsa1Ox9jzTHQHl6c/Xj f30gJQd8j2fSIN9g9ThNl/CTbqdFm2ypiLha7pqYzcBkapV64wIqjI9Xtl78 SPDJnb2VyYEvQRa91Hg9gA076uNZ8k0W1JrniIzNkMC5GLlmWwAFwkaPwsM0 mNCoOeP9YE4ftPzP7tIdK4D3veldpwhvmYqLvSY0wIdUWbmDuXANPPcOW2sR PNYobW4yO9YLWl0a6ly7YZNfqu4qxIffKHd2lxgJRZ98p5YPU0CzO/j1ZBIX QcoHnLL/Eq//yqaTJkSuuNqsMLvXxgOZvSVc4z0ftLC4V+lE/zd6V/2UEmlB 0NufOau+10GZ+Vj2RUMpPPi/swIsmPA2uWggYs8C6eveQw966RD1jrlerDWA zbKIjNpKwR8+b5z+thVKj8LKLukNg/JNMe1UYwMETkg02+1Ohfpe3pAmZQyi Z6eNNQi/FVBLzxmR68NkoLm5zAMW7DZLdseYUrEt5NE5jjqRT4Hjdjvrm2G0 wzPO6G0NuptejF5xHkSIZS/j4iuCM+QMttEN2wgeONQi49gHVpZ3lt1xOl7u HOrCCBuCZsvkPcb4xH4aL+0gvMP2hmgqvasVU4GjSt28FggO1V+/Mpc4l6bs fCFGOkibKm6obUhD/gBFZ01WH2ixt8bPpHEgIe8cpqfBRYTZ/l+TV3vh7v5q 7zqCM91JP975vvkKP9Jm750ZhfCYmPdlSJAKHg61qj4ZRv1GsoXHcaL3zKr1 cn90gTR8/+CFlGZM8TdfuWYwCtLrJ/6BvxOh35R5yvlRKK7/Pu7qq0ico1/a a4ubX0Ju48Yf2y7RoXfOy8D9BxcLHXm5PqEslC/TvOwVNQLPl/90ij/Q0L0v vNInZgyNr5bd8NjExtXygPKx5hFIhzLVvRexYf+kpbB+ZQIEMiqCMthk5OrU M3O8x5A+2WtvvqgEMe88p+bcZ6E/9sz6B810jGv5nDV0aAVN61tcwg0mJAzW rd6fyYTiVuvtLdrtCDENPmxv0AX3v+jQaUqHS6GEbNzZbuz+WrozJpbgWatn vDnTXKjSc/RWmrMJvnq86VneKOw9Lu/otf0C20jnynBPNsHFGzLbBbgQRQpb QrUSBmG8KL5MNxwvXBy44dtKzN+JrY8mqiAdZCvkYUWFqCdsNnKrQV6eOJG0 chjpVW6um6d7iZ/TsvlO4ijUe83DSipGYXds49w574fhPPS6m7aIAXPvnhwp +TH8MFJ5uv8jMb8pLdseW76GmqwyhdlO7H9h5M6fF9NBtg+Nf+bZAKeBaZqH 6CCOZNydd/UAG7T16p6P4nkgUT7TksUHQPkjn/Nh9RBsMzLY+/pakL/2c9yZ FhYoTS7XS5JiobX+qdAFyQL4iKbt7Pv/eXXdh2lSAe9hM1fpMFWIjqAE9YBb 74cwOWmY+vsaE9IBmdlT79kwUjqbXbaIBf3tf22XejXDjyUX8u1fFFzW9ytc Ke1FhPycye21NLQz/1buD+OD8qbc7GREHEjpfbeb9mUjxqwrWvVyD3r1W2IW 9xM519w0EXpuGFIm7o+N1udAf4tf0exEErTsdqh/fZ4HYZ24Ja8TGFjFkhM4 1EaDC21B+3RuFyb3zrcO/kyD6PRn2dZVFIRczva7froFyhQTo4sNmRhvn7Oy YRnhnbcvfTiV4glFhTsCRwj/IwkuruzY0ILx08W/+C61WCNjLRm/gA316ElO BXFdunn5TQsD64le7V330YYNCZ3TXWciR+FA+dkfRuS1mK/lycFLIxD+oPXp WhjB4f8Ezk0nJEBj5HjloYwBiCk2Vfjf4sK93D5v00QztmUUivmp8aD99H7j 1vVcOCnnfTr1qwZXfzs3hH8g1sfqvuCnBwxoxVU4DHpRoaaySGHJLzLh4bHP 90lwsDtrvPDufD5mDj6aZ7WY4Od2W5HcUAaUj22/Y2TxGQ4HEs6KtRKcu+ZK q/XNPijOfb+FrNIG1dC9pbQswn/ua1VV/ehDyBunJkHCl/VjJ6runP0KT7ak 5NHYarBoQVeUzWqx0+SV3OITZKIH7vU4hfBgtZ5l+YjNx5RUH1XIlbhepTUq yxzbEfrinU7uv2LUyy8zVHw3DMG0fyoelRyExCxWbbrfD9JW60duu5vhnmi0 q25VDU4833/SRXcYvVuXRP9/n+Cq0bKlvK8j0Ii22eRUMwKXF88XNcR2g5Q2 s13n/8+B33BwKEhuwOzztZcObCX8If1e1BazQeROsVIFnKmwm6/h7LmQA97D DdUrVnTBb2uPUpf4EMYbtU4WPchBc+OY14QcAxFBui0H5Jngy5lo7HJkInvX hRXvUylwT7lxtiY+F/KMvl3n+V8x/rNZ4P/nGtNK02Y9PrQgclnZtrjPxPl7 K8Lxzs6F/UnXFcmCNJScbNT0/f/vPIbloX+6ixC645xdo1IeFH+d7T7p0AE9 xaiAJ0SeG2uFi8wz5WIbqW/Fx22jENXI0G7WL8NOHe5szf5OpBtuvLLjeTlO xGzTXG87gkrVqCT6Ew48p38elGTxsDD9RkOkwwCcGxJdDjmxEdTj+1bzTxUy fx+8Q7pN7P/y0M5siUYYKEyWTUZ3wlDl8fY1OmwIFH+9uiM+CLpfzrYO9TNA Gfvzb894HnzcqmzTVMlIpkseFVpOhtY77+lv6hwUyJG/TkqNIF/0YKDPZRo4 Z2t3cZg8KL8QunluVz7sF6VfLXj4GT98BjwSCG8KUFh6hj/IBC9628Gn81vR q9Y1yLrFROqXingv+hhiT1x+kCObitAJAfENc3th6qO1z31bBUqCNV30t4yC llX4euwN0Vfx16W/EXOg5J61fxuVOI9OQU53pItQtO7skrSFw2AZd151eDME Sr57aldwJyJvCZ3VmSL69uie5b+PEL52qTs5g90LsmF67PMvPBgsPTT44FsH NucuOzlnA+HXValBdXZliF7ysdxvXStmru48GTXNw1T+XS+h0DaQ2sREXda2 wrDK7/KL/z8vM3KVleJHh9qh3ZRdO7qgaxnZkvOvEbTkv1Qr0zYEDdrNpmzo QrJjjrajUBlWDQbP3RjKQ3S2RUnbcDV8rt8fUNtN+MmOJ2liTynQ7WYKVVkx ILreRO1HKwVBd4L6Cra2oZEz/08k0bpTqBRhf+vBdc+L9g8uD0H/eZDjl3mf UO9ISZ/jzwXr+ND1y61kUMRV622smkFJcWPY3iRD/umm2f30r/BwVWWmEl4n GrulW1eUeD0bUhkZKhzoMz60SS4n+p+rf2xOTy8c6DdWlxJ8bhHRU95l3YPw Yys1Ll7ho1HNIre7uAUC95QPdwjFwWl8a23oHCYc0RTxTKodUp/SWKZHSiDc 0NUxe6gHoQ2Gbwa+8uFik18kTvBlkfv21aJfKRi8bqAvlUOH4dKsZroSD34y Jzrkr0TBtlRyk3sFcX70VplsdWtHJK5N+hH8pl/k8PTl2RjQGgyOtCzvgb3q 8KCMcQ+k5mnTjcs6IKDc0Od0yxrd7V7rl1cwYMI4MzHNokPg8/cdK8YS4Lcx 6nZC5TP4KTqXv731FGp3P8jEfBrCw3OnLawIPheQu3j+4JsqsMxy/HaL8EAZ /rDi7aVa/OlW3P+WPAqjqMh9/E1k8N59yKpay0LccHGx7zjBW9I9d1yJXBM9 wE6ad4QF8/RdtQc9KZD/j6Izj4fq7cPwVCpJlpIolQqpJCJpc0uSUKlUkqKS hJ8kW6WSlCXLVAhJiKIkW5ayjH1n7DvDrMwmbVLpPe+/PuM453yf576vaz5m zqnhwSDCS93TvqVJB7fDQUu86LiwA7XWpto3b3WCGjugUwoK3M1Vg9+qtqJZ U3aXZgcPJK60ja/TCP64DBx5G9oD0Trv2csyO6H71dHQYX4jkauknb32TFBi 1k+UF8Ui0PBT3vJVVORGZx38c5QJh1UKSx1UuqDv25z8eVUTrKIuseJ8R+Gy qv9yyd8xuMfH+d7fTazzV1Ux2YVVMODdSLurT/j35tyHi6WFqLwt+86tjgrF WuqaAodipHP+7Y1/L4Cdybm1uyTb4Ps5cK7F0zFQr3w7+fR0JUS15vqpTdVg 9s7USyd2jKMtusQmJX0E/t7fd0k3dSGh/smy/z8nNjn2V3duVx+s9i7Y6dRD +M2QiMgtOsHHDEOu1IF2bN2z9pVYIQ077y360r6f8PeY8xzyGBsJjznBleub kHv79a/Y0U4kr5qcMuvsg96TY4cf24+ho0z/azHhXZO3XCdKsnggSxzayfxQ BbmfYssFKRWgCJgDHj7t0L21q0RnwyB+nD2fsWlmBAb3bSbFVFhw97hzcx+b SuTcPbK0KNGb2784h54qgMOuRVsu0AZAO186xXXPxYDNCQPVPXQEvpM+bG5a jU/0mXsX1DjIjJUtztzSAqVHzZVK9kSeyAUETmpR0fZ8RdqK5RxiHg+yfZup IPldD7vxNAzWBq1TF////q7C2tXfBH1Q//jV3XoHDdpL65RCHfiI3m3ON3k0 CNVM5yNGWXxk0sWKWdfLEDF9XXljBLHvkm54i1PiYXgzXOJsRw+oIh05L9V4 GLrxIMBOj4PG1yJ7at07Qfn3JubI4SKYF6olrKnqh/q0xsDtI1y0Gf9x4fVz QSYn6eqlc2H4MdvqF4WFojzxtRaHBVC1/vLiwJNWuDNnBf/41YbaCm/7Ys1q qD32jKkSG0V6+zccXcaFnaLo36dNQswrS94rqSyA7bV1+yu9spGRbnnr8//5 84z3SSfrPuhvVCXZ/yNyerJ3lUnKG9S7f28zO0OH/tEdyp3d/VBRLP1se4UH jYCVCya3VsMiVqbuaEEHCgQtGcKjhL8Wmmo9Wy6ElG7Zm1zNXogEHKGc51Gh velacuCyDvDSM9Iy4vrQ+DjCauPccUSMqHqs/jkCclvZx0bLcZB/3PE/FFQL kqBpWZSDPeImhkz+dRG+Urp+Xz43DdrYu+PAGWJ/eYzcvvujGir/6vp+LuRj enpYqp7wgtSA6R3fPhDziqk82/ayC9SYoepWgicmvZql2JsYoLy/ivc/0+Cg XdlGchqCN5XX0EFwlPa7lSfk4nuQ+e/vwt+cEVhPXbx0aJyNOK2WlWucB8Hz vNG9OHMIlSle+tF8gkMOvvFztRlH4Av+uUubCW55ZNB12XcIqssLf2vfpeDC ZLpoeyYDIWfNVyseZ6PohJEJt56PyXd9pQd+C+Daqr/Z/k4T8uLu1C5+P46e 45pXC4k8GsrWC2bNGkORqaFEmWEnlCLiqVtW9mC2v2fo7oFxTHifqd0bQax7 Ofrm2fN6kO6zKSYwnw3v7xpOdwcJv3z8Y1Hc1DiifzOVfjYNYeKKY0zvQC5U 5JbOkidyMY5jGST3jAoZdf/VD6QYxHnc3qMyvx4q+22YiRFEz5EzmrIOE15B /W5yuLQGviyHkV3RYUgwcXioKJMOX5uIgJ/3CvHnb6dHyG0WnJH9VVOF6Lt7 Gl+0pLhQfK3U8jGLDary1lQzoqentpsmzOS3QPym0916aSo46gu2yX1lY+Le mfNrd7SDRqLNWbEiBSovxfaEFY2i59W2Cx+7h1C7xED5dygFJ+/U+Htd5KCA pXZ/rzeRw05HzQ+v+Qj3H61ikbw+qB5JPX58lArKcYmQ1MxPMN6TmEIXZULg ykrZzhyBCO3ZpqVruOgQD1Fke7Eg13vY7OdCgjfa9Njp8zuhb6cRH2lEwzeF gV2b7/DRof3lBcVnAAn9b7adq6uDRs6m8i9bK2GBHT+LhIRH1zU0vaURuRy6 LbZSpx21AaFzhmWq4Cs7b6ymsBU/2LwsnYc0JGzwu9iQzAF5qcx1gUcPNE4I A58nEzltrPE1YmIQugdc2yxDBiCaLX991tQoqAln9N49J/brHU/1qRYeckt3 z9JIFaDWOd4m8hIfb2cP2pN/0BFh+KzsqyoDitPbn982qkXBc6s94ZeHUVk6 V2WBoBXJSzXWiXmMY6ND2fNFK7jQ/T4do+g5hp4B5X23CzuQ8Wrb3x+tI6j9 NJe/aFE/7DZUfWtV6IbqWZr4ff8OTN8uq3M3GgEpdYDyO9QD/g1GJlYqHVh1 223f43sET0Rv2GCfw4FvYt3rlHgGqilXs5KsacjcvPjfBdkSiK52rNi+uhoS dyLYOuYskD+pb7xh2QfdxH3lzYsqEP1rrvXSNj70+55In89/ioSxuEqdH0kY aB5+spPchWjfrL06t3jo+WzTqeLbAgX5LVbTG8ZwcqbosKUqExNf9gpbCL+x Pv77ypzP4yiXs3pymCqEai9tUZhIHQqcJgTtVWxo1Hiun1P/GZTh2yX3jIcQ f922gbeaiQy1G/Y6bQxIPV2qMX0+E+VhGks/0QUo2Cy8tstlDGtnOTatNqHD XXtiU4YnHZ5LN9yIJBF5aLpKcn3OJ+w0Vym/pM2B1PVfyZTJNrz2t74p18aF uZXfHY8HedCe/+F88pdW9P2N96FsGEX59S8Dtt/HEDc2+fK1oxADph9GYm4N YLd7+7gNMSdzmwMz/TeZsKz0rmmJHgR5x/s4jclC+GnzBf4H6bAT4y9/tY0G yoltZ0p1asHxacoweEqDc8iNnsOphF+NnZdIutWPuOqt5UOnmdj9+X1Uq9sI zB/VZr+61osSBQZtgRjhG8Jyib8GhCeaxiivP82Bov6/znT9SvTZLzNrXz+O ghNXvhSn94PiLRG3RI+FLrkC92X7x1CptV/n2qNxaLx1WrWfWgt9hQW7Np8f x7cvrdfnVY8gKbOIN7yd8MGESJGnD7swJNG4WN95BCpSaQqzZglRFLPn6rjG EOZlThY/TxzDN/3XcoP6dNzs1/Ldt4QDzkV27aqcNiguGrhmLJEEyy1XQx2f VqDAeY1/nMoIdKU9y5yInJBYuzd9lzgfYftZAqcI4ri7yDfn5XTgSVXPpIEF De4fKjhBJTwc5k8vlF9G+OCCX4Gx34mcxG72GneCl99aRfd7vgfJcjz99XNz HNtkJF6YywJDmJzeZ0Qn+r39hO0ef3CcT4aZ6hG5f57MuZs4DIlbe5Yph7Jh ebJsw8UZDga8HoSWSrTBniaTvJ1D+HzzppgvtnRQv1YKwt/2QTYt0enQMSYm 7yf/LaUyoVEvd059Tzc6jr1Y+PoeFzJXO7O2ZIzCMfEAf5EoB/p6IddcxHNg Tlplvia/DGoJe1ZdKia8NW2lV+LyXNjZdPu5POmBlCeEK8YaYK4iF/DToAjJ 2V7Mo/M7oGC8I7qwm/Ca4FWqm+zq8e3EutnbKgVQqJKt8NgkQIjxysACYn0Z tHjXR5fTQbnTvc18fgQs5+wlSbQPo6Dj9yKb13XQPex4On1JJ+HxH2MeR9Uj I2lTJJdBcGBkR3sb4fnaOfN95scTOavpN2dRXTz8A79JcafpmHab9ysBhJ+M KJntPTaIqW8aIduOlUGiemW9sz4LeaZXlZ81cEG1/H3ytEoJLoSP9kTv4EJ1 x6NT64g8MFdc51hU3whH5sgTn03EfvjzNjx8TROob9vU/3MgrnP+07R5q7sQ 1jG8/V0EDYfdNbUiLFiw6KGeeTZDhSp3nopFPAUqsjPRy45zoH7ShH6ikwVr /53F+yzakIfHS21e0SDTJyHsbWnFbLN7NgotXLjL1j/Z9GkMuX+/8Gbto2Ki x4tf8yMLRSeNZJd/7IZ1t3HXkSzidYcdpQJCurBzWZZDzrVR9MUvsLqayQPn 4Vra5i9U+K6qcn7jm4m4l4Ph2SHdMM+/tq40vQ0/DEzTkpfRYd1kOD9Tno2d HhnZzWVED0me1FG51g/bl3Z7vFalIZpvr/rzVTPIL9eTfpd9wtrEE1tP81mI n2U8pOzHgmL2gxTlrk68Nn8+PsuMWD+/dHsemQ7DrMVsE4vwPBFBiKUHox0P o8YXFQfxsTYptXpc9v/Plzp7vpz3Eb6+Y38L/wsCiR6Ubv+7FQb7zuj6ebOR Wbek4Pt8BjLuJamnJI3B9u7xm5bUDiT8q3gXPZIGcZMDchvet2MqSq5H0rUG egsk2A/Y45B1TejaLzOGh9tenRzSYWJKtDz2y30iH3pt5pF2d0LKPI7yXfUT ZDaRnrdSOpDZvUElddtnZPon0CfrmFisMzfq+X0GRGUO7pfkV4Gk8vsvLf8V JhbNi68+TPRWQLdwOcHpnO2Np5WYVJxbda124zchHKpvTGzfPorGd2Y5vAt0 hE1FKhdtJ+5HLvXPzjfEPA4uqy5Nb0Gy3dl+YTITy3XW5Hx8QPDyj58xT3P5 mNrQwvy1nPCwoYEtmm+TUK98/8GdIzR0Jc1d0BNNcJfCN2fTjBFw3kS87Ulq A3nrr/OkEzXQr5FNlD5dhy4jtwyd9yzYr/80eUCEg29piuP+XwcwqTdDsd/G RMjgJ3F5Yh5kyYqjQSJNsE7vOnXFfRQKmT+3B4cR8+atEcsNTod/bHvxgZYe +I4ui7iiMAxLSdvq6zWNoJxzjijVbAX1zZBuzmEKfEYeq2RlEOcR/qP/nuMQ zB88v+yakQ9zpYK3VzoKEHvp1ra7RL9L2LW5PZAVQLtrLODBMho0Qj5KZgQR XvhSpE0piomEannFh6tGYfzC2Ntufxu0DzlRbMLp0BvlbjFPpqHo7bPkWcNM jJd/X7i4jgVSVMDWKo1oSLT7TG1TYiCpt4H5rIbwD8MVjRcmP4Mzarju3mQD AmtX7qr41QrKRs5CiaYOuFh7Zv0hseBTtuGj8s0R8OzjIxMIzyMdKL2UeeEu fB8MzmT2FYNUZeehGJIHy6V3e04vq4Vu2Z+XTyp7YCh+922YIgMTGV9PJ8UP w3u6zYHxqgHGz51FXqW2wKpv2MLnGB+x0UqBN8+PgeX0J+yB7f+/l/TkcOtS IfQNMmncRwVI/RCde0KsBhpvSIsFfeWgHPHkH3J8DorHi6ZNk8kwqJE0u3V5 BLZq9B7nNW+J9dSw47kDsb/ixLyOdRAeRHep6HxQCvKfhrClnkLwHj0OUlvI gMq5zW3HNghh/2L0qW80Hb6Rs7cFNxD5E6huX51VAdLeu+ez1j4FWb7vfF8h FdTQ4CNKHwRQ6+w8s/qMEOTxt8sWXqjEsenxCGt7Dnh3pKXvR/SA9OV1w/yk TuxONkrgfO5GkYh0Y8HGXmQmPltfkF2KAqFO/t9nZTCba8CriekF0VHpjnM4 6NO2j3F+yILhxQWqmyfHMHru3FubTUJQaaI61JQuTNPGW3p/jyOuIDZga6oQ pEjNjb6cdliOXx45O58P0o2kU/swijjRY/RAYScSUhydJQme9C236C30TYGo duvf7eRRDFQ5nssk9kWtW+3JNIK7AtsClfqVmyE3q+3busxKfDpLLesjOMma v3Pz7qvD8DQi56++yIKxt/hZTgAXRU++1dd+GoVrpVhRRyoNW72EvvPyx0D9 zK4Uu8GCxh5tvwCTJpC6D90MVvqM6ndHp6ndfPTseev5YJTgilsF1nmqdOgc FptvOyKA1O/4tAP32qAfPPEleuYdXEU9+iSeZ6Ixm7vi6vkhKDqFntr2rgm+ vKKdaqo1EFm2cEPMBgEWv6EsyHv4/+czGeasXkjMo+hDwdH9HTBYuCa+/cwI vhmdzirQGMOAYon2hFkXRP226ugsagSpo6pU0zIctCqGWHdoC/ogv2d/ogAy GoMi+yKZUCI5Nb9L6oCiRXyWXwHRs1dvyrbocvCnQAoqcQIMbHdycjwyjup0 q9Xpimwojqv9WHuhEQ5HWBW16xswIbvhz5BFCWgrtb6ShV34ZCRv4Z89gsm4 uVdl3RjoMKt+KG/UgdypY8UD6/rxR2KthHJaNywnHE58XUt4+NjqoUNXGkHb wuLqx1IQmJkYm0j//+fSo9xotwcxo3JaI3ANHQXLCr0e/hnBE98y8e23CL+9 KfdbrIkJqvvaa7eGmmGkI6iI/DOKc6ZBLZdd6JB699A8w7sHDr/mD2nWMyHV avb03cJO9EWfd7xuKkDRmU/yL5KHofd8ym0n0Tsqe/pOXDjHRvrSlT/Zr4nc e+5h7T1GRXT+6eg1Mx3g3K/8/ktAhXcAuyCG1wTD0oYD9A980LQ/KfTdbUEt 48zz9EEWYrP36r9vY0GJFn6+YxYfIfOljz0U6Yd3+pzkVM0KZJ+pCkl+y8OT m36nzvYTPM/kuxW8Z0NWifbfEZoQtab+l71UGNDv92+fLWxFAl9tYUUJwZMm C0wWRrai5/mB3bdSCW9VvmWx9PEohoZWxlJE+FBV+PRZ8IiL5JBRVf7dYZAc vuTc8ruI4LfzvHWfc7G1937sPBvivKIMPc738GGn3lFo/IqJxglN/3lvh2C7 W/+hqoYAh4czpaNXEteV9knvWhINOrsHF8xZTfDndOrd/B158D4qWThVTfhe jfX9WUvoILOcPrdwh0DV2JoxbESBe2B7tdhoO8zf1fzLd6NBsfWaTkmoEIEP r9gneRDHa3hW2nKc8CAP7R/94flQlXjMqazqgKtrKFnYMYabw4Wtq1+yoTRg GvuYNoQh0sq7B/dx4W91JPHWcQGOZR4X9ZSmYVS+Rfa9Bh+U969EjnV+wA8F veZHkSPQuHbVf/GJetw5FdVf/JKH9PZTL+Y4DINy5YH7W6c0GKzg8faMM9E8 u6Mi1oAGPeP+xV+dx6HYHfnzXDYx34it/32JI3rwV1bhsHk7xJnLfaJ3jSLB L4bFHahEo+1t26ZdNFA/FQ/YNg5CdX3Ol7U5I3BNfv2hg/AL0o6ZLQtrX6H+ 2rYzG7PoEB2kpOz0GIb42URh7d0R+O48cVhD9AHaesJmazIY4PGuzbvwh4ly 9XLmaJ4AuqGhK8Mth6EvqizZ8/U9NBaJvqcE8nFTo11mJ5Hv5o8asu0Jno8T q8i/faUdqhr7dH5xKhFyNXxxTEUXrAotnk1eZ8J7YYqN1ckeuDIrDpgl0fGt 7kXWmgM9SB2gv5ml2oqO6IMTQ58HYEHXC70WxoX3DdNgsdct4OVEqJ6+24rG V84Gs18Pw/bVYMudO3mwPRG8j/SmBxGcRqZDzgDIwquJc772Yvq15HTSvHFE PVo42LZkDJTfLnUf3ghA+m+TjKxsL8Q8XxT65xF8cfyyrELPKHxvjHpZDLTB 1+KF/xRrCLp/DVo3b++D0vTDn5oH2mC2UfT9q/sCOC9rvLamiI6pR6tu626n gXz2kWTeAwaixZwe9juz4fOcnP0hoAfRF1wWRlKGwIsS27b+XxvKZ6WdNdbn gXbOxHUkleCztw9tBVVEnt+orfs7MIrcMy1Ha7bwQAm9++bxlT4E7qP8l7u+ HRMDMxs+6RXgmN1T95wbfIjvjQmQPMaG+97mXRvr+XgYL682z3ccM/M9KF7/ iP6UDj/yyfgd/ox9W0C63AfxhyPyQ0MDyK3bLU5OYcI2qC1kz4l0qPufET/3 k4M2f8VSgdsoVF4/pE8P8cH5ZcYR/8NDxhFD0vUswhOf+MzJqqfD4ororvMU JsgftB/MEx9F4GWtuNWfmRh4qfqoO7oT9cvvMWfvpsHhWqe8TsQQwSehVnpF xfCd8D7gWl0I6sOzYjoremGulrwrS4GKxiL7kzWShO/5kOc9PM2C7+e6wNcn sol5Zl4/71+OVbP+069SJ3LjclXv1042SJeLzV90CBF3wi1s9MIwotesi9B0 GsDssoVkkyvEeW1Y73QvrBXRnE6f+1tGYeSZ9fP9FRqiFSN/PSB6X/dZWuuW +xRQEs033hL/ABElarPbPgbuRHek5dgQ13ldZIObCA9ikkGDuz7yUMDbZLTo TT0o335uDDMg46Rk7qFtgSOgGIQ9rNP9jG/bLT6zRgjvz7q6tLOESfTZ1NI2 Sz6MTx+LyIusBU3JxdspOAE3b2Xditcg9ldxtBN5eRiOuSbf+ulIXM/Wx1oy mk/g2SRBZzymw3hkcptXhhDp6xnfZTqHkdvkOHwlaBByt7d3hjpVgOfwc5gu NYjllj/qaEbEeVgrrVLYWo8/R2mSvyXGQHM+3/2qOwekszyl2W11WJwwxZD0 5IBE9mpw3G8M6z9z32W+4UN/3xHfD3e7kJCjwGoOGcDAzuOe6xZ3QnZIa0Uu heDK4hnd5mXdIDuc27fhew9EHU3je5mNCD577enmZhZcrS688PClw85UO2ZR 3hhcaynJuy4Rfnezf99RY8I/9VRLf4vy4Fv3J7VJfRBxtuRNu3eMYzpqwPGG 6AgMQlPO/pTmIvBokYmOciVEdYRto5MtIN0SqRhZmg1akgRDWzYd+knaZwc3 MOHLyn8uVxCEHtHvkffe0qD/c82dtqFGZN7uvrTiajMoBVN56fRPOHdb55Om HwP+fs89bOxGEL1z7vLHG9oRUj9PvZNPQ3ZqN0VMdxTeTn5mgkt0yFz7KxNg 1EN4wtT7f1p8ghNfl1fpDcHSOn7zPTEBqEZfEop+lyOhTG7qX+gHZB6vzZn2 Y8LOrX/7ki4WODMXm24vZSHVTuF11u9BhMjuTOiy6IDDO2WFyu2NcF49MXvO z04YlH8N3UQeg6Lu3g2OG8fQY340jRU5gJMzStXveVwkHCyRMaURPD3lc/PM z16MizTtvxw8gj80CTv6rVaQLJ/ZUSVvQzcoTTc0eBic4RDW8fIWwnO/vTul 0Y4S1w8FjoQ3xlG/uu1xHEemTkSRYFs+RK/e1dJN5UDHfWP7xOJxJCwLEft2 ugGOjaeHD74aw6rem5JnZUahmK44Ym/YiT+L12o7Ej5ne2/y/mKvZJCr14nv Sm1E9X/KS/wejECJceAoI4PI1UXbX9Vnc+BqJ82V7a+Hr0e8gwhnBIEnhG9l D1Qhuuv8SgPFQYgu1ozqURnF7Gf/7rzeTCN+310+UpmF5DY7oT/Bg2GOp3YF EXxLDe8V9roRPLNj99AhGz7kWs7cSIngQ+PQNfLlp/Ug22nqXp7TC/3nsg86 fDqg68ioNLRrxapS0ysZwXRMbj+upbmV2H+H/+nft3sIszyfitkMwteFzVwn Ew5kAj9/9DfsgMpxcztWKhfRDcEvTJ8yEGirZlO1iAK78ozpnFksBDoMSu1l cRGsYPHfxYNcpD91ObMvpxW+OrJp3Ls1SDhS/bxsBQsD41eCXBd3IWKx0+Mz Va2YkJ5OjJDJRkn3cffbpwl/vW50dWNmO8bjlYMeT/Dw40eQlVYOD9HC0gYu 4blPdmwPTvn/8wYuRrUnxg0idcIpaKiQjT/MmoDOA4OITj33N36KjYJAcpL0 jzJsVb12cO5qAdw7u4Of5LYj2jUpXX55LYpSbwxP8Dth13VA76UCA6ueZQ6k DAvgM7GsS8mOCca7pwWPhHRM3GsTmseMQO2Qex+7mQ53a6cYReM25KYeWvx7 Aw27mWedI+ax8TpkfsfFIWL/R4p6r5jDhYqul2OQCg+BmgnXSqyqoOGwV6/f hIqQrWRHlwPDmB3l+fWwHg/6OuXndSkf8Oldv5pkBQMXeiN1w8T5iJ7uymy5 TfC+XKJuxPlq+OvdKK29y0byUPAjSlgPqCcPXGo/WwZy9Lo9RZnEXM1z+YGS zeBVa2eOpI+CZGbU4BEzDEXp6YvqpwheU70tHbS0GGrBJY4GS8dwzOduRIjP OHyfPWZ2rcqAhoYL/wWN4FkntdafIi2YeLXAcOP8UrhHahxcrziK4CT3JYkS xLqyei793akfa0suNuakEX25UKLjYk8GvDf5z2txLcMAZfY98QE2BvKettnT x0F5MH+ipCUV+uszL7dq1oJ8+syTspCP0A2hPdP2rkDwuHzif0+Jdbw8ZNvH x2PIrYR6UgiRuzd4zTZBb5FRlXVsSoaFBJ9/Ptdd2JBrkpgkv2qHYaSDTePO VlRuMl0cc46HehW/RyL7RtBxQlvHSacdYVvCT6X///OVOoFNAecjoF8xlFB1 lAJf8516Jjs64bmtIva7PBMXnAICVllyCE4y2TMgWonm1A8P4pdzERFqIb16 LRWj3zd+Gimm4ZyvtIExgwaJc9sdOlsIX2oc7ev0HMbEYPQ8g6UMwr8+1cye LcBEwurYQbUhiAZG9UxcrEGI8rJetS29oDiORfL2pcF3/wMJGe8MgosXmemu qQbvU33LZ1E6zJc/WWS6ohsUUQ1KvwYTny5vb1HNo2Fo3PWMhRYDlBN2dlPP M5Bksy5kb6+QyM/iPz4tfaBMiopeP8FDrSBaneNWjehFc+xPMEbgkM/U6pjf jIKULvvahW2QiS5M+pvYh4l5Q2VLGjtRedztQBKnF4b2JVqXtQdBUtmr8kvs A3ykKGklvb2wCzfqmFPaDd/c9h9WhTnw3JQTer2ajx8vjlQ7ezOgHa7KlNMk 1s8mOnnvBh5IOg9/ccsrce5h7+ZGCyEkNB+fsfqPBv/AeMML/mzUlkSeGEgS otzESNtxHRe7T724/4JF9LBmM0/qahR6VGv2ujwph/72mWXnzn9Gs+zUsYww 4vimZgJZPSrIM1HVudK9cDdUcV56jAba4zMn2zZngBMyqTp6rgXlugvo3spc pK7oSLx3oha+EReN+k3CsJH359/afxxYld1XoZC5xLpzXKoey0HUtqJ/1G4O REx30Kw/tMNS6PKj6sE4yrcITYQ5XHQZXr/CWk5H4OxSqZmmSliSJFO99zNR oh2z8tkVgj/O2SxLItbvqOzsGmXeONwD7nxvzOPCfNOOzzU5vdA40k3iMeuJ fqgXi7zyEXIRs4+ffdsIk2O7jctXc+G+U2ZxiXYvcoWnV930bYeS+umJnsgh nBw+sPl1tgCNYZ6zf7q349zSOhLpMY+Yx7a8q1FdIGlSk5SvP4G2Orlc5F8/ aI0vOEdG87ExbqCzNp0Dqb/qM+m3uuCTt33DAW+Ci0rLbTY/qYbF3+kLBxYQ P18UYygWzYOhG8uo0ISBqQXU6ev/0UGrYBzcrD0E//Ban84/g9DIkunozKuB XGyR+KXaQZAVo0kx+mOImL/PXCuMuA8Hg08mzuNiYtaVU93aBZjaaHKu1b0V zhlhkmnPRxC28Mrkhv0E9/p9P/FNdgDJN2r/6y7lY3HJmzybrVysVamSdukf herZ7vpmThmoMn4FUncr4O2pskt6cw2c0yqHljSN4bDv7OtLGUwUGXed2Fbd DYlXX5Q3yQqh9v0CerRZMGH/nX1Cjzj/gJs+L+dWwrvNLyKU6Ieufa4jX/7/ vLq914L4oXUIjK/lzg3ggNxaSC0oYUM/OUSORC5B3ORAjFBvEPpKFTrxxH0j PzF5tOVILfTnJiqZG2ZDla2jofeBj1ibiSEScX9HD9TlKxmM4ImdxaVIMsGD 0bP8Le6TcS7kGMtwGR+Wax1iH04xoa1VP7SitR3U5qxfF3mtcF98r9RwiQD+ SeHn4zgCTAnvxDSf64AfI2qLPcEXcR92ij7oYEDVq+3uojHCf182fojuqUfb 1nlD22pGkFl80nm/Px2kTU9Meu4J4OKzYr/ebi7Inuumb5jUQ6q+UF2zNA+f 1ln8zvBgwNf2+DWFdaWQE7d2eOohxICCtOjR0HZMDxinOOkJkdm1yDsqLx++ s/7OdMrdh1TNkjef7DvgvbLiyDffBtTm9+z/nlYGEXGzoLvSoxBvfNGrmUV4 HSPtZkDZMHSd/ws1D6eCJtk161RnOVyj1qxVVy2E4vo50uzcJIRc8GNYJo8g FaEtJtID0L17sE+OyANdCx+y8W6CG2zOeO63H0L03OrBdY1ctGku0fm9SwCl M5edbjYxQDsttYKlS4WvE6vriG4hItJrFiz70Qe13n/Hf/zqg/uzlo0L5jPQ w1GzdkutJ3o3dm/a0xeYklrxqmlOJRI0yjUmZIjezyue+/XAAPT7xF97fKqE nFvM53hZFiy7ky8+nduI3XGD9N7lbZjSO5n00rWG8Jv7XcpEf1DS1WovboyC d0zicjvfRpC+3a/WtUtCAvWpwe32IlB8lzQYXYmAidZx5tYKFtL9zcPEdhM+ 2szMl3UYg/cRE67SEwZ8fCr3n6kbQPq3dmoDwd+7k0z2nP/ahpNrXm652zoO 2wTZwt6K99AfPPShhvBo0SqR5xjpgcLcijnD/h2gvfJWdFj+Fg4mdRdpH5pg GBcY9rKvA8vtr1eut6bjmIhog+owG+lujidtrxN8bkrbVbe7DtEm+VzBnQbk hi1o+nqCA9p/E8l713dAfN45iswAwQ9VsoospQLsjtT/F1TbCkqR5/3K6X6c /K3CzjgxAku7BZZ7VbvhwOXx73mwUJ0ytNt1CxtSiUuMBTM5oJ0qidtObUbm 0YAG2a+dsFXc2rDL/TMefjVfusKQATMFZ+u+uV0w1iT98KM0g7Th493ND5ph fCV5W/BKIUhRvIdrnIke3OKUkFaZA9uIw51u6wSQ3dwlR4sTIOnLTIRd+Cg4 LjUPXkoPwV2hvM22pg2e11pdvjMZUGdSG6aIfT6z5P2bmiNcUPscg8fuZWJe vuVb8UTCj2Ro1rYR9TgcmhPUnceBT/MhhcQuOuqr5RPVmgSg7TRzdz1M8NJ4 jEmDFg219FKPvXu4EKn6fnRtFhUiR/14mg2EL0XqHKbsasbOidy1FUu5mNcp 8S4ljQNfsfygJQu6UfBA5vO8GoITli467yJHh9Tm3AWdL0qRnbTDWpkxCvKI 6cjQkkGC901b3hCerfhV3DUvqhBq0lGrI9gDoDTZJmalROP1Pibjw1k6+uIa rHLNiH3+s4VXwO4DSXrws4l4GWgJf9sVXtBA4V5ySm3JhequEesr42UQjd91 ucSYh673zQOMThos+hf3e+zqR2Aq85d5EAdmXTXzg+Z2wqEvrnbdtTIw9pzO ftDTBdXjV9eftKWCmm9s4+nejydvbgtrPMeweKGsWn8d7//v+7S+PsMGzXBq f7FLLTJ+sDY3UPlwsA7d9a6RijalDdve3WOBdzyIa+s3AId9tCTlkUH4frwY f2FFFwxfzXsTLckDxU9dX83mMTr8c07cvN2Gibj7w7cahpBQtaHY2KEI05aH 2VLlPAxYlEcH17HxLeHdxXdRnaDtuHNvyKgQ+u2r61zERhHt4nn0nIEQIR9r /O6NEfMRD/3TyGOBJNMyrvLvHkTZfjYZP8shde32tTMBn+A6bquTPJMFqnuJ qcy5fhTduPttrb0QRofEn2sQfeI4vvc1awkLk4qmv7/rjsB+2fsFoY0E32je SjnymA/fAfZcPe1UmFvlfT+5iQkRzb+VewQc6Kp93llNIXzrpLwgyJENPTGO 8fmtfKTeb2xa49kDmaKc/Sr5BPdkefd4Ko5AcV962D7aZ+QWR4i+mt0Nz2Ab R9IlGhqdVHsuHh/EVLd4Qax4O/zP3IiyBwuZYnX7rf/lIHdwDl3TaAhTlxne lEkhosYzGBFEb1NXP9w8q3EMge8iSRkE95GsWRqH/rahRORQadEBNn5MfG5j /OJANUUpwV69HNrfhp2jZhH5f4JtqHxRCIHap1rKMz5oxy9d3dv3ETNdb/9Z i7NhMZyfeCa+H1uHyv36FzIgOihbdCK+C4pp8W9blxA89ZQd9uDga4wvP3KD Ij0Ok+1WD7Pe0eFjUWDQN4eJ5UqLdpQQ/iy+JsfQX6MfSTcuPKr4TfiK+vS2 Vq9xTEl/z9v+rBUGx/ZGaOsTfWbg4so4UIDMbu8FusFDoJr3Vtk6CmHduMws 5AcVbzOyjToW0FGeEj7Vf30Etilrgjq+5kIuY1tLrDcffbcW39sEwpt9dqzj 7ubDjl/427CICYc9m58vJHre1eWf7wPNTzA+8c1KT5XwvgSX4lvV/fDcF5FU dH8MqWJNE6fm1KOgY2r5+l3VUBjUEI+bOwZO3tKpr8+rENJzOiUmbQDam/9Y 3x7goCh93+kH6jRo/52t1zNMg6+yzYNAYl9+ejErvtKVS/j1eafOOV3oG5L/ mhPNh9KsEIpcYSu0tV1f96zgQYUkvXzdkjFk3i+VO5nYCe0zOs2fjAg/0Q8/ v5mcA1GzqdhSyTqUlwVfetc4Cl3Sxqz/P6/d91R255KL/nA+oHuZ+ZYNu/iw qoD3fVAJOPlT3ZMLRUnT5p0Fb5DBGA2PuChAT2nwF//BMkzNfW2RbF8FXav4 tPwUJjItt30PlCwBxd231yGV8PrhRetnYpgwLspw9f7JhooH+UhZHAOVT67z 1n0S4I8xzUVpgvDV76ERZRWj+Ca2cV5OFAfZn3Z43dkiAPluySoNq37CB6lN /yWWIFXyzyOBYivIN32O5XtQIRXLfbWVNAYVivCnbxEXPVr/Spg/uIg76uav 2toJ0o91BzSSyCCxJNu/6qdA4xnrcButC9n3zmTteUfk++xiX2E5A+Q5Wu5f nlVA7t1uOfGdQ/B+5vI+fKgeVCf16lgQ+dU/cMb9C9HjW5uWvL/Qg/RPcYLx Yipc3m0RO+vJAEfmUQ/lYDU0qpfccqN3wfnXlYbVb0cxMCpXxb7TA5Egh1WN xXxQXfanLI9swaqQE91Wq0cRV7yzOUmVD9WNrjX3CO5pbC7SXJ5C5L5Gf+ay 6VeozQ3d9pDZDamJjxtl5DNB+jrXO7SqEQMVlRsTN/UieSA4qoI0gm9znr+L 30+FN9Wv5owbFYrrtmlYObOgeNVqrW58K/S9E2ylextAi3eRktqbhqLrj5ff VhiFNk+n6XAMA55fR9VXTPDR81/TheQILqQSHDSX8fKhv6XpXLvWGzQ3yOwS JfhwqsKu7MhUFUilw9X2twOg/V8SP3JhLxLq+8eC5HNQ20DOOhgzjgiXfcdO 8PgwPuszsVebCd3VthTdf3XgqBStp28oA6d6fpYuvQV+mbPm/kclzvPNz/IX hgSHrXGQXy8aiQmrfTunYouQPvXm9trlVAR2uEksOc8H49s2kyMhbDRedZ28 VNMD9eO/OH3b+dj4s/y0361RaHhfY68bohD3YUnz36PDsPed82trHx9y9+89 Kwgg7pe7UbROCw1krWVR87/lQa6wKSImuJ7gtncvfksW4MJ2q7hHf8eg2/L7 NL2oD8Z/xs6MEBwQHGNkz4wUQtv0vcXve1SoTtI1qlRYiJp+vUM+kNgfNUf1 JwpzMema6k+vG4PUESe1o1f7sPxLUsWqVgYyv/+8KbvpM3wTt2x+VdgAK1Wz m7OusxFx9CNlYf8YlifYjxpe5yNdfWpptEgrdm6fHG09y4aal2gOr7gb4pN+ 6YueM1A0nvjoW1wrXCmJAdq9bGw880jqdqsQ5kztQy4XylG/+m7erFl8kN1D bcfO0BDo3VMR5CyA8VxbtxN6jeiYK//lZXk/sT7+jq1RbYLv0bm3ZxNebTm6 qMf9ARNd7V9XLdNlY+Kx8EwXfxDz7pvEVvrzIWIk//JyhwByh+M0Lr6nQqWX /PVyBQ1x+ZqPPa93wmxrqerHj1zwev3a5yv3gVEmvvHWzyGYaa70YjWPQeOy Xuw3FIHhqHDaX49F8O+p0NXJiUjolmmdPXsM1sb+pyLambC+fz4+JYgJ/Y6O bxnOhdCR5AfMdaGBJTahoB/Cwe6Rm14zy9phYHsr0IzEwLc9K7nvrgqx3Mjg fR7hi2tNRMqUnbkgBahI+14jQ7H7ovvOoTq4R0kvNdnKg5v+CFvekkP03wX/ lLtC3Cy9pyZjx4NGp+Df2wMlYDRtu/W2mQnqlYQ93CweKsPWlmlp0GHeMlxt u2sclUG2q46sYkHDZPsmrlwbGq8/NjtRPwTza/5uZY1tEDn0vtUyvxf1Wkea XwmFCNS8JL5OswYqX+WmTdezwXEc9mDF1GLry+M5Sm5sKHoEKoSfKYbCxq8Z C+TZsJd/cnFygQAa25Z+0nIdRPbeQyIDvUyw/u1onoVxWLLEN1xRpaPAZ8Nd fQeCA5mzQoqLemG7nWT0qyIDPcVfuq4vroBhw9vnPIKrXBc7dh3XrANpyDpc d+IKkuO6Gvfc5OKPu/f2D1MsTCSonNdyyQNpT662aW4inoSvDF83wUDIQf4/ bccB2D7ddOdYUTnCXhn4lLJGoBNyuu8KfwzaQm783UPj4HS8L1vCFMD32pG8 ov1ZkNh1t0asmQ5Fh6WhrJoWJGQleDgqdsI+//ZurimL8LDxveMvCb4U9Mqd ta1CrdTDk3ni/TDmvtjRLN4Gpcv/5qYJxyAyf6P6v4B2eBeZaCku7YPr/EN/ L63LgpTNfPONxNwi1Dg0reYBkHTzvqtZJiM63NqBSuFgIO/NXtmjnTBKuSiv lj0Kk/XkQ0tWjMJthi7p+l4A8XezoX+ZA6n8kEjFesKzJVz27zrLw0b/+NRo SwFqlZVMWgKq0KjZVH5KsxVievbdThd4CIn6uHPIieDKpcabeys+QlXhtNu8 N92gpCYFTRBzp3XzTkjF5UBKgTFYWVYJQ9E7qUNhXbj59NaRtqMs1G86vu5U LhdFE9H02UcIbjtrcSOugVh3j+/TJfmEB58pmrc7twK0hx+XbbvUC8ULGmoX //aBsiKifdwtAsmaKzYtTulGZk76GkUODy4v3c9rvxiB9t5SgyCDESTMJERf /vcOeaZzDb3MWLDyHvhpwBKiWjx7VfNjNsoXhT9uo3AhcykubKWA6MWVLFKg VirIVhV7lha3gOQfeVFvWzRULjvt2bFvDB1e+py09x3YyArTcaBx4D404yWV MYTU07skxEXY8E75t9X6CQ0kibM3SBP+cDXKi7i8PAsyF3drJSzqwcDIN+s4 /1aQqnkXxXLrcaG5/2uBFI/oF7fhhMYypCq3tOV+qoPtxcdHqRaZUNy7vrW4 rh2CiNCSwyZ8zLj23o7ZxCeunzuULeiC7daIKJnbI+BRjv3KHKDC/mppivPN Ufgejlo3R7MX37YPxfqkMVFgJ/kcJcMI2fchZGXmOIxOHfXSCqdBxTnXJnbL //8Pdv9iajAZU4Y/7sS+JHprcxk5pWfg/719/8LsUUh83dXlsVwIGS+/f3f+ En9/Wj381vtU9Byd9bLHRYiZ7FCP+c1Eb6a/VbP6QXjnrZtmovFt0Dh3S9v0 OsFZr+XH3jjkwbz8172UtDKkX/HnzLZlYHeeVcZSAZF7ym0bFql3Y4JbvHbr vxIonhoZnglphwL/93/imwQYd3Rsn37JgYaSpNGTIiEYyd+/+IW2QzdYMdL3 6hgc5mSrLSxqgx8r/7TOD4Lji4MzdhN5r1jjFT2HV4GpU4ODg3vZmF7FeBo9 QIN3/dcn5+064Ls5X9ylOAvR49s1MgguCZnWm9lGYcKyUb3aZisxV97quZs6 KBCLVH9hFcFEz5tdVzmjXFgJI9IG5UewVeuL5lTJGPQFR36Kr38N6tmK+JcF Y6ByTRoCHMqgpKAUtKV0FPprjPKuWkRDKk/s1Lpd+ai8tcbr2qMuJL+c89aS yUbG2qP10hpshChpFsjOG8fuF35WBzI5oCnSogTZnTC8I7u143EXKk/qKZGe cDEa0PbqbQQdUQbhv97vZcExfMer2BwhHmYcO7+2l+DQpsOBnmb9mHSRMkt6 xIVjQkXx1d9CpH9bdlHiJ/F7flqBmy0E0GVIqe570YPxw5TbQfO5IF8enaCc 7UJz8dKP3dcZsFvv/DrHdhgn35VJqQpoSI1L+jpykwO55kUL2E3V+MSz+EX/ Q4du3+m0HbrdqD7xXor0mYfxd89KDoYRHiAtNzXnMhuGJNVd7G46Dk9+VZdZ Q0c8NXpzcTDB2XfcXkz+psN2J93KJKEGood+phiLEf4b/uTTyTk0FOwfj0TO OMz/BtV3vyrEp9eH3zYRXjt5S/7HuwY6rA9UzxKR64Cs3LwyW/oIvPfpvLjn 8f/PEw48PmMuhETrtKBbyIWE/Iorw94ceOabtw0V0RER2/ZL9CThueTIZzGJ RYg2ONEUMlsAyoDrv9UOg0hYMvjGzyYTvLNh+W4eHMxoiZsWe7FB3jq7ReJw LmhST5anewhQIJcd/erJEPTd77qVb2qC9vnZO81d2uB92/yi5xEG/MSHc9aW s5He1Pj+WQGR73pd6yufNOPOWcNHWmV0yJilv39aToOI/8qF9Sv7EJhwfonP zkYY1ksmfi7pgWFsrUMStw99H9v9vvTSIGj6Pnbgwzh8PbXvb5qbjygSv3FJ qBB6pj7I59KgcbGiiFzeC1o7LeaAYwYo1Kgp6I3CP12l/PggC7Z3+OZF/RTY 3qy+/Ls1Bc7LtCtF5hE+t3JGu1yHizByy/or68fBYIhsqdo/BDXOVpuAJa2I s17peURmEL6zKjbvtWsEL2tvW3baIPSbizq9p6JgYUw1tyUTPBZhtJ/U0o/M 9a+Hz91ohTf7woSXnwCVKxXK11A6oeQ7Mxl9mgqD0T0BP1eNglzfd/LHpnGQ LB23yKS8wcTv7EzG/RZQ8nq03P6yoXtAWfqMSTf0PSmrZO7UodZRUlVZbRBW C0svmd2mQf/Bn6nUt1z4lF4dVpxDvO7Y7PVOFwtxWEfeu0hHgNTGumlaPRsi WitPD5sMYLcpey5Plw/fuzsij+cngqdXNsjVoYF2/uHyeHovVHVGaecusEGd a7Un8sVnYv099E16PADG97ac2KNDWJsspp5O+IqPsLX5hSYf9V+M5FLecMDj PB6enku87rZr9qO73bB9MWVrcLoPtisX6uqVN0FG0l1/Dp0KhwK5+fUtRM98 tDm8LzMWtpv9dS6vGQfFLr8oZHE9Ao9TZuY4daBxu3Fh02o2MscWiirJ8yH+ 3uOcp2AU3ldN+w8RHkjaGvNBdn4JOBP1ocLJKmxceDrd5A4fzmEG2hPHhCBd s+iLk3wHqWyVqO03ylEwO18qbD6R9yErd9wIpWPtS1XOqa0cGCP/StlQFWhh 3Gc98akwe3q0rHB4DIyn6dslzg/AsfS3VsFO4jwetno9v9GG2N3vpD9OjGGm ID55bRsfjRQJxSxKDzx3QWHZr3FErYqQXxDNxszndVLVl3lgyMr/3qMrgC3T i0fRfQ1SlOm8ZScuYndt5qqSOgHU2FtPHZYm9qPklVn5u0agYbui8815Yo4P FyuqkN/ArG9du1dIG/50+c3seUbw1Nzyqy6zK6B/cIfOa2Yv9Hfe5Ny0f4eC /AidXr8ygiOutRnOpcEwlRK27uYgaK6dHmWmfMxbxfxnOsCAfZe5yIsrTMjc 7Hmy8sUAaMUNV65N8qBft7q//UI+Gpc87XQ4PQLbQ3Z8L2dinw+ae52bX47U LSdfPPFohb99L3vx+164iv4KC+0YAmnn/GPhRmRIHforcmAfF2qLT34pk2Sj LbPmkH/3KGyF3xoZLDq25mVcO5QkhO4fm52knSxYnFyfonFGANci5VfqAUWI sH3rfcu6D+TOnyprha1IZbKTk8IIb72mnDLnFxV3ulqKyJJ0uMkbhUrV8BB7 3yuIgxEYmYkEuGfS4EqWoyQEdcB1zm+HJuM8iPFTZe0TmbhTa9jo5cOHqPmk ttcC4vgXvCOoX3tw7u8zRbdZLOxW/aCabMVEo9JL7/uVrcj03yMWfzMLivL0 u5PWSXgd+ezEuXE2LJQfeZ5K/f/3Qoq12d5vgkXr9s7uVi58RfsmuZfbIWr/ N256Phu2iXdmaIXpcDxrw3uzipj7kVPU5i2E99s4JdWfE0L/Lv3aTHQ3SHJ1 H99bW4JSerOQPE2GTLRCze21g6h/F7r3/98n2/FMUm7tDy5qZzGOKPQ1gnaY H1qXSwWplyK+tMYPcome/zL3c0F5ciE96lIJKss9NHPmjOJO0vzQehsW/Hgf L/9I4cK1xc3lxdcudOgVy2hc4aFIRDm4J7cT0e4ji01HiL6TFg+2m+lArXs4 L1q5B4Kv8j/NKgj/6FW8dm9ZJlK/BHt3adPhmN/0gVouxLyNXg2BWkTub5I6 pKDYh4f6blz1DhYsN23dUfVbAPLAcfGQ7dnw/fhGmplYC9rPG/t/XGpGJfty 8lxDIZz5pmRm0DDGfUJU9PKIfLrzIUD3KhcaMS+Lg7dlIrl225be8F7sdH8t 4kx4pHNEX7hIJBUTR2dNzIqug+KP9zlZ9wuxKnJZkvM7HtTm5CwlreFC/Gj9 rZ6RVniSM9SF7oTH2d3jL9AoRvZBk48RFB7Uxbs7tmTyoZZ1nWqj0IfU3C2j uNEEDalG46vrSxFrcOrtJisBzGg5norx/eCUjofkfh9Bz6PzRvvn18E8wLvo hWIbRqn+5kt0uagnt5iIXOUgWiH8Q+UtPj5t7LmupMaC/cVFBrcIT5Utnnvj 70Eajr2TdmyfOwKSuyD4/Gd76I9nbTAMILxid839fHcmSOouo5Qiwjvm0I/2 l2aDMm+VqdfzMcge8UlLkRdgVVfF+js8ARKSG5PzCvtxU3rRpZRmBhx/9q06 2C1EbXuXXPm+QVD4oyfrxQpAkbhE+msSjewD+zhMHR4UN8tLpCxjIdnrkFPs g/97Uf7MtUfE/P9ZuXaH8WDWFCtRFMxHqk9HbG50E2KDW4umwsfgGekvdNpH h2iTDv9yRBWoJhdV/lU3IIIZcqUtsRvUwXOihlPtyDWp7/uc0Qbdv3lv/3r3 gCTjRQ0npcGycuBTo187zGVeuTivHIN5d/nLI/2f0eN8a9G0Wye8tZ7Me3uR gq1ec/qXiY4iOfw/Sdt/w/BfN4dqFDuILoPXG1VbGIgo3v3a0IoNWsNjJS9r LmhHO678ruyCRkDnroVED3YcavfyiR5B7bodqftqB1Eptfnojrg2GOzcaSfu zECP1mSG4hIqjFd0Hs243QpKY0pByH8lMHv8R6rp0hhC7HuFj66PolZLfe3h w50Etx+kKoc149va6OyOJQOYd27F86B5DMKDtgT4r8wB+T+9s3pZ/bCo28G9 QHhbnOPiY8U5VKz9vONDKJ943Z9F/Xo3X0JwwG/rjIAPDbZV5sVj+YjWuFZh 9KoBefLr3bRvELxs2zD9oaKD2M9XLT1uxOPbKUGPzh8Bmo/aCbOiWIgrnM6v lmZC9O2iGVJ7PSpfxj0THCPytsrgyPMLKaCse+rQlELBzH4P150zbDDY/LPy mzhITT6pxiulEP1yvH7f7n5IbbfZbXmmBj98+5Y+zuRCdWnBv7Z0IUo26LTK Z41gSH4yzvwPE2GDXcN1//Ehpc1OvpFUgwtBdinOP8bQvGL8TeBeJhjVVx6d ShxEss2Nh5EeHfiWIrl/RbgA1oUdmv7Gw4hqXbXotyQNMmm/C5VLqBA4UgzK 5zNBe1B/7gqdi3lsE32HPDbM3Ip83jwbgczh41eV1YncFX3s8useC4rXDij2 BefD/bDco6XnhqA9pM06EteDkqv/FQj9Ca/XZn1ZZjyGQAdyWZh+PRh/J09v 2TyMZH/7P+6nifzqkIj+H0VnHg5lH4XhUZJKtiRlSZFUKkmS5FFJKkqSJCRJ koqStJJUKoSIpAhZypp9X7JnGYx9MGYzzFiSsqT63u8v17gwfuc95zn3fQ3z frXm4EHhAHuvAbEnhY6IyCxowp0vJyk1lixEBMTQ14kNwVPP9mLQvFTYXBC+ Ia7SiHkDZyeyrnMgafCOSculQ8A0VeqWJ53ok7x/hSeJfDBb9fXrnmEYfr7y ZnoJE/waaSdCHo2AtCqdI/rrHOrV7g0FfuuD8Zul/anD1Zg4HSrSbkDsPSW3 329lmuBg9qBhUn8UFs/5793NYcHmkcSd36JDcKqzWt2qM4ZcFUam6dNu+Hps X6SQTvTDqUoB78M92OdzRoROZ0Hu8PF/7nYEH35c6cF0K8KkyCKxi8LNkFe6 t/STTC+0pYdI72sYqBNsIAmJciF69qX6t45izLmo/soh9uzc/ZU/rouwYGgm oJyry4Trti8r/SSJ8wmvur3gJ8Gl20ujrNI74OmXJDSjUQBa3mCvvE4p0pSm 8qft00HmiTdn/2rD+OdzSbqkfEi4hkQJlPeA3zlE9FQ3wYHPA+7t+9yNtNOL c6db27BFmiOqMDkGzzGuRFHmFxTeuWIscawVwnmpO1TjhiCx0sdu68dWRFF+ jTyZI+ZZf0b5wHgSzGpSRET56TC9EjWQ4j8Kc/MX8Vn3G+HzWsR1cHkzXB0c 6uyL6LAs3LjXxLoH3s31tTsow6jfVfdrjvA6p3l9GoFPuajwyqopdmqBWdGf Gea5QVD6RwPuEh7maTm7IGXrQ1gcM2yzVB6BdVHqQRMeD2miURlrhIowbvTM we8RkaM323I5eoNQ1RiRlOxrQONkfuxfz0FQz/7L+23ZApVTUUvOEXlKWr5M Td6Q8ItP5qfsmFlQ7fhhtjmlFLkj74vbVOrhWrlkd61RO/jF7s8Zvu6BQalH 1lWHLkgMX1ggzGbCpmutzamiCii+Gnz+aTkP5mlnIi5aVmFaf9/K+n00Il8t v4S8ZUGmJYe74REH95yGtJeGdqFC7e1aFRkK5EcKBCbGPiB21e+DgQd6QFq0 +dwtuRwktB20iD3eAdHTa9N4FTnIpI0fNX1DBdVSQevSTB/+zuyqO21AeEVJ ufHRv2SQ+frfM74WoH42M6N7fBDujp9vvNxTAXUZdy3J7YS/pOdR7gn3IIjp Urwlm/i9WzdlLFlVD+87JnEP5NqhOG6z9pA2sXfXNnIoT4i8zY60rz9PBmVn pB1/Pw22gpJlB5qZBBfWSFdk9yB84vnfbcR82mxZ9PzL5WxEDZ/R6N/cCYOS kMcityigvQrvqDxXiyS1fIbjOiYUHTetF48YhOvtuS84SkWF0/eOScJTzVlH vo9+boHPTYFrroe+wlzszKlTBVxIRGjF9mpxMO/SXjHhBxzIDFn/S+kfg0ma wpZyDh1M/yuTMgwWOjtSf7vt6MWdq0Z6D63GwCYZ5mhsZaMqaLZUOHAAUedp EmXTpRjtvXP4+w4mCvd4r7nSwoKnk6CNfwQb/vdOzXod4kBnk56p/20enhuc qjlmz4X8qfihxW5Z0K1ff4ol04eo3+O6OVZVcPdQ33/+DdFfXHGFtUNU5N4N 1dFcTMXo8U9GZsmE1+7uP8W3dBjmR6kaav5jkH8rLH6s9CNmS9c2FZO4IJ1z KL93uRBeCWE5a3IZKBVMb6/Jr4LoxNBjWesGkB8YqcxsoSDgXtemFsV+6L6U //uax4F7YMujiDQGOquTvKazxiB1IcZiA+G5VBsx5v6rnaDsDtxpJMlAvlHf 005NFvKfG6o2RPx/H82V+9x/USGhEruwgH8U2lL5f479ZsJYTPfzavUSGO/v nw23GUKAdey54asl4CgOb1zdQeyjaurRKZthjDfbU0UPfoNA57OK38foIJ03 4BvrI7ztDbfptnoG0nzKpS7cGkaSLc//1w8iXxcwrmqZcpEmu+7qUoMS2OTb P/v5tByaNeGnJy51o07nZ/3O//9PbPSvR2ltMqr2/yNFOg7DvWT8hQKHON/f 9FWfj/Qj4fHssf2JXNikd94qnkhE1BoL+Qu+OfA5nCyu7z2IaZn2p3dCh2Fz 3s7a0asANs20/g0t3Si9u16+16MS8oUul94sLSM8s573rKkZjcdeNSxexoTu fVpAwOcYBOs2rIwictrdzNtOXGoQDsfcXwyd6oF8yPwBalohpFIom+xXf4Pq BdG41JkK1D8N4mYYERy+Ut1qr8QgvpxYc02RmLM6l8aEx340iAZpu9qt6Ifv j+clKxJHYKB+bTqpnwPzQp/CQb5+jC/55KK1KgPZPlIJ8uKD6JZ2veMRNAgp sV5m95VWzAXv+BjUz8JaqY15Z4Jo0A2yaZVT4SBTt39z7dMutKQMUNKSB6Hs kKOoG8nGeIljWMDRKlTFr6wzu0B4v9hLcjE9GaOyivNWLmYjN9O0WcuchnJc tNSmEzm47VyE/Xc6xvt8H1V//4JJv7cxL98TntPuMZ/5phnk/fcczhI5Iy+3 i1/Fn4HDWZy7VilcuMv+3e6R0wbtoV7x2JRucPZeOzjfsQvWFvWX9/OGcE9g k8yEOwNpjLmT5R0M2Ijf4qutpkP4zzLNGqKvPoX2PUzbzIBu4xKsW/Ia5ROb L8qFsnDnoPRqiyIaSLwjIlnyNGjG0KLcr1Mw3lrgPW8N4R373QOuKvYgbZ5q zf1HtfByNz97juDc+o/p8vUXObi6J/1dUvIAxteX+a5rKQFN4qhLGDkakzac rSVyHdg4kxzZvYKo45Mqj8mLb+CpIn34cro/tCt0qB2uZOS3i4vc7CT2STKV e095EHaDOooxbZ0wnnVL9PuQB//on389Dg4iN9RcfOv8fhiuzrbVs6DD1sTT +qcLB1H5f5Y2LojH9V9iCmIHRqC3YUm71+9hPDGJcRDbPAKfBW8sNkvXE/kR N/5YmgxauJpmqEYhDLV0kgdch5A5sHTBHKMZnSqibufCKkG6OX8iVLMTDsv/ vemVq4BlvYP2eYtmaGscyMlhEHWSky6i/ItDbt9quxcB/fA0WXvFTbQRnqzS n0s2tiHotTnfVoKPlCRimxVmWHAvSkk4LEvw/Jb3nmlX2uDs8/Pn6s5GkPbo XH7/KBt9BFodfDeE7rtL7yCRyK1rz+isCyMwXntQg0vs/SghB+93gT2giQRO /yT2o+TzfdL64SMIXu0WvEWzH+3hHmXLo4ZQqGbrQ01koYrxTWZYZgC0BUND cSl0JJiDHPelG/VLf38Xm2KCNtHktHxxHRySs1OUc9nInLfwUkxSCwKOLE6s O/0VsW3JJ0w2jWI85tjKwOJi2PR5S1yLrsETr7Il217TscrZ1doTRP9PnLkT PNUADSvXl1cs2TCQ2+00+qoC85759oQsGwVpcdgCM/lamOtvNFRPoEF52pqq jG/Qcp7Isc5joc9fq8JGmAc5vlHZgYM8mEWebcwtGoLo+0eug4K54FmFRn17 zoWw4Y5l70zZ8CRnn18zEwXPXvknW++HIs2b/TVqTSHCVpvV3OHUQcbk6NXf 9wbwWuPWNqNdxNw8rZpT3cmA3c3HpxTPD0Pm37/FoQtGoR7L3/ZPjoVJHYNd xx2Y+BvfR8rU5UHQ6YrPy9FmkI7J05i1QyAdz/9y/eA9WO6Ua4oVoiGh/Z/M QbEReF/7PX/+HoIXZzL7Vd90gJQtdzyA8K2EDc+sWMXt8Ax0tVnQ9Qp3xkQS T74gfLLKskYobIiYx4r3D9y+wmmuLmLAjeD3oA15bilMqMddepl3gdgPeoPl jgfbMMp8t8VDkdjnGszmBSs7obslVMJf+gsisuZfL0+kwG38ZavJpTGQWW8H daX6UXpqQZjzwnpI6XU8O3KBglXXirPukIj9fGBXGDqYKL6S8rG2g457fxeS lNbQIHXf047BYKPmQ7Enf1AtnPO8XYII3xZvt6Z2C45A2D5+rf56Yh6VNsfe 43mCqaOabkdlgmmWuleFNYaAlYvf/Hhah7Q3ot8KXIi+Oc/bfMQxG4aiWwIl xXoxWTZqU5TVA/oJFzfWzQF4lrFvtw83odT2u3f48i7YOomo764fRa71zDLJ Xz14IhLy+LHvALwTClpsfzAhQC3kq/YcQMSWyWfOD1oQJcsnNlvcD9rSzkmn 9FIEZyq9lNvKRE1Z6UfdOhYazQc9PxMcoczvK2bwpx8kjfcmDQdcCU/qOSAV Wg2S/Jurd2efwsEwey58HhfmB230bx2rxNq5cTkllTGUpiU8WxVLeFns0ohT fmwkTK26VjleicmRBt02pVEYn9xeZ7K7GL8SMlZvkmZD9GbSd/Mt3zBKL8i7 v5cDibyjx53+dOHoxR92z+8xEPxXbM3du1RMu0urRXMaoYsqueOxfUhQOGdl NTwEQY1mKfVHVPhcOmvrVkcBO1gusZpK5NtC6ag7/79eV1XpvpDwD3fr97nz T3BxtcKI76gdG04zl9Uco8fgoN8qQXlYicKzx6/5DPJg8zpYaWZXEfR0JY9c sBxEUlWh8b/ILtT1R95/YctF576yyV3OVKhpWWUuWzwE/98XTVxiRqG799OA FMGRjn9e2aVFjkFuwmP1VAgLmlXvVLKzuqFprfp65R8KyH58JKVzBVB86npM 5gEZacuFJM6HDCCs5r6j9kg1otYv+VorGwVV1nyFyadELlzNDopLpeDJ/cnK kSk6dLuizJ7rpKHcvlXv8n0ess3YF2p4NLQb/KOJuDAwPrHV3/9tBqK2viMJ xzDhfKXFZ0amHIXSS14abeqET+zdE0XbayBoaLii/wkDzkePtauwe0FqZTzp moqCWrJAUMxaNvE8R3O7fIJBot5n0OQzMClLdWmc6wPzfaL4jOggSHcdmj/e egiphoRvvmUUeFLOOTxi0xCWtpovg8nCqgTtd8JzHCRJ3JQ6urgbuqeGt5IU quC5Mjmy99UITOce275a2wnS8N3n/VIOMPhUFqOXT4HZjWeidz/y4FSzveuU ABt35rPJ4s08uI00v29fT1xH1ZUnvy3qQoL8hHuySi+s28UiPrwm+vDAs9+L 1SvwoPrl20WUUVDH3kYWvP7/7wUDPyw40Ynp+OwngvOoSGElWirKjiB6Vt7q wRo2BD++8tM7VobS3QLJPvPfQKuMJVB/jAX5BQvPLNShwslP2PiNKQsB3Pm/ by1gwIF3hKzwoROat59uHD3dA07jN6sfMXVI4J2Ukb/IQ8DFB45KRr2g9t1Q +cjkIuBrQ0q3XAmiVI1vnX3Rh8kl+87+mtcKu6e5fG3+FCQYFIR4v+MiKjV5 /ql9sWiM39DZM5+JfSGie097MaBJkbIQvlCFVYrZe7RujID57cj1QxNdKP+Z e/u6BgsUl561cb00OP2+vd97G+Hnu9XH79TEQH1X5n3ToVZYf8mmK0wT59ma vnJhBQuFwd78bcdZGP9qOJPMK0ef7sKHUpJDsIuzSd0bxIAKd7o+7e0YEhjq 7Yvn9YETs/GAetwAbHwslcMaPsPm/Ucz9RdURBmXnztf2Q3xZfYvpAm/6Au2 WF3gw4ZyY3l8Y30vzJuiM4xVWFD09MopXUbkKl/kSaVr3XheJUlybWYhWCAx vD+hE+KpmnxrrRjwnBjY57ezAZqLaTqdm2oRXdi2SiqCjrqva/RvyvKgpFuz T+jJAEST/Z9rENyrarK81lanFMZ73KlrnuaBP+bbzXDxNhj/cvcJO9aDeX92 8T2eJfb4YBxFImYI49I7f1xbzUWKyLP3Qv10eKqmH1tfVgWpQM3CsnMD2CKw aaB/BR0qKkZfby8ahsG27eTj91tRkZ+05ekUBappb/n0AjqQ2Xxtm8TbPhh/ /5vI6/0C47BHj270ZiH6eVGRuiYTpntHt0SqdkI+51SPs9UXOKjeELpTNgzV rXwnNl+gQ15tVYmHYBc4l1K+ZWaMYFrNnFxq1QT9zMQGDUtiD5VPr2gnOD1l 2OGq1hOCC1nim0QuDEM5SDb4dT5xfXzWOYkks5Cw7d06VecaUF6ZrRp4xUBA hsfqk7wMjMsrU96GlyEpv0Lz3t9uxM1cetWVzkKS24B43Ntu1Cxe9NpJrhe6 CzcW/7MrhmjjY8b1dU3QuxyvpHCiFWFemivzTYehuSG5Yb8PwZnfQq3eNlPx euxOleFSDsgfNa3DkzMhKGcdv2r3IPpgHnannIm5UtlFo0rEnBt6lNrp9IO/ 9FHYsr+9kFm/45tpNhcWn61Z+73pUCw/SXfZ3wLdS40KcsQ8+kxHn76p1Qdx wxt94/Vc6OaWywpubgbndqHE41IGRMsMNZy2MpBkNzHGOTQMbZfmE91jZCgv 8FNvI/rZ+IvBuQVhrVD0oTkVUFiICDMsT5pm4zV5fLGhMQf5Q243U3+MwTJg y6f7lwZAIouV7DDIgZeH5nz18CEkXbK4daWmF2HPbGVD1g2hVL+7fqdnA4J9 Tk+o1HbDs+eIyWmPLpAfrbc5tToP8vQ12S8vZsJnxl1578FmjPttPvtm4QDe J74+UXJyGJ2CapVKJ1pgkbbzK1mXqN9Ti6/85rXgSWgkzZwg+ldsgdW81lYU rpO7OEv4BM+xUuH6NBcSd7lTalojkBC32PJZuhmilrtncy73I9/9x6wPwefu u057H+9pQZjoUW7MaBWS7Pl4l6faIE/5u/xjVh94NZhLILjX8YjjR6UoGoSM uJnUUAq6F21OtCT2unvp9hsqCdWQF8sc3HuTAxs7l7NGo18h6GsYvzi2BaQz y1Xt/mYjd8AyJHi4H5Kpi4+ouBP7fBPH3am/B0rL3q5riOHC7KmAhuwjNoJX yrg/JjiNExu8MGBXDyLUx+hr9/dhdMrt0p5dI3gt33hN35wBIa/hHKXTRF4c DvF7frcOmiax55sXDcJ1+R9j0wjC75b1BUnSU8Dx6fH83F0HOS1X9d6lNAjm fl4/7kvBF1aJ4qZDLNwTiRDhOA1AXjt288c1lQirENjbSCH2R47VXoPeF1DF wYx/rzrheVTb0fhHI0SVOCIHm0aI/HpvLBfaAvPuzjkZURo8faLdi36xIXXy 2wosaEaNauxF5VtNkHhU+yiHNIgJg1p3HYInNxrLXbnyaBiLL+HbpRsc6K3t ff09cwzmCZvjV39vRYSdf9cklQMlklp1yv/vB+BQeqDHZxClDS/FRddnYsvj 23atqwnfCE2PX72kA9NDPtEvtVox/baD6iw9hM5/s49P3SuFxC2JQy9de+Ft ZbH8pxjBiSc1feI+BIN5M0rWsJgFuuiAGVmaixbvZbsDf41CdPdBly2iDdBW ym87KUzk0qugB5JNTLifM2OuGGNBN3lF7A5GIGaXKS/V0iLO639d5Py+R+h+ tadZcgMXzJnDK23kx+DuVd2q4UdB5vLdg23W7RDsUOxdu7gBUccLJCMCGDDb ZPxNZo44T86Ol9OW0dC9sICzoTgIdl+WFMvM9qG+Od1kZLYFzPsUJ25vCwzr 0ofaD/VDZaetzXbnZlhq36nLJ1NQZy9wSLiG+P2zDu/tLBlD2BfxkvYtjXBa VLWq7PAIqB+86Ee3j8JgReTv7+KtsDz8ZFt1Mg/jr85fTszMg+7+vJJdOoNg 5m9S1ro8jKQbWhtB9D0pcNWFNPEOzFZPfTshOAjH+2GUys9EvZ9nZg/fa0LE 2wsip9itcP7GJ/fEjuA4EY/JsxiDceSFgU7BUVhnHbh8zJYN+b55rkudEyAV f8TB+vogamS/PjjiQPjt702bPs+EEnzStePXz2KkPO7vjIxgwJTUd/62WRcE ZEOdzfqHIf9vvmMnkX+21gvDL64dhUDetmKJzRwE3Djj3SbRBa3sW70f/Ieh 1tkdNn54CF6GQz+9/UZRXzi4/ZHqIEy1tVvXXRmE5lnnSaoo0c8KYp1q/3pA pknY+f3/viX8uXxn3ephXkfXvU/4d1rJkROGHjmQpzVv8nk4TPDwG8vYU8WQ 5/nYbBvKQmkQx0h7dyyCHViR264zQZb4FTO/OQNKuYt2cwToKHb1p2mRWHCz HDho40H07809ppWyo/i17dhnjUssRB0wMuFt6YOn1tyMEpeJyZzBqmF7LuEb pMCNpokID5r0cL5PeMiyZVIa96JQumTb7RcpHVDd/ufEWgEiX2fXTqgXnEOU 1o6IZ1QWMpcyg3LjqOAwX+n0KpXDMPyvxo9K4uuu3Gms776L+rq56Rri54k6 9tvXp6bD80ey2fmkJghT3x+KkRwByfmBY7TkWUwEmrYLugxCu+2XRnp8F2wi dJdwhBNxWHybe/FDwu9e2mSUyzYjamhRpPjDGJgrZl09PcvG0Zh3jb+PEPwj z32hsaMIYZZRx7kbWmC34t3n0Yc8eOKxuX5WATzD1ac37oxBmrKN6HlyA6Zl /RdJfiiDY3Zf0OXtTMRu1f53+UE7yHZ/dptcToeDgslVVnAXwR8mA/bL0+Fz z0rSk0aHXtWP6juy7dB5k7PpSsoonLuaa1bGN4O6kPoo4hWxd5+ITtzZHweN 8VX5b8hMaI79iih+z4Hu2dum2pb90CuvC7bb1wp6+02b/ZOEJ4quOFMzQYWy fmq9dFcDRsN/i9+6PgLn6ivv9i0fgYGD0tOZBWSQb90MyX+RBb0vauN33ZgI vlzt2XyKielD5uFH57cg933sst8WzeBvfCHWMo/wMGfbSN+bbIw/q/9yOogK veGiXwJLCU9v0doewvuKxsufg98S3mgbKW6lMZ8FUkJO29HHNtDb4KvTKNSN ycSUnVeniLkjR2dsyCd4cmkOc3iuDpkTKtUeCRzUCBmd/7a3H+7LXh0oiS0D k1+XM7WhH+yQS+n7f47iiZlo8mtiH5oc35z/8t0o7C5pTQZpE1///OPGZcHd qKBX5R7gcKBaq1s841KA3AbhvMu8XgSL8v0KG2wF5Znd0gmCL3Sb1CgkyUDw 0h7aW+Qwkbb36Idzb/KRkqen+3KYAd0/UzNGYVkQMlAqin3SDJ+NHJc5mUFc vxku8d6MhbQg20bjgj5MZwmsfGZbAZuL157mFFARx9aex395CL6WOrN/CsYg E77q8k4BLki+PNMzhC++XvS1WsCF4FOFqCLhC1wEB4f0Gc+nQvXHRIWzYz2c p1iHktk5kEja0SO2qRlHz1VrewQxUerTr5T3jAzTEx/26MszkWnxNj6/vRX2 5xZ2pl0ZgeDdSZ5Q5xhs2GfrU2Ry4Hn6OGXdR2J/3TrOS7clw2D1/JNvi0sh 8+dg3IeS/98XzqExX7YGvz69PP73Nhvm6VYlRk/GoOg1WbO9th8muhHH5A8M I3829Z1k1zBWWfu19uyjQzl6b1EPpxylax6Z7jIahk5+TqFV0gju3Q1MOhZO 8K9uQ92ByEbknpUVevCyEcZy8rcCvIi+yQjvLzo0BPP4kys7PQawOPKn3iDh WaSrfww+l3oi4fWgCGegF+O3d8THCDEhuP6y1QvzIaheCTzEF8pDTVxs2cEE NtwPJirNcahEfee/fSsyjHryzOcZuR54Wu2rnjQuhCHtcntKKFHv98uXP32Z D12d7JnybV9Be/Yz/pxpBoRcc9l5kp1w3lm+Q2mgDPz/VCW2D/fhr/T3bd1j HBjSK3cf0CNDau6TkS2xZz1d+1rsiPly4zPSe+Q3CNU7kY7DGWUIyD05ssgh ByZ5qmO/lYfhufzWa2XBIpB0FXpuvL0O1UWNXOnjbZDx2laWvaMf5mZqyuf2 NkHr5I+ZLgMaLGc+6e0xH4ZNwf6vzx1L8PfD5wf82YMQbSXmvv0r9JcmrBtR YKOidev1DtkWjNc97ehs/ALzofN6gTfq8WWJ+KTCNSZyRef0Xm4nOOqp2YSx EgOzJiI+62MIbo9eXqGm2w+hE6/mnE/S8YCf9dD0IAM23WaHqOUx0Otbp/3B hgdm+zOn71mEpxX6D5Rk58HcJqEgSoOCtKNbth8+lg36qp2nXl4fg67YPiuH RQmY/Fn2OaOHTFzXvqPGm5owUZ81tmMxDypnnNvd+ztQWp9eJiTYDfdbyamj e6nId1n9dNCCBo7DT7eW70x0LjcxWHq8DinffR5Eig5DJuHD5qAWJhzqE+qs f5aC+c+J8mkZkT+73r96ETqAtDcbAjNZ/Wj8961M5R8Hfw3kb5OsmaDSY7br zg0gYsGqj4mfuvG+epZ+mzh36VUNZzeDfvDUw/pXVNEwLR31LGB7I5RbV3xN Kq9H+7MeFXEnNmJrgw48qBuC0OXNd9npPMw71NW44CUPdQkH9m4b4hLcVr6R G05GQJDiTMu7PkgkZ61QNeuFhJt+xviyIQgWxP1ILmNDs/+nYv/dDvj2p9jr EPXmv7BIaEyVqEesbfviQ2OQELz8YkV1O5TmSe332sWD85XtPo1XK0EumAjX eEZ4U/6rMRmCo40nTp8wFSF4V8vU3K0rD9pheqIJJ3rx98Aim0MPaGgve7bc RYMGec0z56xdOqAyZSCPzgE86RBXmH+BBrLcNZHzt3tgEJDqqd3YCNrWpcsv TuQgmstwiA3mwO7IOdGr3q2IKn1FOfKvCaIWL5f9rR+A3UVlPqVPbQhz+xRX P14FTdH1aSkTjfD8XMrMERzA8JPfTevjh1Av3XaVLk+BkMSJmh8KA4g91TE4 Fj8Ae/ZW0Xd8bNgdii3emTYIxX8KKh4pndBt2ULtbeYRfGIp255UCcXmRPq6 7WOI3ZM97dzVD89Ocl8/KxQtjOC/rN80lBbuHXsWN4TwsRulMndGQaO+TV08 lgrS6MwX9ba38J5481T4czMadULXLQ4cQ8AFC+jsbIPzXeq1V6ONCD/EUmuY Y2D8w8ypZp0mfJla+czlNA3mGivO+W9vAMlPeKP/cxa2zB4MGyS4gd235zSP MoAq77G+y+JMkKTnm1jtZMBTUNNwR2sySpVvZr07lgC9LYQUSTIw+l2g7KTO AOJCNAWOnhqBslnoO5WxZhjnfxPSY4/CYVAi9drNVsgXFF2adM7AYZ/oRGtB GpIGjzw8cY+D3GGr8iI9Lhwi9vxNaCzHc5/BfSNPOHDYc+7VdsooKuReOztS 2ZD7ZbopIZWDtGfXaMe/jsCuXkJA26IPpL69Kon8BTCM3CymI9oDR0NvlcYE LrrHxDLqrxI5adbgekCzDfVX6TciXLvhoG5x0OpCDzh3VBSyeuoRUP9RrLSd htwT5Fu7FtJhcMGm9NsuIo8OMr7YD9IRVW7wM/NUAXRnVH+fzysDSWJz/YoP zRAidc4uDWGhzi1e+xKxJ/f5hVycd2EEKiGxnV+TqTB1fv8u9AiRn2r3U/yd 6TA2VHVJIJdDN/VHootDHfS95sXY3R+G9UiD7+1hghtkp3uGtzYhgLLt6gt5 Yp/InONW3+5F2q8NAhSvXpAsgx76kmtBe7zqYmsrBbG0tRt9+ajIjpHT7kge wJ1njDO5IyNwjWY+TlnNwZel9nbBG0bhy59lRJ0g5kntkN27cAbCZKayDz8Z Ivb+yvWKP2nwvSvxVYjaAWe1gPm2QgRH247+XcGkYzxvwP3nsiw4iKYu031Y DtLyKBu+iGYk1MpzCzzZmBvfGzzNRwFZunP3ToV6+DKu5Y3SyHDarI83qW0g 16bU9ET8f/9S28nLJDLM1WUehuzrg+Lxkf05gx2IvZkafGuQBotn9+M0/9IR 3dhxU0JtFOaHNiT09rUi6abF/uqznciVbr/1wIuBNNWokhO7vkC7tzrlhlIb DN6nP37IT3ip6s4U+jgXovEbXJwufoP7x7Ueqic7EGBm4aO3jg3lqPL4matN KC8+JHb9Dw/mun7GqTuriFz54dRcT+TG9Dm/ldNRkLcR2BIcEAvvixnaC2op aJxs/6AtxkNAykCk1vsmOG8J5XMPqYS51vy8mLByRBWlu0+HFkGiYsHTMgsO sd92/5RavR/TcXtKD/yiQfS20dS//++zZ+b3+uFxDgQita5VEh7sO/3ikOt6 gts8E65t0OVioqhZ2Z3LQ5xbeI33Jwa0vvKsWHYEHzIWdMoRn1c+3Z7YvrUa ZIwGnNAkPPJ1n1GKDVGv1NJXS0YGIbTl6Aeh18S+ENud/09/GMUK+Ts2E9cx uk0symCahtFO5TWlScOIEqlyOdORDWfpSfaSr82I7V6ybq6vB9oBmzZIVHPQ eVxqqm81meDSo5nld0dBWr3vUuWfN/BhuvEe/Pz//RzL/91JZkD+Udr3luWx ELV3iBacIqOTLsrcOFuFBwsSLI6TOQS3Wlz7WkaBFsvsOEd8DD6aa5caEvuq VITu2tCUh/ADUd40Uw7Cctc2vzYknu/XoSq9lPdY/GEt+7rSAHwcF88u+0Dk 0r1mrYp3QVjcFZ3S0jaMGq+7b7YSeyfCdt+7QxlM1DzofWn7/97WGBURfxgH A/lwzgluC3h7s2LspTug1XYw9Kb3EDyVJMKaZhOQtiRg5sqfNHiOm6/7fiwc pt6bjaae9sNh5M2eF+troVuROqjHrYKoMmeAXtEDmkx+j8TFVnR+smzMahuA eKNI/8VaLpHfCTeGJxIg1Op8kVHXAQnueIEtrQ/lJun8stuJffn7dJvq2WGY S46YG9o0ImK37tQf3R4ECAv9Jr0vQlTIB7bHqW6MP0oJnVUpQNSy6Ue/TlVj +qf4b379Hmjmd0/dWsCGoZbeBQaRyzWGK94WG/TgvUtniP8fIl9kQh5X3uuD z+HSedWlNXBTWbMG7cNQ/Oiht3S8H6XLbY4/fVUKk2tLpQ49YsJz1u+4U0g1 LKczOzZHMUDKzT/2PCMCvsfkX2gfHEO27ZufAz/pCPtVY7OkoBK6izPvThSn YJ7Dxss/bxJ19qFGlXiyQJNVu+Syj+CPA9eqdWZ7YSxsFpiz5P/Xv/hbb3t0 QlSi8cvpsx0IWh0gZUlioPGni2mME5En/U8DFmiMIOmywdY/84ahul6BY5ye D6ZsuYSgzxjSppc9aoqswsYLtozaa0OouX3hqVFJFVy1WvQyh8kYF/fVlFIq hmfUgQeJbjkoba787lc7gn2zcl57rQcIftkmM3KCjNk/Ys/vv+WixWptkrzN KAz0P8ewBCtAV2XuMu4kvGM/6VMycZ1IyUt7V68JgIGfU8sOlTaMK6h/DX5A cLT81Wzn9gpQw/9pvfxD5BhHf9vexHYE7LV91W7FhMzN27l3Ozkotey9PHPg E5S+ZH9/2kOH/KsftpZvOZAp1vvavpMFO68jK/GJg3tn+JuKNboh0y0/JWZP RWHn6Gr1Y20oz7qedqx4DM6bApYPhBD8lJGotHVzGzSlLflZroSPD7ydW+xF h53RR4jtJaPCSXS72P+vZ0eEVpsbj0DzWKpq/PlqCG9UP+6qQMyF3GC02egY vL0iKG4x/TD2CpX8eIrIzX5Zs7nlffDMtB15fITgbQd95zVnhiGUHLMjmk34 xC3ZZsr7enh23AhSYT7B7IE9q8e+0UG3i/z9ZpaB6euv5qdZtEMoMcA5130M nX3J7wNv8GDB56s+OsJC0J3xD79DGfhk9KmvtXkU4zMDmsYjebCf9LnRoz8G pSTXpIVidPha6HBuWjDhHPP218P1gyiVDwwUiKmEweuJFevmEfP/yNzC1DID rpfzynXEKcj9zQ6wNWmHlEZwmnYPDW4/F6qzm0egkf/p7aOGYSSIBg3xf6+G LjXoVZBQJGzIN45lWtFBIomT1lXLwD7sKmdmmg5KyfelCWe6ifmSKT65pgIU /RUOlVt7UFPFLS7/0YbSsp0VdbtDUG9n+jkpiKhHjFL59vhedGbfPq21rwzT 4irLi2bqQVbzkc07n4761mT60u8UJEhn+8U7NqD0TE0eh9mDOatvZ5cb9YFn wtVTukgBLT3t5LxTY5hz6X7sKkPGcxmp/AATGu4VUd+FHqSCfHjqTfraWlwd yA+JvjwA97pYP6kLdRBmLNN4tp8NZ/IOl2mVQsjt+6xQf2YEwT92sRoIf7cX jBLVjeLC5u6ftyN+LXBOyqxakjeKxgHhUI+HY6BNhZ9Kf5oPp+1pDh8+UVHs EuhvQ+QQbehDboxYIRzJ2sl9S4l8fli8JXCO6IsH1jpDVU8xvpr96o7SECz1 Yr53/OjBp4MTZX8dmOhrNRX31+VB3uXuv//vG0NS4g2JPU5A2I9el8pTFVDd r//3eOg36JSsuOX7hQ7V503BQk5UCGVlqMQ2NSMuWP+Ox7dhVNU/fyL///2t oslBhku4cBTecuWD/gDMBMWe7CsiHrtM/SZlciHPvjEqTHAk+dhgi3vsCLyp ZnV3+VrgQyXPru7pBTn9h3eSSxGM+y/kRfaVQmd5tvmSfTSQOqwebya4Ii3q x/mJU70IU16lxztWgTDBjUdXPubhqPMjWvoVFmbDFW8ZneJinxP58JD4CIyj zglOv+iDKu/bqsGduagz8PvnmMfGc8+/OfE1bJi0L9nGqxrA3OrOoWUbu6A8 dz7qgwEdNYqxNZQw4vvj2boKFeVoHys8e3GEh2kuJWmO4DTyNr1a1Zf9CHfj fJ8rYUCzRL9iaCEThurbwiu6yLAdtolck8TFqExt2NhtDp7bnDgtTOOhwvCJ +8oQHhSZRYnu3YSPbGapNkXHQ388XK5zaBRpPROzoqt6IC9VGuecRXCtDu0C v+sX+G9eijKCo6YlD73+/LAOlkJdjrpuI7hzdA9fXjMXAvlLj6xZMIL380q7 Z4VHsXh/+tJVmTToNcrG2XV3Yosb22vfzAi05nIOFxHXQ2KV7v2kewQXfc+y +tMcg+eOWs0OCqNI2D461b6in9i30i51b4pBstnssUUtDxILdpAWenVCPuqL 5pczNTBst1wZSXAhzfhrcGrxCGxsm3uddpehcD6tuuk5HRHSSs0UmS5oLdhT SaYPgrd7YjWfCAcBJcY7q0mVEPVI4W5TS0dp0aIaBbF21P3J8ybdZUCN9Sk/ wGgIZg3nhg/toaFvZfN+l04udBaPMJZHjRC+JWahsoHgomNf8/7pELwj4LGI ticLKioMxyjJFtj4Re258YvYHzd6ahXPNWI2sVW/9zQL5g1qbe2lZeAEXb+a MVgBb+bY7vMLe7D4c8ce7a0sKD8ufzgsVI8464Xn3xN1iiq+Fu7jVoY5f/vy a8wWaCZPekccHCDmTOhiQUoc6oVKfsVOc6Ec/vmqvlo1PJfMNTq0E/lqO+jt /YAOrWWRUs4mI+CwDT41+TVBns9KSF7+E6QcT6SvaGfC/RMrxH6qGs7P9BiN fB0Y/7d48xS9keCQDk8j1xocph2yzvcahs3aA+tN69m4F6xSvXkPHSr3HxW/ NW1Gu/1pEZ8xNlpyFp1c4T+CljUqjuQ1A/CVfCx/8xwFnoHBm0c5fiifF1NF tiDqyG+9o2XPAKIu2cmb7euBm1+J0Bhx7orHL+++OcGCwXobvvQDzTCV1tk2 sI4KmaHVyR8WEt5d/8DebOMgzMi1rexawoOtZAuWt3RjrqDw6ty9VmjPfbwT fbsdCYckpwoF6sDbc/l+viwP7nrdvheyKmDIElSZ8aUjW6Zg8gHB5bqGi40r RSJh97rni6wr0T+fKev8Rsl48HWbYcefAVCCuFzhL23Qn/a4WtFPzJ9rjzgU vhL7Yt6U1d5hdP7hdyiNJ7xjSpsbrpsLkk7hX3HpRwRvF3ivTukH77mTx/xx gsMOd/7JUya+P1Up6dLKMujf7JwwlhiF1MSZzS5WXPzy2irP1z0IwYMl9Rtk WZBauFRZ7iwDDrdz08Z8+lD6VEcEB7qRYHnfh+pL+M/BDYsktDJAWhji+7S5 EqU6JbqFBJeXBsgyR8SKoP3YRXi7fhuUDYbFHWZ6oW40SwuVY0Bo3ZWfZl5U xLJi7J86MKD7LubGywE6bB44DJAsqzBuEx1w0qIatuJ3767xIPI5XsVbiuB0 dxP17rMpIxAYfspyshpGxcsTv2ycKdgyKamcNT6ITM1jh8deD+HePoHt/Yub 4Wv/Y6B5N3He/JGLryYzUD5o0ROuxUVKy87oNo8RXP21JDeT4DuhuVzF9Kle XE9d9GnUeRSe220vLzOtAE3M/FPn1loYHLqS05r3FV55CgsWlw4jQuPHlrio XpT+STZsrm0B+fbWsHS0QrX3bUIraRBJ3O8bt5+lwXMoydZ4ZwiU+i4WS2UR fa90YvXP4/3QzCuss2uk4UvBSdOVz4jzNV47ude6A5ZLQ/+OrmqFaPHNoNwz mVCZPGOxqK0XgkJP9X0MuAhWltEkzQ0itufE9i7+TtxRfhtuFzkAy2NUXsTF MUhs+rH8YU0HbOhn33HXZKNU1npLt3AnXL9/P9g41oY7a6aOjzUTHBt/LTQj dAyam/b3L/fmgvPa8sfLk9VQ7osrOBnOwfSlTWvlZCsRVeGt11Degvocj8vm l7pBvqkWcu9WCfR5BWlNNCYoq639tB6w4KzZ2FK+NgsRvp/mZfq3gryqsOK2 ZBfsLCKOmLZyEH6jVthIgg3zFYmiF+O4UGn6ceH8FjqiHgmfS94aDckdMQcT TdnQ1XHv9htho9Rfa22YaSTChMVDxFWrQSrq0XgocxcGdrdmRIn6yb+Wly+L H4W27/VlbiMD6HQbO/W4mIsqy4YufoUhqG+jFRqG8+D2weLpJNEPuiZ3hYqG CIvMN/fIvUvMISV8+ccDFKTtlC/7+64QTkutrk83t+OwjNciDUkegj/Em21K ZUH8ddsNjhmxnys8dGW21oG9/el5iWEmBG76mYoajcByraC61i0K3v84Jb7/ 9xD0v89bsmWEg9iqkpdj1BHo+zFnrSlE39qfbCiJJ7w28YIEZf4T+PelkTbL j0LPNa0nL38Iri/sJgOzOhCrt2Xmhvf/f08TXBfm2I1VKZfyGhJ4cAo/tGCO 8KPCZ1seGPO6Yez/mNx9ngnzz6Y/9Ul1mG5cZnC0nvDRD00H9sTVQeL26c5d RA5FS7NuZfoMIGi42b/vJAudMqTr//9/YPjhZ2FzOTwofUw9veEEA6U93fYn AtuQ3eg+tI+YM8q9hSnbfnZh1jXz2wslBqR+fa9wuNsJT5shZb499ZA/+sFp nPCp6MJU+7Bkgn+O2U5n7WqDcYmwoHNKA4T+lnTti2hGwHu2Yt1CNpSo3LW6 5QSnFR69F1rchsmCxT1p4hzopj47HceXDO/jq+oynPugPvXjvYJJK5JeXF24 UH0AaVIaCy/dpIOT4nPE8f4Qos5vSQgW+wi94+4ekdROlHJsh3v2dSAgNTNN pLkFSa1rqqFF8NBPxyfCi1tBEh2KufmmD5MP1j7yvkzwRWDzWbHLZJRWaeRO mIdhdP/SaXVfJmgZwlnW9DJ0LwiUoO8cBJnv54p+bSrmzpdnux1ph240nT9x 1RtEuP+KXETnQDTS9WTgjlEEX2IIvdbiwFXgW7O6JcGl+RsUr+WPQOrYzW7H N02YdOLOY6ZREJVxqsfXMwk6T12l0gdGEaH2hKcd1QOSkc3CXIX3mCs/wQzc NEx41N/DTj0UMFWS+/9kEd6z727ITGgtfPnKFn4XbYan7gPuyI8xDEeornrQ MYpSW9PVMVcID7V+sVczrQnsx1Gd1wwY8J34q8XfwUZmSZX51Uw2PFfK3mUE dkPiXK6zqMIIcg111arJbXA83t0VdZ/I3wuv+c0fpePOCZMLH+k01L86KynV xkaw1AJy/NY2qBhl7Gr0HIBQY+zEPlIH/KPOHvrnzMGn2eNGkq4Efx1nJv68 RYdmOv0MTboMugtv2dVs+0r4iSw9+FICvHOpBlIEJ2sdpBpX53Ehvrp39VeV Aaw9UOtPWULw1/2h80fniP7Q2RbMt48FudebSm9HcgiuWq4U+CEes6+PkraX ccE0Njwe8nIIEoP+yxv+tKN0xUW5oGW5SDDp3nLObRg+BWXzKV+qseVswSUf Y4L/KzUq5lLGILArtCxzDRP8M1VjuxzGEFXJKS7U5oC0c32my/l3IE84Z/38 0QizlxsG5xXR4PCspfuPRD0C7E3ILmNNqFA95tctSUN0QG2w0F4aBE4vufBO igPnjM3aORVsdFIXdMelcqH7/fe2rM4iDDv3XFNyoINMUtvlVt6MfZ0FVveY wxgfVPuZWFaMoOf0yLezXNTkGNXN1XPg2X7lbciSPFifL6kMFR0C2U+RL+Br JUj5QTKKUXR0i9y4QnEcgDrzx6slfoOYltafVq6goPMr/8nT3WwoT2XxTza2 gzMZ+uUFwWtREucPLCRyjvr9iuaI7xgCPA45WLEoqGKaSvfcYKF0g/BewZ3t cBzcWpO7gw6BI8Xq/IIDCIj32PKY8Gpn48R7d5wKEdUtrpb6fRBhbVnH9O9R IMxfvetxyigmP0iueK/dBq9n4fbvzDkgF2Dq7ppmMDusZC00OjHux24bT+6H 4pNQTWOLDpA2B5dovC3Dxt3vbkUfHoPoO+qed69ZOOodLVstREO+5tuzZso8 lLp7LZqe+4jg7AtHDqe3wf32U/plTh/oo0v7bl4dgXNh3YA8sxnuXetO8lv1 I+WiNHne11FEOS/cFF3EgYSi/KKsiBbcc/occ0C3H6QVJqtSFG8RvvKK3XQt C8GHyHEKwV2gBE61nbZiguR8P/N9bQi+yE5atEUMQf64qlfW5SL4OuT+SFEj 4/23g28j6WxQBNu/6uqxED3vR+BUywAWi6zqLpCmQfLi2viqhzyUh3skCfcP oO+xmkavOMFROxyeHHNhg1ab79AoNIK5v1ccBcwZuLe1MU6J2EezlyKM2ASv kI6mZ9WpJWGurYzEIPI1aFam7v4tNmZZWR22O7koDlbr+f/99+3KdXb2rhsD uSV69/2bJUijTe/hq/uG6a7MzqHuBtQ4rxc+eLAfnhp/3a6GRKOi9ui3Q33D UD3QYbXdpBlmHyOM6hV40PwRULCnvQwyK9ZYZEoMIqqm41R6xxCYv2aXV4ED uXHvKcdkwnuVAz8dZjMQ8I+xV+kuMSf7HLlrblLBS5A5E3edhX2vltZ+I9Ng PThVN+/pMCxL5Fa1GfBg904q9/ZLBsg/ef+SxbOhrud8YI0+HVRf5dYWLzIi ZiKHTkvRECtix3v4//15xH/98RRvxqdDg2uzpkZh5lNcudechdzzBzquHxxE TfQLevZ2Ljz/vVOzqaVD51x+9jU6UX+uy28nh0GkBb75LdBBePMFzReBvjX4 4ieWlm06Ct3Fqcc/etfD96HY3+OtDMxTzss/f2UArj1JbhdPcJA2tY7/fUkL 9JS/hN3ZT4Wg7ghTzpnwba/X/d0L66CVuKVJxGIAPpnPfi9u5GCL+nPpdGLf T0vH/XOI+IrYJUsvHE7rwGTHmNbxOhaC31RRHb37wPtUq1bP145ww6fr2YRv ivqJS1/r74aK5PmQ9XIt8Hz9ZeU/96fwlhNKbFZsQVjD9izz5YMQzo/Rc/Ye g3eSnE8lwf8qd7+vNN3QiU4bdsgBbi3xePzk5xYqRG8bNuPPCBIsBvr1Z1rx Wr3R2iR+GO3yf27cvUhw+n6zivDiUThfZpj87SyAxDfBGdOVxJzfcI98engQ hU9G8owJj11snmIURviktm2C+lx+H9wT3TM9z3ZCc2WBl8iiMci/D/hzUD4X sX48agy3hfCqoJwzthyYJ50Z+1RAh6JnyPcnxEcpTtGFzzQafN0vf+Kkd4Lq WcoqmN8F0kGK7aND9SDpilrd6r8Hf56tCO8FF6bRldvO0jgo9HirfGYBcV2d V+9plCwAuXywnNQ3CnUDmQfd59twPWLz+0fnx6D7MMteeSAUUjelKlk7ymEY 79A7coSBBGGDR+fKO5Hd/cO+fnQA49crpwsyWrDqgYv9q7FheLasZ1TqEHnB d/LR9ssEBy9wfTZWGAHPSCY7Iv4FkshduwqXDaDYdOXGhPeEpy/QqpSfzQDF 48yirFdcGNpan7mp1g/R0ndRXrWNoM1oL437VwOOgeWLd6L9mOzrfkAbbsX4 Ao8p+20ZxPM7+u+N+QaV276qC862gHLY4o//9RGQ49VXPRnMgIzEBTf5DDI4 e7UP+QmOoLQ/ceqe8ztojDrff/SOB/4MScE76j1wdZ5JfHp2BHqMX3vDN7Uh YreG2YOv7ZC/MjNpYFyJbumDMcvqiLoJx/taOFLx6ejfA9IlDISrkE9T4kew sdIjcpLIlc7UqSX5ltWQ8h33z95K5Pn0gZn78myQwkUO6Z7+BNNEkudbYh5a tsf8WkPMG2mz+4XyRQMQx7WOA8nE4+brlEWbP8Cm+ckGtYtNSDhZbx72rQ8G nedqbRooUJXfytzZ1wehSi551RwX44UBGxgOxN4VO1qqI8uE7sTUQ3Udon5v t9/zay1CaZikT1h6M5xO2vKldpIxl9TwSqyvB9M+1ClafQeisg8HsdhZiBJL 3W7NSYJk/ck1634OIkAz0PmsIdFHG1+sO/26HcopMyX8BLdQPV8dKiskPDx7 28Mm8gCeN67bYsUYQab1aw2T+TREpZ63Dn3XjPKSg/NWXmLg+Z8xxTxnguOX OK3VXJUKW/emIsHrg9D6m9D+w56G99tStT9ocmDT4Ff++3sCtN0v3Ir/SINi kHDKFbFuSN3hft9n0QA94f3PV74jeGoABStyAzDbyOiVWcCEhIn/vNv7u2Do 3kf9JtIKX79DpfdthqCo9IEqS/huFX2/6kNpDvjH1w62uLdjbW+g6UpNIh+E J5/cvkSG4IuJC4GuFXAwdJkuulZB5ARTOOd1Fsrrx5pVNzIg6v72zZHpLJir 2+kt/NCH8SPaF++cbIGv1Uqx501tULNvXX22Yhj8MQMWOocIf6wt23lctwHz 5kyWLdhGeLzASK+PeDue6G7XC7xEh+25ZFnWegaMq86KNzWlQb5v51mziD5k S8j3rLjBwyfWJcW4ci5E5+nGx2kUIZPPf/n9s/1g7rm8d6shB1XpC11tJHgg WTz8YGXti3KNHX7bVjDxZdiKhT1ELmecWPiSOgjF7H2t5qOdYGcqeBXqckFT sNnRYETk/kzWnXj/YJi+cD5DM+6FutnnV8PbemAalFB5SIPwQGtGw5qL3Uio 75uf+KEGggLkl8ndFBQWcFOrFnXD1TrsFfMyFQ7yF46tfD2Kfe5WN45ksKFa us1LwScD067X7I1vdYKz7O2uNSQWbDbEbrzy6COsN69bSFVjINZq8uS9oVHo v8v3Gj5FhzU75JKV3ghqXPhIcgEUOLy88YZ8qAMVFl7zWQ4E729Tdtq/Pw/1 V1ccS9/MgDn1U9K+qV7ss298rHd0BGEMpUP1rTUQpfeM2LRmQzRN+rgikbfT cdShLctY0PV5KRnf/A2T2yQlWOPtuLoge+Uq7jCkGJMW9MPNIKm0rSvSfY4a P63dfPuJOVvx567jBypU8zVDnDqIOek0qnebbYFp1pEKr48diFY8Eq1nPIY7 PxT6juxmgqdqbGJo0o+ju5ryRWt4GL/ymBv+txCeXebvjEyTYT9vg+uVYTao 2S0nVMxaMP4rRi+MOOf01JkxD42vEFU+Ha3EXwW31dlHnn0YgFOC0dtbOt24 83jXGqPyIST8q65ctqcJpOH6R89EcuDw7U2ZbXUlYr37J719u2E2vmjPgZ88 RPlZ7K3vaYcmf2/Y4oZamD6eorRVE/3HPmnqH1yNmue3J2hE/7u/+LnmQ1gp VIN2lQncoUDwnbZKow4dhpoee+6fIaM+0qLuP4rOPByqNg7Dk1SUpFIhFSUp LZIkySMhSUVJshRFqWxJ0i6pFEVZQvYkSbKTLftOg7FvszDGmEWShPSd70/X ZTnnfd/f89z34IzCfS4o/spGLMNOxITJp684Pwxz86ZFna0MGOzvIym/oIMa XXHDwjsXcmdDun96Eb5C+UY/a9sOwU2n2we/cVDwNPpi3utm2M8/21gc0YYI yxO8vDPd0KiPPWg/Q0f1rzVhuaJNOPFw3cINhCeEdjtFHy2hwtpkzpxPmiWQ WWst++5QI05I3VlhoEBw9JnlaZlD2bD8ELMzb7gTnrxUr+/ihbhNcmmMtKOh Nm1du6UmB9aaUoaNpTFQWHlni1MYHaULA69LZw5g1FtukdlQHRwuszKuEL7d sbbH0eYPDdW0ENfjUrVwsxlaz3zZBJ+Nmn9je/jINH65IXw7lVjH5rVtcwhf i/O1mnOZyJVYq/KLP4ehVKQ09f/rlzoh3+94fyF+robes1OibOLj+3fMvrOg z5pbOu3cjEZJCd1LV6hgjfmGjC7kQejdL4fFt8tgabt065Q2GUavDO8NBeXA 6Er/wzCCy6ntOXSl9mwcG39f4XRxBN4uOo2b5/FQX7P4R89OGkLtzmuvsiD4 RVCy8ff+cihtywp4MJULnwNr4tple7Bwq9WXcsIr+3y6WlfL8fHEhux0ey/B JXNEAgv+Evtb8UGFTfS1tWBmX735J5TbyPTnfW2GxM3i5qdOTGwxrGg98IoD /QUXKnOJHq0uHnwWcmgExXm+8+6MfCD88ig3yzQPAVOXfjEkif2q3bVh7tZv ID3Y7TLZ04X6PbJ9vx/xoUNdLdVcx4XAmAVdO5QKXoHdYxrhXeIju0kJ6t1Q 8N+waM+5ToQIW1w+eIaFtldi8s/5wwi9I7TjiQkfiTXfRx29e2Ei23Sir4yP E/nZvUf3D0Jl272zWd8HkJS5csev12xw5CwPl3wj/PXrO8ppqTp4jsoRQ9KH 1ISV67lpDeAMHo+Qmh74//mO8vaFRXDpiJgUIXp8PKl0SUP9MCbY6x6cfs1F 4yhbb+ATEyp7ejttHlOg4erKKD3XA7cl7W9OSLNg7pzxI5zI2clPlt47Wksg 51u+qWUhE5NHrr788LIC7v8a9WOOUkEVoc9ZtY+M1IebD/KjmWD9lH//8OYw 4lO11rbIETzfXeCh/bYOMd7XU3zLuzBjpyf2hc0G+QnXMNx5CH3zip8o7WWh +N3QojL7LsRtd/4yJcJCbqNDwdNUIg8Xm/F1TlYjV7xA/97fYdw1bTP7aNwH gT1VcjtauPC4OXnN5zEHAdKXa8J0CI/dMvj1/XdbGOnO/DqzrwyarVdHRFM4 UF00raSayUWcXQ/t/AcOTFa9epjCbYO+tkrl4kVkuBrUW27jD2E0Rybj3WwV xNawPt3e2Iu7swcNH3kSXum1Yde+6gvQ9NRdt0aG4NEK5l4hex5YLj2Uyt8D kLmsum8yOR6edEnf4rIgaN27tzJ7MBQCsRPXLg8T/qV0SNBBUQNt0xWLBVRY kCr/ZdXhxIDcQ5f7f9t6YHtS6pTW5yaE31I82HCcDQXTyLdvj9Qi8VPzLH/J MCTOP3si+K0VpJXSuQ6GvlAK7vxJLsgD58bTt/EtTCTfZF6JDGJBhPGBsrm3 CVNHyxZbKQxArmBw/RqCG4SapOK/rKmHUUrHGgsRwvu1dHzOfs6C3rmY0loP 4lyZGpPHw9qRWrqoXfEAMU8/M7d7fBlGZhyn469DK9yb6gNnBwbA09NwvbqQ C+qbt7IXgorA21uS1WU+DJVUhcmK6iHo3FSlT+D//3OVEVH0LkGHWk5NjnQv ctNPDp9Y3g0dFWH76NOE149WL1k71g6HB3/Wfn7fBY9kk9mzwQ2QaK5OcVUv QSpXdXHF6iz4ff1oO9TLgQHj6bqRl1TY58NL5h4L3ryl8rc3DmDZxfJuW2s6 Asy935bbpMNzufgF84+VWHZgZHR5BOHH3zX9dTIYBA+PFpfm0OGStGfGdUch TqhfjX8Ww0C57vY3Cw5TsfZ3E9PmyAhYNx6wDzv3QOXiNmlpXYL7ssZ/UeYO w6lLqqnF+f/XiQS2ziki5uxBfgJ1YzfYHV3b5lrxMb47JvOzdi/IkTER8sfS 4KlvUXKkNwo6qxvlSl36EGFnIRhpPITi+H3RoxNvoKWkoZR6pBnx3wZKV/9s hX3ACte1hF+Nr/KM8+0dhszUdtOUqBFoDpvYlKoPwmQ6UvS+7TDEWg+eKVas RNTEcoPfEhyIPBmyHdzER8929s6i8gFszY0xPlRA9PlygwX5DcWY0PlVEJzD wV1m7JNNBsNIKrvT9vrgIFhNx1ctDuqFkGVA60TXCCQ2mt5yfV0ME8bZm8vt WIgPevTmrzAb4SeMWt/pc3HFwd1rx//vf/N28XkqZwhUjlvLzZJ2uLhd0Qpo SsP2dYrJK9N4CH2z2j1PdhCC5/et+/ONBXvXgqE4fRa0zNZRBRcUIvli+8v1 zgysXzP/qLgi0SOCnq9mf3Zia+rRDM1dNIhf+7g7QLATGnNrLbP7+jGZlJs/ o9iA6sqIOdVPmSjODHd7b5sOis5D9TsiRK46/gg6v6IUfiucLvg2MqFjZPm2 T4AMg9xiwR1En5mLDK99Z8GDhENG1SvzSpjMGVUQihoCZ/cwy4bWD16Z04aH uhwYjYT1PbfphNJZ0e7spEbIfDGfb2WXjVmXbbfOLeJjvklcjjzBlaMCSsE1 C/JA2SGX9HEJH83CnXsen+Eg1XHzqdjxIiR+re7ISO9Hegbf5M0WNtau9F67 MnoAuavmvEmkVoNkK64kSP0G7W/bhQIdmLjbf1HjmRIL2dtjawslhhDjrhNY O1MFrb3Wxdu7vsHaxulmXU0KDCVno3iHuBDTuwB/q2aMNX1/EaRM+LNw/B6m ayEUYlRDL5wshuWy8+lcvSZ4HFM46d3TQuQFl3Vu+UNY69ieXrOmBwI7/Dvi 2MS6XHSf9DrOwOhZ+puTh4gcZNhMJ9JGELN7xgY/c+EX2tryfF8zPPNahgXV MmG/d4nzR5dKaDmN8tofRSMixn/Tgdp2dIg5nx+eroRg8OvoOu8hlL/6lUV/ y0bIhoMLXBwY8PiV3moaS1zHDRyvPP0UM+4Ju86uoSLAxeXe+5CvGN0bfpa7 vARGS0wiFP8yEcX9cLHOkof5dm0fyeFM6J+JNLKL6IbRGxH1X2cJbzvxNj+U UQHrvgzz35xeCEqN/tjsQPCW84RDsBkbKjE5Y2ezyLB/NRS45GEL7NettPEt YYPtffnk50IW1Pcxvhk+oWHydIfmXbNOpCbefhQX1YvwwZF9zg4DEJWmKt5y okJG97o55lIQ8NTsQcYU4YfSi7HbuAqkitsDesppCDhi9+FZcAcoJ0SkR+bS oSD41HtvfT2K4i6YnCfyLdF+fXv95wo0r7hmNmTEhO2HvD9urt0g32UO9i4g OPTensOC7cQ6ODhFJ2/pgQwGg19ZxaBIJj3DeTEXszrXF3D+ER55LSh86V8O ehJCJnwWcJE8V/NmayQfUT9nlDasJPrZxibs0nyCqyOM3WcOjsDleTFD5u0A mEvXGV8g7sPzj+u2nDPBKJ98qh62vxmvF24NErxPg8Qnlhe5sBOjzaZLPr0j ruPlE/+MlByoVEyGXhbqgc/WUqt1AxQUv29g6DnkwYGX71usw0Ctf9rPPUTf pkaL2vQeqcTWCPmiNmo78tKviUml8UEOaWZ6eA9ihvrsKr2kFRLvTgm33+0G 59HkueAMgns8zyaG+wzAc+x0zuDtVIxqMbZEz6Zh1Cb/7QfVYpDcry7/2N6O ghdRlEeFbTDf81fd6hgfEaXXW5eup6Kgsa3Ub5IMw8TJcbO7fSh1pzq3ZtMg Ym0srj/bCbGUmqzTZfXQ+JDa9LaKC6UNu94EvymEpaCYg0Q4HZSf/rNtzmTE HDT3Tn+Wisl5M3O3D1EwUxtv4n2ECrXwhbYhoWwYXXR8ZmCRCrNta1I0JCow 0xw7okt4t1nxlQDdJ40I75GuSn9FrKOImu3C220oWOhtf6CW4Om03rqzvmQ4 6U87eF2k4S7nk+oB4vzUrj64YbEsAxf/Cuac1ST6fJ7YL4YMF0aPexnm6t9Q nHEudmIOG/GBjKAVhFfHCJL+zAY2w4wk/zjUoxxBehNHIi+1I6TlJI9M3IcM /6ZAqUgiFMzZtdKvu0AWfa9EJTj9ilzE/L7OEaQvqw2SWk1H8bEIlbu+eehQ 3D1cuacB1Jmu7enRtXj+Yr2QiQwNeZOV0BzlQOFQ4MVZ4XbcbfrdPnWzGxKC y6qsnteDtXZ7Zv7pauRt8dOTmz+C0AZpucjoMvgcv5qr6VECkvEj95qCOMTw 6qsHNncjOy1yzlxi/0msf2FGCfGQ+DddZxZFQyLz70qdbXwUNx+s2ZQWALOX z+hCa9iIWecccMQ6G1FqowXblEeQ5/SpWOcnH2vv2ckO9DHhXTvRIp1MA2/X w8Gx6UGMPprvyrj1FQmk3RaPxOkoH7bKttzWBzW5R8sLpwZhNFjWK5feBykH 8wvtAVQMCJveX3pqABMa26NymENwGNpWdOhTMyoXzZUt/0Z4/BLHV2me6RCt n/7iTfiA065DtFXJBLfaXLh5QbMdnvyLsVfUGnAiK8v1nMz/nx+/f+mLVMxW nhmbOU9FNqaiXQdoULG9dODzJA1GddL+VHvinPQYOX2KZqFnIfPP/m2t8NDz ihh25cFz7ux1negIDCyh1S+62oXnbcLLP8py/n9+fu0Ukf8uWhv961/14RjF oLdJYBgx1577uRSNIPFG+fec/Gas7Y1eULmNhZdqDp8fiQ4g4q1hqdVbMlh/ zqRTprqh6m6ksTF7BNUrp1bOtBPeuGtP3NexfDwfszC5RpxX9bxIaw/CT9Qy 6Etl95fBjxHNPbuGgVRx991ZUd+hs2Qf+RuxXg6fHi+zaCZDZarkg1wSBfpB 1oNzJQcxuWvo5eFPTSDz5rnmFDJA4msN3VQqRfHLyefHUivgsCXSr4PHB51z a1tmDB1t79taOs6PYMBAvlUjpAujJlt2pSlUQG9x4eHAPD7Uak87f9RvhGeP XWGT6DB84lqEwvzLMOqkpiU12wSZ7O0Rlx52w734fl9sDQ2VgaYJpn1sBCUu E3c5NQTPx++ET557DO9dRwPXefRASyei3/ZpHdy0woQyuzpR9OuHvpAasZ8+ oowgVQpenn3YnPKOyFGHMvfdy3pRzLG6H3e/AtWyXHh39sBexaNZPqAN1etO 3sp2pkNrpHfx0bPNmDoWb6N2jwcVtdIrD/vJ0N5xh7TNg/BExZPO6xkUUD8m nJ6c/AyZt0unPdXoyHQ9endrUxPW3tn++pkxwZn16tMH9nHAUdPb9cenHeRz 3X0DZl1IjE/9/FOYh4UaW8uqJNkwEU9W39LHR4Lqt/vCj+kQ3Pnk65fdbLze tWpE7BMLSukx77cTfCZme03VcpAFz92Gu0o/9CPkIydbaAcHpLl7j54c6QDn 1iljvQ39RG68WNMkR8zJlQPbNd71onb7rQcP1WhIsY3eM53CQEDv55sK/3ox 8+vWTc8JPiiOwyJvWujoyAzIc13RBNK8O+HhniNo7H1TuaaEhpmWimU3GSOI aKt2W5pAR8yd4prP5dXQKhne1xsejJk2U172IzJy+3dsVFfoRPF44D/t9z0Q oT3ZKDlEht8HK+PzhN8lv+R6X/vdgRQbY5r4KBWpq1JKD6jmQGuT1cVB4Qqs vGO1434D4cUB0V1lj6uQ2ilT/PFQBgJqf5we+8CH09KP010ENyUMH2vwo3AQ tN+uwfZRK7Y2FwQFkZsRk3Jt+ckLX+D3wviRJ28Eyru6bEY1uJAeVM3piGuB keUV796n+Yj5nB6z4yUD7H3XDt6xoUJ864tDDmso8DTK3GCbko/UqZaCuiWF 8LRe8tYwuxvm/RF/isQGkdj4zy3nYjnitr7MHfjKxlmn9Er/fD5i5ml2adsm geT3btoMj+B6qzxaPZuPZTNFBZRnbEx8Yv27d4sP/Q4vS4HeKiSf3qR8fDcL ARVdn6znMqD1ovHP32VfMPm9qOf6gRH4tJ3q1mWwcd+a1l59ioYkVam4uIMM yKyN2LJ+NB6s4qN1DawOLOuao6S4mI2OkxqYX98MzVS1RaGSNKhNGX+WGxuB 9z9ZCVcaF6NRvgp//5ajuJyy9LEOFR4v7HglDTSIXYq7GHCjCnLL33YbXe+G 9KrSArETg6hPc/F4vYXotySqQHUGBdtzj72QqiV8VnlFqFf5BZD2vthJM0hA hDtng+LKNkxW9BxxJeZ/+8f3q2VbBonc8zhOJ/ZJJon3faN0C9bOktYU7BmG 1tPKjQ+kQsAp/iJy5nAb0fsP3nufSYa0vIr9IykWJEhMrg/Rw83BXawcYSoM Ita0Z9zlYnLbXpIurQZuvYo/ctuaoBFxemfEvx6Qm1g6pI+tSIh7Y1RVSpwH sr9vsBMX6wWnVb/LsOE2NU9Y34Dwh6tbuoaqyyFx+vZBnmsXIl72jW2Y6YTJ 0fDU7Y0cRO3668a6z4HYK1HHoZYi6Gc9+xkWUQ2RHUazO9f3gzVm4xx7ZgRS ceSzq45w4cF9d/fcX8JXW7aEGMZ/A+Vo1zbDS72QEbhefCeXC5ffi0WKCtNB lvzXv2Hrd8iIPeYU1H0G6ehgiCT7HWJ0P4WUKrQgpd23aWEYFfJKs2z+GNGf F64/fnD6M8zIOUGc9TWgHvgkcPhSCtb6poWtDaGjusnlnYNOJTLLus8MqpCh rxqZoqtOhvjvzQ9Kbg0hdGTg6HqxYYjavsz8u4YF1QbN4gUETytJj716tyEd qT92kowiSxFDmVeSFF6OKdPfsm/ODqL4jtBT6T9xMKqXvykw1gRx3Uonta8d 0AjXnv1Sy0QMP+DZqueNyI28ftk9sw1UwciT2960QUrH0P93JA3W5XV7H2xm gOq4+rVRRyLGZmkhGv8/B9pk6PfjrEbcvfzxrIBLJ/Tn+mVeuNoAI+rfjv0N TGjtNn6p9oPgs9Xf443b6JCi/8yTnh2ClPi7qQWEf/V55my6ms1GAf3gSeHt wxjtu1/jW5aBuxFX+dyj3ZBpjD7a7Ees53GjIrYcwdH2M2cfBLLQcb7ItHK4 A0nL/ZfkP2Khb0n+v4hTIxBfkMI5K9QLhbk3GmPXdMHMYcdwo2svzIJSd50Y 7YLmmh3f/poSuXRZjqHRSXDcJ3HewT4OfGjbXpWFlUDfTm1c5xrhWb4ZS2Oe d+HuR9/FS/J7ETP6a59jIw/K9NHf04Sf+bStH89ewIKHWnDHi+V0JIYvdFcm fn7qnB++55d9w8roULHUt1RcucRU6iB6w4vx4eGUzAhm9/rI6xJ8WCD/zL/2 TT8y5QrzZR92YSZ80wahy9z/n0MT1vH5M7Qm/C1Sd2VCi3ZQ2GIpD4al531b YzkoDljypUa9GHkaNne23hwA599xtyNpfSiOfEOxKmuG2nN3Td6FMox3ti4y WjGIE+nCPWMyQ9AS3OT1dGMSZGgX5vTPS4OPPElmB4fg5THvzQ8bE4i5e3fx 1I5OuLC6+j1XdUH0VshxuUkeYgZcmZP8WojdPPfsGy0L1jyzz6RHg1hp9ibs 4TcWXD5ZcY9JUZD65o3DV9laJB07WyJjwUb1L7PlrVUEl7aZLXTYmI2JpSE4 lDQEsdO17NL/n8NhkhgScZKDySVNyQaUVrxc+f2QthcNAwciPs7+//d7N3Wi SYaERyb9yEvpHwRd4ELc3L189KyfYqZvJO5nVbLIl2uBIDFrfni0+MJrzzfn 1ptMkNbqXFfyr0fBGnXr7QJN8NqSdlmZMoJlK/15mX00eDhsfzGqWgX1k03H JBs40Dc0LXZW6Md5O8nMxW9HICQVk2h+gwY/Gyu3kZc98Hi+IVSurhZtiqfv mH4i+mTtH4FQIs+N+m9kfNYiY2GYzK1bekz4XI+MDRUehN/udXOshYmPF1rb Zke1onzF7lmhNQTfbrEz3dNQAqmxdOeF0xxI65s7Gr9goPLK/l/l/TyIv1p/ rtq3HxHK5sPpJTxkHn0jnt7VBy1l3S+chjRoMfxuDT1swm3RVi2EMJGbqDiu lFsMuX/Mms86fVCW5pxRshuCz2ql9F03e0GVHc4YWpkJS/uAxd//doOi56Oy mtWP7b+FXryOpyO1wV56zvJhBPF32ik96CS8+/mmKMVWTEYyj+bP9MGj+fdr vccE36f0xGi7DuB81fF9fwkfc7FdpbPjKcFHG8aCKOtq4XJuh5rFNAuG2/2P Bb5phZFqh9FHpUKY2TaxpQ6NwE9iZUFkfhPsT59znn+d8Ctt5S/+W4cgIzLv qJfve5BWvM1wiaiH/UrHZtGjHRDNWzfHZwMDbkmSF8dsB1D8K3xJ2+FP2GLu 84cFPkgS92ZO6F/FwJzAhxLCRF7opDcOnqWByk1vnFyXj/vb9+zMFhyC+jvL j8a9XIKDFUqMJ9pAsTu1zzWtFxIPchoD3rTgbvzxjfLniTzunNdwtZALtX/L qrS8yMS8abPVjRuhtk075a0RHaYRZc5JpnzMLnzJ1rvBQ88kt3Z8ivCdhOb8 Z4LvUTl0KdHvNB8dlEP1LquGkWjC2qFR2Y+YYHVLRbdhKHXSD67ZnQmp1uSf CVJDYGfYvj13eAQFSg+cA1I7UF0hm0laWQHlqOYPBRoD0Or3p4k4MiGk+8v0 aQEdhu4NUk+DmmHyZFb4MrHuA1+W/jsu04vw/D1Jc2KGQWri5A0cyiQ82sp0 8wUGlJKcD2RrsOBdNjfW2oQFr16ptZcOM5FZ5f51H+E5jd0SXSPSxP0s/WB4 1ZOLnkXjd9poA5BWybhSntePpAv1/66cYEPCX4Dpca0aifZjv6uCKXgy8rVw UzAbLFW6Z8WNRjyXTj+7iOjJ8RdrY8sL+JCZUHqck0X0jkVnw4PoHmiz0650 vSL840jUovNSqcS+ZRoU/WRg4E1apcckB2YqNifli2sRk7aVtHdTMqopQ9vW iRA8uHfaQtNikOjx5/E3JImeilzmlGPUAkPh+sdCQWQoLf5YY5lYByM3/n2t 6nqQ7OYf4cneQ7x1drPwQS6yHc3dWqWJOV4k58GM4qB8eZ5sszIDHYHjTVd6 OqG1uDBe8v/3B7beFt+Y2A0fTXFuDuEIpO3vlt2q74CHorObLKuB6PdZlfOK hJ+/Gu3UvdeDVK8PJgpnMuHyJEBCxpu435G7RzsSkwkPnKu6WoKL4qfs9LtD 6Yh4lyZZsGyA8IUXVq+E+uB98+YN0pJOGF0M8M8wIvjepFiuVqsUt5lP86aK qBAcvR8ppsFBfWnATr07DFQvtvl8UbIBpOMBS3vus1D00PPYWzHCb186aRZ2 DkI+5u7nR9s46NmocjpRgw2BpvLNb+8Rc1E2UaR0nfDZz0p75K4Qua+/00n7 EBeGtyxft1jwEKTErblh2Irt9lkBX/eNIF3FYqNLFgNmCkGqesINBL+4RM+5 UwmXDdca2gsI7jzw4tRBJz6eSNv9OEnlgho63lrwgImC+p3r9EQ52LJ1C82B 4F/v2PaHMuwhbLFXOHeulQaTXN3Imc+dYO2NFVe5XY+AWyd2J+V+R63fsudN wwQfWz9V1pszhJ4zHlHugS2YrbsRx7Il5vTNqitaX5lYptHtu/ANG9t9mm+p POPCYIvD3ZNRxPoWn0/7MFKDqXtjX01f0tB31GFeE4+LsXeF5zfZ/f+8c8Wk 8GDC884zn3StLoXto+6mvRfYCHhxPsX1ahUMRiPn2arzoUCNNZJwLYOKpGi8 g2AfSDNGXlLJLSDRx4zpb9txV15Wzr2sA5OZdIk9Kd/h0hebVy9Yi/T53mZz mngQe/pjVYJdL7oE3nu89SE4mCM4A68SKO2g2k1/68TZAVMXHnG9UgZ/SNOE x43ud1ml9qcSbEpnhWMEca41Xgfk5xQjZqFKtyUyMbo14qdXcQ9mNo1O9Vf0 ovT9ZM5qAQ5UX2r7JxB8FbogWe96SyN8XjOvcVV7oEPeVdIwRoWEes956Y0d CGAPvu36VQCzuGE/SREelJ787iwu60NHgvaN9y/KYNnT1O9mTMP8pYucrIMH oNN3as6HP30wOB722MOUjfTbV88Vu46gjylg+EuTg5h8Ix6teAASn2lSe9w6 kWu1cKtzQCeq+etVey4Ooa3rstjr0GH0GHGe2sZyIdgkM36duM7x6xacZ01M GFwaPL1Fh47Rw99bvWbo6Fr3Zs/uAg7ic3fR9wf0IPTH3IY3ujXo28EUdD3M gV+2hewssX9yByoD+Z4cFKRY0yvn9cA67oc/KT0B+u8erF96vxgSqqz2I7Re uPLNIofSBjA65VXVvrEHWne41rORZbidZkrSVSI4NfH5dac95bBfN/eSnVor Rg3mvmpob4PMgWeLHVf3YFbSyr8ueASJzqu35dzphbXo49txUR/gvUqrOqyi C3KVL9+uXjUIagzF4yOx/4KVLN3Mx8ScCOqtY1g3Idnby4InT/BPt8KehZwB kJfO85XRp6DIbtPjc7lMXGydmHq7mAOFpdpZz0t6IcS46FnKb4SL9syloJjv SPz5PJHcWo8ZO+nQVXe6QP1YLdSekwi6rlJK5DbC25c6zITmpoJ16vz7xnwe tv469GOJINFPm5pDF77kwaC+Un7bPhZCdZ+adD4n/Cv5ejnTMx9aiU/y3p1j IKhwVTdPqhWkyfX7Q41uoGhvv8pcYRZu52hxXZ7xIDQkLBAQ0gd1LVi3LRmE 2fTBF3muTVAaoh3kuVNg8jhSY7ifBSWGxqVZmzIo7Rs8ZuVDrOecq58+dTSC 2dqgkryAjduh55h5YXy4VawyMkloheGU51TkGSa8h/cult1N5Gy19JnFmUFQ KWu8FhnZBZ/I1o/Du/qh9Nk1xFO2C0+YzyysgoYwUWVyJ5PJhLi9vWOoUSfR 902+8fI5cNlhyb5XkYnbc11tpF8z4SL569AWbyJfjWsPPUrqBKku4khPQBwU Qoel7ybyIZApywrdwIKWt1Q5ufkNbO/VfNnaR8Z8jW5VJwqRn4VuM2aOQ9AW chf4u58JkwbJEoHNhI8u+DU149kKBdHjbWWjA0jR57xsj2Qh95/BipP/WDDy YpykHKDDxeVU7aAIMc8uWj7qalnIDLJY9+gEGaQYD/kQpw6w1Kun8LkWGpsf 90wmEOd4DuvQrdQ2HNtCWRM5QvR0LmPBv/4seAT+ljRdWgt739TASg+iv1LO /M3UboeMyuiP94o0GGafnfyjPgDPDbyls3ZRIC84oJaaTkZXjPWyvpEBqLV3 r97RwkNK3vWrhY8HYKnktXBSvgN3EWN7d7IbA9fnx+1/T3Bjp5RTUzAxhwU3 fWZD02BveeKwGH8AyTqBCfujiX6XDu75KECGSbRe7/XV7ehI2pDiQyf8biU3 amdsDkRiok9f5dGQO3WhIzdxBLXGstrvPWnIW1xwP+8BFTGWgisPE/uuFbsI Bh8Y0FL8pLEe7xGxYKXx97WdUJINOfi8gfDx4fGHt4y7iTmOX2I9fwQh68St k80H4bnXo2j3+Waib0P2pPZ+R+4Nhoz9t0rkjdHTQ6/xkKqxr3nebAU0za7t yA3ggxy56benWjrOrtr6apDgimK/Y8L2C3qI3is9Z7ipAgoZiWb7vEtxZVHd x6tNQ6C6nD5m+SsLpI9F+x/KFCJ3z6J/lD3E/fhtu8972wVSvNcnJxkn9LA3 XKN3c7BVH6Pj0QPwEh7i/RmiQqukifb7byRGnd0/jsX1Ica4hrfZYAC1+oI1 4kQ+kLQmyIF7S7D+1bUPt9O5cGUEbf4TxkO41OnYS3/pyPwAbd8VfSD/vLC7 YHcbyIaBDg+UCH9L2/fr2mpivmTDUk3MRqC25/sOcYcBWPOTx6acK2C9w1fD 8kE9Uu+vviipnAYDbuPqwzTCk/6qvfKbLUfqR0M2Y7gMavfy1yw8VYEiCV3S ineENx05EDFHqgvPWQK1v84ModI8Iv2INwvFHZ9lbpvHw9MxWHv46gfIUOK+ SKm/g0SdyYqiPaVY+0Nt+bG9PLR1KioeKhmBrSF5Q5Q9kSvqJXPvf+uD0LZs qyC1Lsjc9f+Xvn4Q1l3HtUqftSJmfzsl3KoMK3u7306E8xFU89pmTIiM7K2y Iw2Vw4hzt2swbaCBfHpaabC3DXKrDylVn+2BIE/2uHQp8f0PVUQGNxWho3iX yxp2GXIPb9i0idEK6qBieLRIJzpOqo9Ly1fBPvtuX4dAF2ZlfOa/+s6A+5u0 P/QXNATE7ZS6cKwQpDNC693fhMC68q+NsXYLXJL+ZKmW9sMsbIbjvbcfWq/y liT4RMHaRuTblfoMJGuXtp9/3AP9peY6qd/KEMVadXCRCeGbOWbLfq+m4bV+ nt47YYIbOS8wnt0MIwdTDZIhG07f9v/O/sGBx1IdGY5IDdTTDvcezhtB0hhP HUv52PIYwbd/sBBkYHa5c4qYv4nzjlrhySgoOzy45CjBwbpVGxnmnZAelDCm LhiBSsK8WdljTdCXGLWb4dMgSn+Uu+U6F16KxYyeiSGMC1equ/8iPOBBen2T Tyv8wn4lvisbgqCG5s6Ae4Mg03Z0G6qSoX137l7Ns2wUuajImIpwEbTiU+Ty kxR0XePWH1fg//9641tHIypmOlY82H66A5lDPo38UgpMn2/RbdpGhcO14/UM 6zbcfeNplRPYBgfnfqXXEcPwGd8Y+2FPCZ6UdGZFPWLB+oeB4rE9DShoeqTQ HsVAruC9okLCE8WrHb5n36JBKHX59eyTfTBMU9qqcYbIe7J5dDCHAqbEgRfi 1zionn0eEELwgdh62yDdXXz4VWQs23xmEE6sLXpuLBqKo7N6FpyNgpp5uqXr CQ5kDg+XjCpUg6dMqZ7/bBgD7z5FKrBawEzIlHo+lwvPTXKXVtnREaK68s+g 0AjK3wsXFRgTudE1cttjiAftlQslF4gyIfIgkbmnkgIn//yN4w4sxFvWpdw4 2A7znTSJ1ZsGYSs56yzoxYe1b0COtFACqGfmH5bZW4zE6ecCp4lcoB5LU2KE EudwTgr79V8KMo8ffWqcRvToJeXfPl9qEJ//q3JLag888/VnqMLPMX6rSGFc lQ2jFXNmRHIaoCqlYtZbSOSJp4XbUb1giPXkrvn//zHMn7EHjjlzIeQdKa7g NwyxadX9R0+24UQMt96XR1x39H7+tHEHtN59WL+/6wu8tP10B+SHITXU8UmN 2P96zw9ZF8IILshwF6iMbUS9en5L8zEaNLpePQsTp4P0K5y5xSkBWskBztkz QzCvd26tPcTA6Maytj138hBz7YSC7ZfPkD8ayJ//hY7EZYnd/YaNKB6hb957 9Ds69t+ke98pgT1996OebSy0rQwqmJsyTMxV0efG//9+w+L2uvEdJUjasrvm kjwbyqzEy5qEx4R3u7qtpwxC5yhpkR+NDuk6mtHr/m70PNhu2LGC4FmVtWHG ac2IYS1KOyU6gKSAndKZLDrEJf/N7iT8PPWLy4Wec0OQnj4fGlPGA7n1n/76 lhzIlNkwHOzS4HJw7MY8vWZ0PY4XMhDiYOrYw0cLukbg0nLg1N9PDLiE21hG LS8AadUmdyEtV0yIKjIZhPcK2UcNhLlWwH3hR3vzN8NovGTy1jh/BPqTArpi pxqhJeHV8iKEDDcLK+/MG4NQOnljo9MeHmTCWViekwCdg3A6ldUPhw0f/duO E/w75Bb2OqoHMaLebo6FiZDwiVzVVcWEhvKxc09og4ixUaNvIlFRHEt9QZas hQT90peXxSME9/yoe08eRGPQxqxTd/lgN4nq+F7lIXRsqdbCPWUITbTbqPOj HwHNrxM6pTIx/rlQvaStieiRPNKYGgNbsqtGB2f4kPZ7Fd+0leh/uhLXxooC SkPZjRri+mW6b77IP5QApuViH0lBNiLW7Tko+6IXGkIZttGHuXDY++zFXg8m mJccq5/3DIEd9CxTikEDKX3mapTqF8LPP4dFrOYgZG2zakchkXt/I7lDxwag hTPlHp69UBu9sbWMQnC8zIKVm4zr4NJGCjun1omZpZt5+y/yUZyu8kBRORcd e5VXn1FtgvVwlafjgwGovH3gs8qZyE8C2Q+GV8HD7XHfDq9iCCicC7tsSsN5 1UvPmrcPY/2DHOcPDXyIFf+Yd21nDtz9783vtiCu74OCZb/HU7SdSqRvmeQh +cBOtyh2B4wezKqW3SmF37DjMr0NfEg8fj1Rn9sHF/783RcLvsM+03r9Py0K eoQi7rkTeST0IDakWasBSp/+ipg0F0DZ996W4RQOPLdvIl1Vfgival3K08IR DJQXqt48wUPl2HXrC4doEFna2mKQxkVymhXrCKUD4TodUpI6xP0aaK16TIpD vWOCUKtPO7TeZ9lO0/lQbYhV+nmdB/P376fRyQBb7kOUPJF7sw33MzhaQxDg HN4mfpGG2cNv9cyInlaofrVtMYkCLf4+uR86DNxv1/AhdxHeJsK5cPwfE3f5 mw8/OdgPBSfPcfJOKkivv6r883WEkFHDXE2CU6eCDriZFNFA7SvoDN77GePh h5b/udSL5PUv4cfpI+6XI3f243eoyebqviK8X+LH6NaWmmoIiEnPPsihI7fI PNPtazfu2xT82E+lo2A9f7WMIhmJnScq0iv6oeYuKZyj3YknsT37i7WGwckR oytY9SLE8cNhg+hBTGaZHXwh0YzE4DvVakR+UDvX6f1TqQa5Sc/VXbAILuNX ZSxk0yH2rPBnQn0+ynn77p0/2wmJJQJLlovxMOOPD4zuXiS8sXw0J40FwYw5 15x1O9FoqdN/+AIHC++/+manRnDTtVcdVQMNUNDvaXIbYeCugdkiEQYDU10/ 1raoMjDjIexxPIQGj7S877/lG1CsVVZ77nQ3KH93zCMt7wBJ1CHa8u9r6JsO 9MhXERzXEHx9s24wMlVGuRXLmxEq+qoprKEE1LhahpJuOyZq1GUHuFxoSTnJ VGe+hucOi21/2XW4+3p4Zl9hJ2bD/fiGEVS8tOJMbnGhInfVUr0sgufFtRNy x3I6ILhU6poVewR5XMHoV00cdEU/TjHuJ3hjfueznX/5kPtzolAvpw25m3s2 jpzqg9QDS3HIcyASYTemN0yDyaWm70ZC/SBttTNbdMASHnp0sxfHRrBS6IXX 1yEWVCT6b65a0QH7h3FrfD26oGDztT8quwk6w3OaQlqakdoY07/0PsGB2tHK 2YHxmHk11RXYz0DP/ZQR29I2eDBMbCZWVSLg0u1n1h358J7ojpI90I2FHvzN Nt/oULJdfFItogLVpsdlvqo0w5TuGW2bz8excAE9SgEPKopZWkpzh0BWlhNl P+hBkvE5xXQ5NjyG5trUtDJQ/3f9Vm8mFaNNb9wk68og1HpC1/VtKayr+weq HtXDez1VXvH/31Nm52qLH6xFz+I+fiCTDCXtk5K35HJRLeP8sKe2A+qC0bdr VzMweULzz+k7VZC5V6VrPzsAysLfmqcIPyZlrmWuEg6AX5xH00g54RVrToT2 VJQgyLFFy2UXDenLLJTf+fLhomx85KRQGrT+bXJKe12IRFLQA/elZFjPq3vi OIfwNJ/WiMOrUmBrfnz60W0+5rvyKTcjiZ72Y7X1SlWD3jRPalfdCOFX4Z2u l4dhaL8ulmnGh5Zj/D90foKGf2RR2j4m7PvHH1kfbUSueOOrbbp9kN6Sc5NB cK2ZQ5umj2YdxGY3un0/nwnOT8/tOfXNGK1mON9gp2Jrb6ZZamYL3C5nGEj7 NEPvx6ngYeJc6YTLNKmv7oS5mrCkZhwfAUu+aj3L4sF6+dHVdhQWls1X+fGM yNfSysc7/ixjEl5m8c2RmBc15mr5ybIGBKw43lg8WwARpQf2+/3pKN7sY/rJ uxs+/yqKzog1YaAybx+/vBemlTeuWRK+VSuy+5hSK+EdAUecYM9HquNd1VWf eSjQCXofKUdGuoUKX/DCCPH1ZQXfHasQMlKy+/M7OiJao46JDXQh9NIu6j3f Lkza5zgEybTD3VfJeRXh4cVGWdrHcnPhEBkQtjqG8Mfu62Y1ptVQVkvxZXMJ /wzYt9nhzBekyN9ke7oyEPe66YL1nUHErVv/tfcpG+FrPCIWX6Wi/Pet0bS5 3eh4a/B5zKwDQaaxx7vqB5AQ5lghEUeDvUrvlwPedGxdez9qY3Az2G6Ht/Ye oEFPagtE7gyh3qTtMv0bBaTUu3uUeoMxcMcBJ4soRH88mtN1oxvWP12zwlf0 QP7e9Pq5m2hI9J2Ozs6rAWWPk9KJOTws/DMv1yBphPDQBQHfFMJgtuhvKXkF B4ZvVvBFm3pgljeoBrESUG7fTw1cycTrD9NCP5OGIbi8QEB0BRsk1b+yJ8I8 cGzD6rP9RJ+Rw558S2ruQ0HcoLzaOzI8LRcZhcR4glr9M/ilZCyS17qs653H Qmh2iHWwdDX0jndPmsRwwbs2cfpdDBWh5LDggAVNoHNCJhRyWShNVj3t+poK EzGxJe9ChvCkRqSo/MYAPESFYqhxgzA3+S2Q9X4Qr4skLJnhIwiqevbRtIPw pVHuLtEftYhSdt848WEQHua+B0PTKbD+99dT3Pcz4hPsky2TqAg51rtf+DQP k4lr48WV+mFZLFzykzgXzBPnJu8yCO8IPmP09ns9SNZTQaSr1nDdoC7i3U/k hbKN0htfNsjzb09f+E2DWspsw4+OKgTcKrxZSXijYMu2L+GOTRBd9ZhZxqah bYGFUTWxn0YFSxIHvJtxP/zVJrcjgyhI1Nr0R5SGGJmcpf0HssFyUt5lV1cO 8eMZJ1JM+6G09uaWH5NViM+jxkXEDyH7vcuRN7V86NzXYMXR2jCq8Fv5vDLB iSK5XY6Xk0AV1eedVyPDz+TK8wXDFJCnT5fZXakjcmuUNG7OQ8xTI7dLNDaU 3NryKi/kwmRq+GtiGQcXKfW9GhJMUAqU9b/aDyNGbNe8MHIeqGKLdxYtLYXR asX0rd6NhK/nyN65Xw1Nt5hPaTIsWH7zT/pR1Ye4sjr3TKIfeqaiHwbd4+Nl 5ROmzhgfIga731YOtoNTfkkmMLoXRlVp+Sd0GSAv/uXuQStF9Z981s2SFlS/ C2j5NVmO8S1NbeOqfMj8zJtc/LsX4tw/TFb6MCg2jydOK1FhKJSYEXiTBj/t HPbhaCZ0doUFzjbSkBphWdm9+ztEySzzm1NcxGz7KKLs/x3JGvNz5wi2wvqX xDOP858huti302UZsV+/Q26xQiogtSfc/RuHg6i2rY/8dhO+PzGfukBuBGS3 +L1ia0ohfu25/fx9fUjX5EmuOsiExKT4gZPHalAtpP2nL64ZBUpX95hrdyP0 3q3meyEUaFrsspGVo8NF1LY/yJkKpedfLd+0fYOeaDtbkOh30lbBYXfvBMj8 WC2+9BcXE00WmkMpdEgYF0ZuDOUhqMx2QY1oN5TyS3/S1Qh+/9vOn/jyHVpZ JfcuKycgqHpj+t7LBMe+HHaLex2KUKZldoxINSSeBnQXJNZAYToj88OpciQe OiU5cGIIMWd38nbdzQQ9KCsw1I4FF4PAh2aKdTjrtriufTMVzV+cL//2Jvj9 u+jjXWUsyHDS9i4R/goJTsaULjFf4cyI6ti/xHoeynSSHqhFx8vTn6QceqD9 enHFi14WSMtOht2svgnql0PDD3VacPvQ+tjpADao3YIfNqxpQYfX5Uc0Cy40 Er+6WxB8xWlO5le8aofb3Lsh65a0I+nntS3Td3lQ9TN2/XOPA/tBlTj/1goo +cTX7W5tQ0SX/IIFawleXEtpObKE4LyOl8mHu3iQuDVaL/yVg/XhM0NXPKh4 Pcf9noMDFdR//8aWdVFg4iwg7hc+hFBGsdD7b0yw0qwUaceqIDZ1ffpyRBGS dBKyQrl0xE3zEzN3cEF1HHbwHv2EYtW9fynHG0DKijdl8qNAEm+YV+Edi3G3 n8Jmwz0YV1xIljJqQbx8PL3VugMFlH5W5xJiTided+bn8RARMjAbFkJwVM/U AyFpKjxn9yaRXTrgtnp9R5Q0E6WN5wSFfxHnw1li47T9CJE72ybmKDHhOfHw uGSrN/LWVqU7lPOxtTNcmU4ZwMpNA7P6BgMQD9mlcqiXyNcjQfMSQkYwE3z2 vsiPQcwkv5gWcmwByWJtIEd+AMVNo6+uiiWjsVbVwOQ8G6rUB7uSfg/gxNCk ybkJopcG97yguBDnKvDSowxSFyovaD4teciDu+q8x6OzTFRLanumTtUi94x0 jXJXD9SmybE2dsXIdTp33+gbG37Lc8+Z2PUhUWx5VWozsV+hBxXnLewCRebU pkmFXuRqnYkeJ/jKIELtwcn1NPRsaH86G0FBMWtB5sWQNFiPWpibkFuQTJ/3 hCnEQIei4OpjYQSHBD2hjBGcR9p0uCgm4yUyRx4fHH/VgYDgvnnZy8sRlK1w cWQ7Dyune6z8p+nQUvzz0+17MEJDU496zemG2i2ZCwZ7u8DbHWH1ypUKfWra y9Z15RjN3ZyYtiQLRt+3pRqY5qPU4obDj9PEecw3mB3YzYfBx+ztDwYGUfxw 78/5Oz9CP+qVq19GJ7ZomPweN6BCQkovwmYnF/KDdpxaC8JXu/5qP0odhIZZ cHXMYhYCfiT+Kt6WDWkqd8udOoLLL9tWtWl+Qpt2xbzwqRE4RHddU44aQSov snV3AA9O2qx9kwuYBC9tTW8PI3j45Gz2u3/ViHlbtktZLAm3LbKl18UOIzm1 t1ihqxULzwbd2/aCig6t4t91nmRoTMiOq3CGYe3lWdTympiTk3MDTh2vR88t KVG75mZo1b5T7jTOQkSb0o4L4u2Iz6QLS3NpmJS9rB60rAb6yhp3Pk0QOX4n q2rZ4Q7IfUvuuRnHJM7hHc3TKd0QoPP+uPmzcf6orPnJIAbytk9aFbjzEXTD nTk3cBDZvlfn+KwfhqZjdeQTChOk6vmQFzsN/bq6dbjSDxOyv4vZYg6Crl2S U5VtB3uBUL5n1TB8ir6unfO6GQ7NgU2hxNwLOj4L3rG6F56Pvlx4MB2M+Rkz vb4WDPjs1jJyIvx7dLstiTORhSfvhheJlg7CSOfrndWrCB65dbBPu7MbYtVt VqrEfYy/2Hl607cR1BvO0E9bdIOk9mbHnY5eiBV2Kt1KzYOZBv3Y9FQNXCQ8 9i5c1ImLvxyzev4R5/9t1dHMwHzElMxrmre4BRrJEwJfnxL5dMDsSqV0O9T0 ls2t3VuLxLD+gT+8UoidfaKz8EULnpgz52vFE9xmrVJUwSb278E+xevX49Gs cFDCypILGftv3X4qpfB2GeO+dOHD5OLI5YyVhM+G/NR7rZEO248Tq1ZUd+D8 vp33Nr1iI6BqeWzzvTwMRPgTmd+MngMT3btqOkCuGZH1Vv2O0SF+6wuNKugb ys1O/OzD6y9mK3dfokPdZABXBFnQknjzjuLBxO3NgWYHBpiwTjSo7PxB8MSe QZu9m0eQNLekwcaGAU62rv7tWgZEHmuO0v4Ruehj/OnAy1a4WFVNp98qwd3d 55a5nxyB5/KSi4PlNEioWFds02rC6Kbr+dtXfQfli2ad/UMiz+0NdS8T/X9C c8GWM/psMA98/r1+DQesXx8yNXX6EU6dV2jWRPQxr3npLJUP8ifrJK+rOcgu WPrQ9DYPL8XMZZyPsjHuq1NTc6gbOin5X8qvsmE28/xhZHAtzBbMd5K8MwA1 7bD1PhuI+56znXeuggaK3dXnZaJ9cJO4M3PvFh2k2yXNZctTcbcxtz71JhsR spEjq/SY0H8nfML/cz1mz3fEBRPzSvJSfCutdw/l6u89XY40wTrqwr6Ep8ko 8NqzfdiPAQn1ZXz5bTUo9rz0W803F3qNK17VNQzCMyeCPHwkAQqXH7JsV/Nw omjf8kfTRH+zVDRcvX1xzPHYq7mEp0QEN574GtKJlIHlW2Ys+fCRkTc9FVAJ iRcr9wrodaHD4oCkln8zPL8r9S3vK0ZKXv7zq0eomOzA9DuHYiws+zZhJMWA pUflzTsHCZ7UvdwVd58LuZDwEis9PtTWpT3qv1wJTmPxXrORJhgGPzn0500P XGzjbyYlE/k/7Pbzh1wnZor5rXP0KBCjv9oeFEP0y6bF3j8+VYIyp275EQ8W kh6+e+72heCG51td+zMSwNrqfXChCBe3HSuS92znwmTZsTs+xs0wXHOZVyvB R/qC30nt5sPQLzZ4WX+5A55Jdlu+1ZHRl7lHvjeTyN9HGR4ZHgmwFa2RSeDT 4LFC7VDRdBMCRmWbxVd2o6+jc/e7FiIfyu/tXDzhTPiv1unfXp3oC0r/ZLuG hfvPnh72IvjX4fCHWMmaQTSKGR5XpbARZ2cTo3+IBsuNNa+eJfXBUnxKR/da Kzpq1h1S8q+ETlM599LJYUg7752bqUz47jMSV21dBgy5usKPSzhIZ3p0FotS IVh5ao28VhtSXi/iv3ehwWVI90cgMW8+uapRgxHtcHmUEHDatB3idbF9moFt mIi+fZhiRXBfXNK55fNK4BX51y7Lj4Otb3bt/elHRmq8lOAH9y6Q+FVR7Rrt SDTqyxkvYkFsfYHHr4X9IG8eiFbKrkMb9WbUz1A6UlXHQrXfM5Br+7iVndMF n8GaWvf/n/ftebk5QrkfMmH3gxqVi+DSfStn96YqVKdNSSgTHG5m9uzF78Vd cK2NF2tXYGNy59kf5eJkaNXp3dea95Xgkhunbn/4ANsvzLKGxlZULyiOOpFb C9JQ7G+RhQnoG6T8tn7Kg6fjVp07lsS+fMxROpHYgIT8frbgRi5IkrGKtDI3 HBttTYi5ykToi5pfwve7QWBfzaXvfGhc3vU924XI5e1dqbvjH8N79fzCVH0e WGeolmELO7HyUpu6ZDUfMV+KIwRCCS98ZHI7MHYQMgqiJxr2DxL8ZaNqfyUV jdHT937v4EEj9kbGx7JeSEuRH8QMDsC+iBSe0kAFxUPOeHqqE8lee6ys3Fug ErhNYUM8D/ERJwLl5w9CbqF88sX/34f+Vtrhdq//nyNj9WEwmgOTlCGvJ0d7 YRmrUFs2TEffltOS/tY8zBKX42jFhrVWoqVvXyeCGL//Lv3WDmt1wYxvgR0Q DXvZv/IsB5o35u1c7sNCvDX59dYvLRidzH9SRcyd2op30XfP1cKPK660saEH pOt/W53GnsDv/Iqdec+5sN33xuKzSi9ORD7R2R/CR+rPlUdtDzQg9LHN6n9a TDjszlBuW/r/8wHH6WMWlYjX+nlv5hYHpBzxC+W0MlAaHykKK9Oh8ZJEcZHs Qarr+V3dn9MhaDNH97BHK5L5m7ov/t+Lbt6H1aWGUMooCWteyoHg76fWEoFU nFiy0bC2bBC13gF9E1psiF2Spt5+lgrBjS5Hjvj3wv7RxwUP5Zrg8GQokWxA cFyn6wNH1VrIH77QIsYnctDFenf8yoO4e09mSnj6/+diCBjXB7RCS96m/9O8 QmgsvP7pcBgLagsOX7JQoiNThCQyJjoCBeN7tnb1fRD6kvI5ktqAnkN5x/98 6oa+uUtORWgXpOUO23ccoRA+ieu+KVwE7Pq+4tUVwrPrD04a9xM55fRo1MKQ BXGfvjtG61vgveJf1qe2ARi53f7z4WUhtG7UpHILE2Ffd6ZihyLhVR9cdojc LIHPlpzfQ3nNMHXgrS2+zIGlqW7YfxSdeViMXRyGQyiSVkLSokUlSUjSk1RC EpIkCZW0KCRJlIRUlKSSEFIhadO+7/u+N9VsTdM0MyVJknzv95fLFdO855zf 89x3zTvDXzqOqQrboujwXijl+YhRPjKQE+RLFVpVD/rowi1fz9MR9pkezFVh 4knYae9dm0cRH5MgEOPbC8ct/EZl/IOwu76BZPCO8IczH39xpylY9XWXMTOf Af0V6/lSvo2ghH0p1ethP8SWfnDZFNFHcMacmIJqNmS3GvAkrBmG3n7pyPKn XLRJOXx41kzwtvzT6Kmmbrw+GiEhqsBGTVOtxAWvYdh+6z3iejIOniE7et7u Y6NE4q35JCcZ1HQrv9FG4vuUi/yp732OgM5RZk9bF5RrLhY0F1Dh5zbZmPet A3yCjnvD/KsR3ZXXydnfAW/eNIp4CRlcgQ90+99c2O7r1U1fWgCSW4l3bjXB W4vvXR1wHkTT5sf79gZT/7+f58aObV0EH/syF4jXQkstl/fXPYL/8o3V+F6R Ed9CRlj6CASa+9dZZNBh9ypxNOtrGzaeva0kw8fB/ENno/rQYWgyFHaN6hIe Y3j/9XK7lxB4eKxKMGQIEl7XV8pvbERN88fWv/l1EDEszjFy4EBo2yFuTUEb Vglu6FF7RnhV7G4VBb4aWCr4Vco5E+v3YuDTYr9SeKddWNx+lvDNMzefqrgT XFP6mHbgBwOTERzV7yNj0J6+/CaMQ4PeRdZDj6p30IuykDQarcWMdtafqu/t WPLmXZP1FAMFe0vfFPd2Iceyd59hBxN+m45t/jjQDuWCVZsFCT8xbjK/t2Uv HTUHrbzkdbrwJPm4gFAikauz9YYTDDp4eJpzPlb9f1/olmcvEv5/H2WrPUnV A1glKVq8/TQTkhVVea783bgze/frUCobfmUa0pvzHiHz64XLl0uH0TKvMl5O boLQq938WxKKIXHiYILxQWJ/Vx639l1cgrymGMVlekROcf3PLLhOcGzx1ffL iV6O0wr0793QCXpqVJ/mhhFkdkpn+X7hQCkHIeXNRI4MZXpqvWggfLUvgP9P FVJeWWuwRwlOyN1Bdyhrg9Z7R52Lr9mQUj4tvvU5FU9+z22y/Uz0e6JIQlba U0SXJTa1DAwi0Kt6V+m1YdSEsJxXpI/CdLyZU+tOXLfIX2P2HzLBi9OqAhXd qHAJy+R3H8Pr/LURjyc4mPF3fqXWzIHLibunkn8yEX3WombLoQbYqrvqnLPr R0zPTobDN2LeHC7yrCHyWkP5kJ3NMiqSr+4Xvj/BwrFmzoMkFgvkqU9N1Zdz 4LAmd9KXQcWcftk9pSAyklW05yMJ/5BlD44cNuFCVT50o4ktHTl8rfOlu1no KZ5mF73tgwB7+zPuj248CUrYtc+CBp03mQeW5rcjkketWp3gKLLbXI7i6Tqo W5ryCuW1INpNJKCmahQ+zrFBQ8TjStjU/rv1oRfGnlODnQQnl9gk5W0gf0WJ leWP8wFZEMz30g3nMGGnazyTFzCGB1pqIkLOxLldYMf7WaMOeqOW2dv7MqFp Eiv559AQEo7bZT6mEuec8kD/YSzRu11HWQoO9aiZ4d/H6qrCu451yetuEedk tLOCJlGFyMDPOcZ+VGgWrEn/cW4YmTdJJeQwJnqyM0v77QjvK5ZKpCbUQmDZ GcbQEBcRyzKX3Agl+Ffm3r7kRxSEjT09omw+gpwTK9qepJZDPaqqZ/5mEyx/ ng5Z31sBVfPq/I8En2Q68i9lWjHR1JCREJxGhrrut1TBzHSk0E5Ih5nSEdG+ b8CGOQynJf9MPuUwQO/drG87QfTRqe3rNUOJHD3AWSA62A0d1qvsqzsGMJVS eeOwUzti366QXdnEQFf1aTVF4hyYnHFkFFN7INAp05lxhoqAlWf7RcJJ0FMW jtUG0aPCLUdja/qgpOB9V16tFgXZQQZ6z/sR/Sx1EdOK4Boz6rPgPyOYSUvu v08io4m6wdJegsgFl3MZGxMIbiM3uQdL0zExum7Wi8h9F91tZ7dkkdB2OLio 7hoLXmUm66uelMPWaYXFx9MUlEzcGzCo74JmvacwJlsRw/hr0JMxirhsXfdI hUpoDRwP81pPQp9yLWXNUTpa9iWHrvXOhtjWL0sezhPecObj2+ricZT84rkw uq8QYn7zYmG5xHxI35BueKcHk3fvn+9z7YHkociPPHMDuKydupMWTwGv3Etp mUAKfE7ob+w+1Ytp7xySUwAXPldSO1awuuCUpu58cA8XJi/D3/OPUOE1fn5o itwMS9lPsdlErxqTJxi7TzEx3Z/w3lZqGD3ezsX3+8dgtERTLVGfjJYlY07z W77BQemH4UkGDbYZDeRdlWWYar958OqCdoS/COC1J7HAapaOXb5rFDt+n2ln NLIRp1aev7SQgiq+rfpZJBrq/JSPKC9mYWHUIcGN12nwauq69mpLH2aKwtPW vO+CupTPlQUXCJ4/zJt+dXs8cvqXX3TzZSM+XlvfiuCxjRGJgRseE9x8JbdW qnEQRs0qj9Ti6dgYM/6XJ6MXEzu2R7YeyAHfy3eHeFOboRdfLnwntRPxF4Up Y9VEHv+V9853vQtzbgBf5rNRrLJNNMc0GxLrJgV6fpRAYmx/UyjfMKbv1Fg+ ah+DwesBvpMiJAilvv215HERhO73uV/zIzz0ooUbz+gQmKcnxUdEaqFJunBM 5jMH8afWzEj3sqG58XSnsAMD859LJ733E76bOr1JqasV7muKZoZWVqDu7frI fZojkF4Q3nd/OxMB+/ZKz75qh0nJ5lT9pBYYS2bWHixqQljfe/7UxV1YllR8 r61+BPHlbo20TSRMco7FHl1AgdOrx71llVRItPBxLMPHUaDfaZlv3wfpbz+e 2NhQ4W3/SNlo9RhiBB9FZ/mPokCq4WDnmjaYy9X+cb1DBfkLr8oD1eL/P3cx j1abiZa28eMubCLnEp+fcxrkIkdRwzNSgwylGfvvRuID0HEvC1e8PgT13hfy wrzNSAl4KSiqxIHq8IvoLet6UBOt+2QuohOe0/NfJX0oCJm2fUWzboXY7Orb l9O7UBd60TZKaAxq8b7PBYmc1qu1upiZ04dJ/nf0X5VkrEqNjOmIIvzvU/T1 +Pu9sGxTVX3k1wmJjJZzDUYcZPqPPEmT4IJ779gu+zQ2Dnas+jZC9LKJG5/R D1/Ck4V/D5/JqIf0kJnjyS112OF8a3VVCgNa6Xlfm3NpIHecE90Q0QCrZR/3 lYmxwCO4JzzT/jLqWEt/rW0cw1T+VZ+LtFZYum3paH7IRsuec6mGmwmeriQx gyqGEL+qM/ZXVQeRK5Za542HEBalKi/FrsQEPc3nnso3CF5M4eu4S/AtebCm ocsTYVYrDOdyiD4dcpB4uoOOTDeS/O9fRC8Z/JSTlOvCTA5FRpnUgMAXv85k KLfCur54UUBDH1Klt2i5E7krwrrgbCfJgJXhysP6JwmOU9nbbe/0FjN5JB2B yFKYLr73eTWbAbMtKxs7U+vg5VNctWFhF8hVGmYVgoV4EHou4JIQwS0NUb2r 2l/BoL1c0XclBYH2e49NNIwjLIPr8/stG9Le+0+F81OQYn1n8TkFBqaOyQ1T 7ZjwWeVxrTqY8DeerScW3faD3d6jmbKzQ9DzKjpmsa8TEcsvvIhMICFIXGUq cH4UOnEPs1ocetHWXfUl1XocdvO2pcvsetDDkY6VukyGXu6VKg41FcZVqeLy Dk2oI/Od/jFEhm4/9Z1H9xgiX5uSZJ1GYfJFzS9PsAXUzzuv5M5SwbOySfZh bCCEyHPCIzcboPqtz74iawgaDaYH0oyGIULpvhW9gQ79UJwzNB+Hg/2bre/S RpBEZ5WF3iTmLDhOf89cCfzUMzU1lciQkFvdIipL8GTiAwZ9mgXGwhILe1cu ePj/bLqiWQqHr908VSuJdVn5LSD5WRpMZnJNF/cPQGtLi+j2ygakBigu8qwu xOTJRTM7TIbhoR9XH8jqhdeaY46jrZVIyrbX/OPBRqBokZHO8XrovhtwG57m wJGSY+NbNgLT+wF+v4Up8FMeO+80TfCISH7Zy5Zh9GW4Lgi0ZcDUz22raSwN ky5upmHPyTj/PKX7mR0DDnUazmoHqDB+mJuedIwGsy9HEio35UDrce53knAv ppSdDl9W78GkD8V4vwQxt6ZenVnvW2Ay9DD7bz8NE5syUoR1ipBjx+QteFmD cH/Wlo+En9neET9hZJ6CvqtPAncGcaGn6Dv3RDEacZzQ5z+NsqG8s3SCHTSO nLQNnGeznUiwedTw9fswTAdPNkgV0pA39Uved4wKd9PJpFMHS6A94F5fOUHw dJL70dqnJHh+PEq/sogDd0ErjY0OhMdcUQ/p7UxFzQaF84v8q5B87Hlj7E8G jIaNbpkvZ8ArY0iOsa0T1mJr82HXAc2k+wMRFkwo/1K42ZZDgYZQ15NN38jo 6zeSPJ7ERc+JHsXQ1Y3gMZl7iJQBvEu9T1PYRJybDeL9N45nQOweVziwZgg9 aRnGP2ZbYGGf4HdfjQ4v7pM3a0abMMPrsmfOYARtCt+9Bo4MgzTMGRUQHkRP UFi37vFS2DJM3iXWf4bnYNurHIth3Em+9Ow6kastj7rvHJTMgjllsRS1lwmJ xfscblAbIXEkse9jAQcNy5Zu0v3QBtWNf0YebG9H1xJFucUEtzet+zqYfYKK 6DuvC7pusaDM32b7tpjovcfVlctaw+GuW8AcjqqGh2Fq+StxGqT7NosFb6TD x/v5RlIQCS0rFEYy9Mqh13oGtUsH8Cns6LvGGC4apqONlN/1o2y/zsdTY1wE bpvqqlRsRLKPYeJPxzbwzLpSC6c84Rd66qTERC7iN5+fuG/ZhgIdb5a0Ygdy jihyv5iPInqssCLZsws1X13sBl8xUPdmqsa8kFjPnK2JW+OewynD1kXPiuCN 3aTK8zks+Kz+PHzwywgchE7U9BUyIBGWuU7eaQQJbRKsH5PjSK4WNXEfJjjY QfL9/af/vz5dRupwQgXIG42KMDEGPd/YPTWFGbA1PKlafroTVxN1Jp8952Jm c3xT7FwFzF4Pb3tCcG7fIov0v9FkVB3po+8l03HZos/n4zyR0wMv1RZsIXrF 9mvAA1MuNPhDD3/bTodTqe33L5QR2ApSXj7TrydyzL5Z7wwZIjzKzWo1XCwM OiuQkToKIe8PgmF62XB3C9y+eHkOxPgWyX02HkbK+SvZ5KFR8BxxK8iOyMKd tdvf/KpkIeSNalGjQS+kZMQ0S95Q4KVHbavWqoblAYbOMh0m9PyOMeo2vYTH 5Nual6tYMH/oc7yNwoXW0IFfweiHbVpujXRoHHyOnO8NLm1HJsmDN/lxL5zs 90zEtlLBtLy25qJ/Ofymy7fEKLYi7FhP5IXN6bBetFVJYCkFPTtHuP0ZlYh8 J77Kw3oM7zL2VgyvHkaTc2T91EIyJnSWd6/4244K3UhxqQEWrlJnbJVa6Zha Hr2e/L0DtgVj1MAgYu5vyZfdcSX2K6anazxxANblC/9SdfoRwIlu4I8nIUnu x4H7O5n4JDNV+PcRDQdLRWhs7VFIXw2ozGvuQtKzI4Hah7uw6s93i8k/VIKv RBRYBP+EGcU1bX3YCAH1TEf/lE5wb1qoq6TQMXcg5FeWOxXWn6ijvtX/c7Wt WtnxKqRXPz/d6MbAwQqn4/w9bGiN2NgqtfeAeWPkpYEVFyUdW182KLTBrPn7 fbvPbXAPvXRG+UUa/K5X/F7zLA5aufq5e/KaoHRrsXZkIxdTZWce3CPWUas9 2tj9+xA8VvCFbY5rh0+hrKPnqm6EbXCovvWzEzz9EAidakENn2COBeEBqn8+ JrpKDyLH2Mr+6Y4u8Hw6diL6eDbixBe+/JXyCWzLRV2HCN+3Psknt4mfRazH HxW/BBZcfLLmNnn0IEb1GiPgJOHFT/5Z+HbS4Wf3c++pfffQJdHcPUzwzTt5 IVtdLS7EFjdmhZM7kb6pb2WpCwc8W9aWagf6gDSjqnBvO9HzzzdsZpp/gfnZ q+kqhkOIoJqFfFblwthL7NqqcA4ezIXZOksTvmFL6vq4LgdezwvUlll14rKZ xyPLfCqkjWatzydTEJvO/7eqaQB8ykEiOn0lsFxeuYY7TuTytaPB8USPe4oU eoS8ZUF9xeU8V6IXDW62imX/Y+L1X5nLSoT3SD4Sb1LwGADpR3XgrzQO5g2H uGrvWGBL9z5zdh2A7Mr52UfvGJhgn1A6o0/kpX/doMCuIbwzMa87uJIO44Wa Ca3hXbi6v9gsPpOLzBt2zkUWJPQYegUJ/W5HT/CFmRU1ZFhMjfNWZxDekexz 5ElPIwrqpg/EE31rXGzr+rO+BdJnOXynrAmf/hnAWHOoGuRdimn77QYQs/z8 4b/Hifk70MhXbVYDEmEgbwNH4Bf70t30TDvymP/Ujm8m5n8Ha//N/ALovJfk /fyKBel/VYzmndkID5nU/0T4qPu6VBfddWnwaBgNYu5qQbL+2Eax4lbEvmjR fhXIQUVJrYq7NgcTWgphOYGD4MmrGxddlIa+XrcFivk08NgVrd9gPQoDX2Qp RrRD7c8krz53GDyxIrOC96+CKRwRFNdfhbpLu3umK4YxMTu15cK2XPAsMbHx Okcl5vD8U0v5NOg9ec9/g9qGcHOhfptZFh70dJzS1mZBKelojpZaBxyuBTSf cWFB9VrEaZ8OImc6PgVH7BnCHDNbzjelA4Hq2951HKHB//N01cNB4rq9I9fr uCXCz4Yi31VG5Mgr88ELmwch+XCDK88iBnjHNHfblTNhLTmc8f03DSFxU04f VpNRcUZV/i6nFV6z28z0yBXom44z6PpHw6qch0YOFxhI8e2suqhKgw33x/re teNwtP6ntE68GtIaSnsWq3dAvdEw7/p0NzJv7Xqnk92Nut9/F/97w4HeVc+I PYopcNyz7cWOuAHCD1eU7z5ejcHhkfbomlGU3BPe7anSAb2LXru/jNPg9Ofo mN9CGgqC+uNv69PgKBhyZ5E/AwJ8IwpfLQm/LHM7bUL0rd/xIbP5uR7wTCVn DD1ugEGiwbaKzcT5/qX2MiiMhsCs3MkAwlc/9b6fDu9kgXv88XvBFf/fzyTD MhJ/D8fLrWp5dpUg7WqJucOl4GDd66PZ1cOoOSOm7VdbDRfS8uQznwaRqcMX yvt9ALa/k207Lo7gtelOZasAwkcPzPEyOsoguVtoZXFeFxjVH6myE3Tw8V+W 8vVjgT5n0huzmYw2ccaR0B9Ej3uInmr/2gfjdds2/dlZgY01V79HLR5CSen6 vzEfKlEiKC/zS+0zelZIRm4trsTc/QitKO9eJL3Nm7x5qgVC1f0+h2UZsLze 3ylvRPR+4U0Nvjc0KGypndRNGUbOG4o8z51SxHW+tWjxGoL7/ofSIbsLIGTd 4f39Tio6lNuKmzKH0bVskbntGAVro5bfjHMfR7STuFrekx5wM0Pfht5mw++J a4LArQhMniiu27ZlFCkxUiv5r1HgvkPqgMLHfMQNx7ss6+hDw4nnV0ZXdsNc cUp+qrEDYWWUvoDNXXhSlbxx5iQZPJOufrJCXxCo7M0veKwBEwWrkh/eZMGJ eSZDxWkYgRvSHucJjiG1o+4t6UsazDtWbt7+rwsVqjfSru0fgYFaVnKhGgmp bjExVyvG0MbrM7x5wxjc4x713TejYMZ5p6yNJcFteqI+J907oWd344RASDVa DrBvujtnIUumdE3JWSbMDA0yxtva4Xd3YleMyRcIuErP1X8j/MYw+PNRch38 +NYq3BDoBNl1WYaNNhleFrc6N9/oxswtcyN5L4Kfegt+XPnSgcnCaIvWRjps vO/1Vl6hgs/j58rVGv/fn2nbNXnsBSQUXf9G/erDk4jWY0lTwzC2pDzcHctF WM3GKZ2nHGje+7PqbX8vmHr3Xil7l2DheyfXWvthaHju06x1IUOTL9RZUq8P XgsXUV+w6hE0qtSe/5hJzO2RulfNNHjUv292Dx4EPfXuoX1JBK/dzSj1XUeD X92/I00nMxFnYxJ+c3sx2K9ObrijSEWI3vdQytlePHiQ/f3rGANCtbl8fTez 0LDShWtcQfi1XpaZdyBxrhccY5fUpqPl0mEFof196Khsc5LcQ4K+3LiTtisb nsK7xL61jMLC121V/yzRQ/VXS78THCVd+zahhNKLEp5Fo2+6I9G3OFqusY+O jc3Z3DT1IWyc2NKgu3gUEvQHrosZVahJ/PZGMrUZto+bHujJFyCuazf9XUkc Yh4Pn4x/xcXsnPXcLkEaUrO33DXJLUJWm8TnpT+4kOo5nEkPG0bY30/yEo5l MJD1MfCn9aPireZh7+IWSDwdcM7TbsTMB8NIbxUSZmPTmE6XODAZL13dEjAI ny17PR8TfWB9Qy++mjsOk0y249OuFuRIXaOvO0n0TJ7m5YdvK+G3y5T0SSMS SvJb6vx9qsD813k0W3EcKfBwTnQfw/n5RY/LZUfgEbKLoZU7DolU4Uvc5yUo ydU4vAItKFENHPhH74PE1hurN7X0oMQqI95xYyLIhj26ljGf4L55h9DHtE5I l/tEPbBOwVpFbZaXygjijj5W1NGvgPpERBN9aR7SS6rr39wchpCm//UAu3bo iVw5cZqYl5KJK6vkWGnoMT1YZ11OhtBKRvNd9iAkvu93tDWpgOnN1h8f5Idx OSP6TQqdCs1HBgP+Nh2Q+KXiUXiO8OZw/wOuikxEvGDXqwcQnKTU7bE9oAl6 cwpLfx5MRwfPS7OtiyhIumzfyNnSh7l7h4UeEnMQttVuuFzpG/gi+7zsdEiw bj54d+xJN1LPfWp87JeP6F8kf7X3lVCOH4nykmQhiaQbrUyqQolZ1E/tkG/w qIz49u8xBzN/w568DyDDr/B8lOhRNjLbGOe+cLtRVp/mnUKhQPf+x3c2A8S+ pSvzht0eBe/yr78uaI5Dw+si/0kLNhoyz7TwEnwXw0uNcc0exVXmmdWeH+gI y/L5uPpXBiqO+/uOBzKh7dWg51g8CqoUz/piwxFkfntI3+HYCx+Ork3zhwGw 7U9Ev24hfPGm4/NSOYLrfzEil/YPQy9v4bTgBgam9ou0RbqMQWjFVQVl/1Y0 9QoIXmwkI5ovWLXzSg1sTQwenOV+A/2Cuv3vmhbMeE+nLO3pRbRz4tbqWDKW xPBbem4n4xj9UfT5G2xIrNAeevamDsx0o3OWI03oSfjXO/CzBi4h2h98XOnQ EnqzYXkYwdFxZabzaVFwNP4j3JLTB60pravBLW2INbm+4UbPOHiEswzaMtNh ++/J6o57PYj7rCPcIjKGQLN9vWX/36/93tjwj2M4Ust7O48lE8/T5ZHRgN0H RF95FZ13jYzM6p6REA0yNn5PHy3x7yL2syWFdqQH0eIcP59qJoypy/bbfB2C de+MXbEN0TfTpBcPDzYhZev2fR6E9849eH159MQIBP6sf6v0/+v6BHW2Ps1k gz7ZedLYuQ85WY/uzBT3YaLma+Liggq4dBhplY12QOn7qft/zjWBbbEzPDeJ BnKxkBgKh8D8uf/N/RniupUGHqjtyEDZ3+02g/Us2OwJbO35QgPvs2L+SWJd SFoL3fY5k0FeyZts4kZDx/c1Ph5sFs6v29K26xYFQuHPd49ntmLCjrf9+3PC x47TX9XM1ePd0Yu1/KKc/3+PK3T0bDnavrzeZzzHgdjey1ukt5GhnvK4eK6D DcvsL0vWZNaDJ4K38n6TL4quu17zY9EguU/nGcZ7kH78nuKVsjFQyfGjM5cJ 7hPw61U/GIdp/Wf3mHvomO/fvGG3FLHP342GTsYw4KEfujRagAWxa11fP5Yy wLg9UFTjTHh5EzPyNOFF3n4dj/7/vB31HQK6VsHtmPJfJ8QyZGB25iTriAAT Ia8Dkwv3dmPCLbnGPIWDiFe6m5/IjEH21OP2qb5h+Gnahacfeg+LpFGhmGdE X3u/W7fvUz9WrZS44qJIR1J973BmOBXmsSGG6hIUKL1da2gzRMKSFePxGvxs 4vwsnX7+//srB5yQ+XCUC4EfBx27wxhI3e9jznYqgNWKmLiBQoKPndqEDN4R 3Lr7ygRrGRWmxlEVS7cS//6vbkP8Mw6SqMWkA9RSSP8RE1S4kISQGyY5uwhe 0PvMqBvpbEbVluFHfK9H4X5YyXj3WBdM2AovpgVJ8A6eE11fwUWB+arjB/0p MHf2PZYe3AOhB06LFiU1oKBLI/5ZHQuX1cJLg86yIHiqbNeU6TCU/B/Jt6yq xBO/BOd0IQ7IXQWtlQq14Ak4nhzo7QR179Kch6+aIbG34e561iBSPT+l3Syv Q8Ai0+e1aIeB3r1FNeo9cNqovZ6XyBsFlBaIylHhte6ZSVTbAPzCyXdSh4oQ kiinmiffC4mLw+yu4DIkm5VsfHqbA7NN7kNWbixMKc9+fbe1Ew++DrtMHOfC R+Rpcdsmwq86pgY5Z76Bh5nUt9IwFSXC7JwZpxoY5d9w+CA+jooKt70LY7iY X9b3WmOQyLeIdfu+x1Eg8UPq05m6NvhRzTueXSV8N7iHLaNTDD3xpcZG33tR 03BRQNB/CAI2Z5/mv6PDKLI6zqWUCc936hn3zYn5Kbrnuzy0GNLzCksbpD5D dus9EZIeExO21rs3G3eipHvbHzXKc3h9sbLqFy4B2X7diaN1ncgs9rzxoIGE jbYaB68QvSiR/9ky91AFQng0FKMoRA58WGMbFkXHwfAguJ4m1tvhwNnE1XUQ WLA7//WJXvjXd/JuujuG5NThsPZTQ1D12xXO5zoEviaLyw+XVqGDs1H1wyXi +VO/Jn5TZkPS6Umf1utWmMvdGC08T/Su8v783hdxUDLr5DgMtkFDMNaWg3H4 Pf387814Dcg8F6J99SqwsFll1thvHHHI8XM4XQEeiupCE+Y9+KmGT71+E4ZA 6yxP3ZM1aAqIevub6Bcpre2WNmQKNCtjKzsWdkEvwX4f76ZkSB+8P6vFbIHW pZyyS36jkDLxFbkaPAYv2Sf9L3d0QFqvV3W6uB2k1G/nVpePYMlPU9fej2zw 3hHZ+0Z3lMjhSxVpbqOYUlm1/V8FHen06UsV/kzYyXc5JAgMgIfb8JYyVQb3 u0PZZyq7obXK+OzZPb2Yeb8rVvpjOebf7zt68QsdLvFKta2+A8j8stc735/g MPqVtixZDkp+SYzzKrKRd+vcTLcrEx2791SnvSDyanW/c4/SADzNV5C/fiB8 oj85Z3jHCCaO3G5PjBoCL+97y97QXqSyzr23lOiD3Qcy2WkJE1k+HqedCZ7S 5JqlBYmOwGdMQ6Ji0QjMDnnSXhulwXbKPPvmm2F84tdc7LeN8IBHMwZB+2vg 1PzVcIsZGwf/2Kll9nNQUOOZsz2FOGfV38cnegi/jXPfw3vaFEkyW4cYFXW4 qmOe8OIJC5IbGmptm5mIG/zkYJyZgFXbFoY6DIzD/IZOPzToGNTgKA9tY4PN u+Nn14dWtNjEnJA5WIvUtWqHhGm5YJic+hi1bxjSN0R+HnZKh/vyUp3DvIVo W0aZanMn5sX1q0wh4Q+mMyP/ftpTwHPfRHF08Xso+CS8MlMdxZzBnzdXn3SA +eeZqixvHXYcuVxlTaWj4IvKMVJ5J5yc5V/lEP/Phk2T8yV42H232MNsq0qk vh7n0+WtQZIic73Vin4E/t5/Yi6Uii7D9W5avONItb9tfCmQjJKglRmy59LA PPHy9SfeUSSt2Du+/mcTdOBEzxYieu9j9dYYtRHw8JhSBK/pQ+/EqmCV9kKY eCzXlyL8hXGh+EV9CR08G75XuUpzYD6Zom9J5LPXE689H1pLkWT63HBrbiWE PBv4Tf2JXLrtci38fA8Ec1X+1d8fAe+vr+I/3xEef0jt0FUPNrRVkj7tGGXC SeaMV1QBDSZzedV6D8ZQx2l8l3KHBQNFgUVeRVyir6jbbqo6wahzWbJO1hjI YiLJgwap0Du0af1HiSFoTb6cuj3dhAmeAT8djRZsHPjZVkusW7hMjMNSJQq0 vm8d9ZMsR+pXvVk3jQYIMfeoH+OvwJ3Fm8/2aBK+y02I3F7SCOmEA2d/F3Fg /QLGoWGjkL6QtuxFbz60Bpa8rDGugtBTjYf7m0tgMyQ02SVNRo/KDRbfEhqU b9y0WEpjIZk2pBFWSOTM+CvZQyY1SL15uO9gRgVSD9eZ5mUVw6Ymaf+BJf9/ LmWBT71TFGo2PfBYs2kYczJh98pHWyAo/+e6t+sIFAqWC65WIHrY5pcl2Zro S4cWubf/34eUXB0ZWN6LyMseQwEsFtTzv7RyN2Ygxse98lYFcX6eTVIiVhKe lOGkZRNCeNtM508n8VREv39Gb3jaCVWpypT6OSKnZSWbnFp7QOq6kyxxnQKH 8h+eBo+J3n0sUqx4qApB7sah2oqEbyhcji7WpeJg6nhLeRMNQcF/Fy5+NQKl 0amMHYqDCDu1jRi4EtjuFDX9uasK6sGBBXzTVPCEx5ePm7tiJjecfO0UCX6+ q3sWqHQhOduxE5cGwLrBK/z5ChvuUqayl1ZmoOTF7HzyqRfQC+2ydGnKwbTU 9tUN0xRY/HUqP9XDgS1XdwfPJgoml5KVjG1GUbHNoKZqOwV6HZL/FM82IqBw kueoDh1mbtwdTwleLhAbIX/6x0GIZ8upltmR/3/ekrl8oBeCcnLTyRTCS6Y9 Viz4Wg7NC79t9NyGoXnDLnE0YxBixjmeQRsHkawZ9WZd1xikT+SUGFOJfWTb mZYdKsHkm3pdN3mCHz+ve5Yg1YHA1/bumXsJrjhauffpBYKHbp0YHrpUBLPv Rx0PhzVBIOD6y8efumCg5DCVu4yCjj0XyJde9IPv9VJrHX2C419d+qEvPgj1 +fm5/K5WSJ66NbfHdxDW91YnXXXuhtC6Bg2p463gLYrcebiMDKVLze5/lrRB YqJ3UEeHAf23XSZ69kyo7TljWlJO5MGONXa27ztwbMQpUc6MyBsfjxFXc2Id fkQnBruwwXPn+4Om+ywIHBR7HynOQI7GsNqmxwx4CXwem29h4eDPy5M3bpIR acVb3E7lYMLgpVbg81SctxsJCNUn1p1CEsmNGcTUy6NHdBjEXBkyHg4sIyHz bkRrSSMFtqs3o+s6CTprC+4EryXy5HOR+OHv3TBI5cZb/39ePmuT40VJ0HQf /feoloGG46dl+BdQEHFRiL1QdBzetyuCfbVH0WLmEvA4IAMhsgb2wcQ+SOza y5oPKANXZZ1w36Nx1FhFbVrsM4g8w9KAn8pcmBmXDs32E77GZ7lgQoEJnpLc tIPTw6BqiZkdMqBDs/2YqIoiBy1b7lk/X0fkRewV/rW3G9FAqr8RbE1B16KC NVvEOai5WN6TROxz0uUd1l+rRnCHFJOio8qARNpKhVvqQzA9VZassouCihdB lvGfekFezKMYnZSEibPiBxKDqCip8eXPFiZyPerDr9uDBKf+nJBcLF2MkpGg +M8Ln6Mp1NH6YvU4kl5JHVloRcNVqe54uedszBwo9gjXY0CMZUTfS1w/YQYu uwiu8jtH0/EciAXfPTdP1YgSSPSInwuUomNV3M7Cv3QK4jy8hc6tI8NkJ5vC ONoKiRvaMr7XW2BVOJPj5jmKmru57eOGlbChDm6RLR8F41Dc48N7icc9EK44 /ioEQmf/HZPfQIFYsvyiD7rdYJ391PDXg4OG3lRLPhvierfkjUsHc2Ebr17b 3RaPyAslV07eoUPyMXfdevl+KE1b7pTZWQmTvMafQUTOBwU5/ly4nIM7iWLH F71iE36ff7WYRQV3b4q0Z8U4ZnZ6ydQEVRJ5PnzxaW83JFbXtYnWjKIh+x6j fyMTEhsf6CT8JLwhQeO9wjjh9Xdq39qd64SWiUttP7cO6m/ObbqbmQOeZtXc hpsZiNRtdX8tRsHBDsmIraJETv2w+eQ2S4bZtMwJ1VU10HPYs8PZrxqBa41S BOVZUJp3JB3eV4bMlacOLiL81uD8jKVeBsHDvhaj1+3oCJyJ8zKuL0HXnmTb nWMjMH9gtS3EYARBITD+VTaMHZqHP2qrs2H2vPUg918hKg5Z5evdIvLO/eKl d7Y7oVkbcUBujInImxKWubu40Lnw6a+W0hhmVonnhzmXoS7oU5bERsK/7u85 oOIRDomDz611egje0JMo+2Xfjei3JGnV6CpMKN0VM3g+iLJp8f25AyyUVOx6 WPG3DstMp5VbF42DvXR7qO55Yt4SOH0hbUNo2Ob4N02RBNOPy78yZulgufz2 3P2PBW1an4RlMx0eZ98dFS8m/Pjdype55eUo4XEV9HZ/iyaJV0+1kjk4puZZ 5NpJnNvwTlUmMxw93U7PJeyHsFFsqYflVD+k2SGRa3aUI35nnYzmEmKOXt91 EqK2gJuVnec3RZwz+ffjq0eJ6ywUvfhhtg5kwQcPi/4Mgf70ntAOYt6S3JeH pojT4JPTEvhRtwOD3SM02g8m4mOs+A0InhGan9qkcSIPWqEDC7f0NkGKL6/L S3YMSnO6CU88CN5WWm0tEsXFEp773w1ekjFtOjO8chUDcbqq0gJhvYgP/7si RmUIFd+o+3deJ/rV+5ZrskIH9M4eX/i9vwlMwT321pwy+G0eOq6pHQz3xqvv d06XQqn8iqFMVhu8Uu3l/m7qho7iWUs5nxGkrpPLLk/Ng59oXuvPvngoUbbX Du0og8t0y9tFYUNoS7FbuP3eGPxuOb50PvYaJocvfK7MJ/ZvIMPg0e4OUP2H KnUGOci5FjAy9YINvt28O6S/E+f5ABRyxSIR/cfB+FpFNzSjja/WHxom8lNX dPT/9+1Ur20x9Q+CqpvBhMj/7xv3wam+uIELLd8F2+zzetFE/35W8hETRTEF 9KdGBIevuXXH8g4TWrzag+V17SBvEa5xO9sKd8nZAhXFIlB/GvxIJPLL56Bf ttpoD+jO/L+/G9Mxc/TDYPCKIRinO8Y+ySLhoISZ9Ajhd9bkW98kWglOTO9O sBfLRVjgh9ojJf1Y8sfQwFZyGIIBlzJffKXC0fuz9dM1ZASqtOj+MyV4YtEt kVNEv2ZRYvQ7/oyC6qT+Nv/oKJQ3v3nkcJ2GWMFm704i76xTvKpK6DTYRgaV 3iB6h2fo0LOj64cgOc13+qYEE3V5M1pHj49ANUv54rH4Vkiruq4+xBsH6dMJ SWmZQ9A+JXb8qTXx9Wd/slq0uhDG5lljQnjfjmo3ppEXMc9W+1ufz7fB/L7c s0UbWuDvx/I+JDGOHO0zC5dGVsJ4La6215Ri7cXVgQZ7iT6c5Yg+b6pGpuXu OWpjF7TePPvoxB6Ay2Y72QvdQ0iwPXDtmCwZLpt4QlKz+qE5K1+2u6SV4IOE UyK+RI5GReZuZnUhfuj9etUogjvv9rR5yBL85TN4evWTQUSuHG+fLBpHgKN3 /+HOVqRK8J3q3JQJoY3DauWuGXgwudnz9HMuUg+FszrH2zHDFNF33VyFq/yD pb1aoyDrr/bbplSOsKKTdHk60fvl+zq+Zg9jZsPH6pC/LVCmjmXWv6XBMjHz 7PcOwmdf/Ds0KM/G3Nt1a1a0tcJuhbi8oWULSs54DobMxUNi8+r9sqGDKFkQ kij0vgA9OcHf1meMwnFCyqK4mIYai2xd1coq2K36fWXn7VHocOM1Civa0YK4 RTpag7gaKfWtJpiNlganY5L7R8HU/+V/W6yU4O8Ic7CqwOOIIoHlZZgyfLkj iMkBs66sfFa7Ei7lvny+Ip0wLj3Q9EaqEeTLs3VRH4lccaEO37eqhh/3vkG6 cARKZpK8902MoOOgXc8y7X4IXauSCYlIgzXJI8Vw5f/vA0oRCmAOwW9wKNjl VyWkuhek0qTpMP/8QcWF4BF/S+4Fuv0o/H7+au6/V4GJsgnz95mNkHCgMvOz aXh3v5R8YOsI4lsPzM4Yd6LsZd7sx68ULOmTnYh+ysCUrprlibtdYJIs3GPH S9HCNnmcdomBEkPTXBlaKj5NPTxEO88h8sHL65JKPnhkn1a/+NGM1EfBzYeq GJhc5jWUyeIi1lNUndFG5FD6udJzWzPhMmfXV7WegQIHs+QMYp9JRkdj74YQ XHs99krz5SxEjrk7M0wZMJfTo5ynMyFF3frUnegrpjk/r2k7EzWsnXGz6l2I Wy1cZNn6GV7rdlTXZw9iTlU23qeGjD6HcH/pNcT8stz3MVpJECnYFBVGpsIg J2WSnTYArzuJN+o/jILn/ETH3+bbsN174rbUSirIFymStgRXbDwsefHMFOH/ F3J/bEgZxuV1B2xeyFBhZlemoVHQBrFEA98D0xyE14Ra3tzDgdKGoGv9R0vR N7nuvNwyFsjvNAwV6V+QaXAE92zH8YkZ+33FMjrU96y1Vb/LQPpXE6lZ/xGo x7otXbcmC+ZWkvE8vgPoCduT2BgwhszPDqXh6eNg/UtaJTVOBk+5asTZzWxM tG+6tHOKCj2T8JgvU+3YyPfgQrwcMbc7oo+J+gQgNkKyZPZbGxwkvW9NpxP9 PUl1X0r0UFazySRnjPi7xCHSncoGKP2829J2swVkZcVd3tv7YFzW/lokpQU2 i/fp7ksdR7RER5GEYR86Bryt5O6woTd0UVtzTxVCBF+uW7GZhLnTso8mZdgw fikv+30BHSWbzjjRUziY5m8Lk20icv5A/wv3FUTfuCyZ37qtAA6Lc4cuHSXy bd8vnvrF8bBaveYho44Nv4GnXmtj2uEneahox+n7iMs9xTSa+gr2cDpnbXw/ 9FS8rzateY2ZQ08VLoiWwraEc7PwZhdyRBjF63c3w/R3uq5o+zjUZcJueD1o Q0k7v+fjV1Wwnfqwx+ptBhzZvc9D5MagG33nqnTQGJbde3ckoZEJqrhT6aYj o5BY2Pb3TU0DImzCzA6d7UDsRXvTuy79CNKsn5iyH0ZZW+LOiAo2PBwvrVTe QYdOk7ftketjiGMoRuU2fsEn+AajeBwtWjVvJhXb0RTgiFoScY7CDC/8naEh 7MeWRPnOBrhfe73E6lk6HHs3yDxK7QTddfW9ypxhkLZPNOw81oFJLXuLUncO EhZtuuuyiYtoi1iVpyxivgt3re0iNaDkjeT28rlc0F+R6jwJz25bN6bi+5iJ Gce5l4veDkBCuah48FYJZsaVHx+bJjx4RrpYlvAkoSNz0VMEDysNPGp/HtSC hiZdU/LeNiJnXvedcBmH1dHHzos3jKHCc4te7iWiXwplVt+14cClJ+Rs9pph 8HTQ3G86h8Nmo/wRejoD6pmrdgnrtUOiWGvnWXI5/Jq+On8SqgGP+SaL5pYs bBSe1V842IHo4Cqj6S19EDtpWPhamY6rqRe0VT+Q4ecvwc5fnQ8T1m3/3c8I XyuE0FHCy8iLb3QermZCvSpCYP88HV5VqxjyBTVYy025XlJBAV1BW6mytg9x kYEv3zLq0CKeJ7dlXwNiZ1/Q/MPboDXw/C/JgAG19sgVXXXD8Jx5+tWHn5iL PHeLdm0ufBqM/sZqEZylfe73csI3eP8lT+48PIoqRasaWtkY9I4s6It2Swaf qai6dkYZwg4piPj71qOkfLxO7983zITvjfhpRofWR4HzGsR5maqLGXiR2gbe urujnT0D4Fu+of488XjzUz11FwrpsKSvE94iOoxUsSCdO/fb4N8cJbzakPDD 4ruraxvaIOTiZfi6hYyFz28ZK/pRUZRdHyutT8UO8TajPX+4IN9JuRIyWQN/ h0sN27U4kJoIV6mbZsPKSrCUr20czO+JbTebW2GrlO+1v68Ug84eZz4NDWNw tkLEpnsMZSfyhCk/CM7RG1Ss+0NGJsdTv9F3HDHXTnuR+igIJ1ccWvuEhha9 XbPcfVkgrZVecOMskYs1VdeaWpphYCj0h5+Y442jwqLptb0wCL40vE+mGw3J KQ21usR5WkLJ1j0/BLPMS96e7oUIM6oXufu+C+ky8U6zQiNYwl76Y9af8O1t r6+weDthXUD7cNx4DGTd7F03F36E+6Uxn1upNDwQOEg2fENc//GT8/qrxpF6 SZ//3aJuXF39x6EpmvDC4cr9hYcqkXLUYuW3OyMglxwQtn5DQaToPvmKjhFM PGMEy4SVIdVkbGNEfzPceWW1xo+RUPCv/rawMgNzJ39d1Qtlgf7o0NtkgXYU iE4G5N+moSzwsVqH+BjOH1Q+evElA9KlkmlhWsMokDF9FtzFgV/odFN15XtY CfZLLw1jIa75ltYmwq+ZQXveeOpXQO9vSHl3UDEK3uNRoRENEe0/bntSaNAM 9fNWmWDAL5r3VfeRbqSQbG89IRE5r33YuPluLnh6v6N9Porg+gcTd/aP4Gqp x/amdjasKV/tkjpa8cmpdyE7YhSZdoZUMUMaZHUoxWsmGbC8J73nY2UdNL8t ObnYhIOZpPMuTYcJP2lYMRTibgG/esuonOgwLCy/lCqby4bJkur6lRF0xFUh W/d4IiZ4joVfsmsAd5Xw8b5YDrxLvp58cYKCJvErt7+5smAWu0909+JCMEbW uHRGEnk/cUM85SVxvnZ2rz4hSILW+xGrl+dJMFjWrXlyKQ3xY+JGuDuI2ZJP nVRLFhLKi+S+3CG4a490SWsXF+4n7zbUGTTAixLjMEKc10yRs//qw9ohdH2X 6PbuRrjHmzV83N4NM9brHWfEGuDJt/DhxEbi+7qkRVSdpSD5a39E8aMB6FLM KJeI3mxQchR95DEMd7VMybqZCihdKmp6IE9DEev6RwfaGOK/dX5bU0TwpOTk jx4ip/1zn3E3+BFfv7Y06oIQFTUOffbe9wcwo0N1WR1WDt3jKkMLXcjQMXll 8yWYAcE+/W6H10Turt0ivMW1CTwByraRz6/A7OWe4ZSUQiSTHv2zL+xGnOk7 qsTecdje2L995fNx0CUrrv1cTYasGEmrOIkOp89/5l3cR0AfV+C570o8r+Uf ggr02dBaRtKT/DICLdGk+JuFnci5dGdFWTQNjqfnpGLaKyEE+yF+n0zYPmbe opF6IBYjyHljR4JA6qb9l74SjyeY0njmGgnx5qJeyi7EeaSHdn5ckoyU7MnW TawxsES+NNcS/Zvc8jBhsXsPLLWy6AWyNVAQyORW2dKR7Lq+MdGIicwWeS/V iD5MJx7L37ieOOdz/SEj3WGQDpzrUd1eivlAUVN7uXEky1f93JQxgpzu+3// 5pbD6lbWhqfpHJjcubFiScAAFH5yjNZcHAFj8aWUrW6jMM+eUdCSJc5JzCKv d7lEX5l6k9c6P8f5a3IfWrPZyKTnrzgz2g2vU30Z2nGVEKgccqn40gV1u9vl rn1tcNy/+Ff6ulr4vTkol97YDaNHPb2xK2kw+PrLfdF7OujSHlJ7PcgwsZC+ tpBBQ86Ul+fxzzTMfLAQPX+oEXyJRZ4NS9kwZ9/8tPxeN9bqK+jE3+dAj9dB 93F8DFKmhZ3bWojnsUPO/IQxBe6V0Yyo0D5EC12xucNfh7BXnm27XzNg/fnx v5f9JJBvXkmb59TBK/3YqLJfE86bVHHsrJmYlk9z6mwn1r9DvtUM7yHoJWXi oUrM06lMXQpzDAZFU+s/PiNhyb9dBeLOI9AMfpmgEDEEpztuTnMNZLgbfL4v 9HUQsr+ntU/eYyF5gee9v5/JEJznE6MRXju4581Xr1YOwtYPTK1wpKPvXeyB TCaRJy+6vh8xzYKAa8+BoROjsF1bJFWwlPhz15/0eP48xO18W6tTWwG/U9E3 5Uh18HtWuTN9bSPWrnZbH/lkDNZPD7scEODACxty3DYMoebcqATPYAtS5Xib J5sJL9nperZ38xhcxvUD6yK60fM4ZzRcqZfIR2/bFB069INaovXPMSH9Ialw kSsFBdE7hZekEusgKarIt6kWE3tVVX01uDAVKjt9YJjYr86SnT9ODaNGZJ+u imwpeJeqvBXP5KIk49x8K5GblhvWZfYSfOtjurRWjDuMqWWG2vbnOBBSeuFk UpmHmLfm2v6bKYizXv9F8mYGMrdt5pVv4xJ+t9XpyAUK9CeO6ixfOgJBI7lf B5xYcHz4ulA2sww9LyyN5T3aMbWGW+LR1IowlZw16TF5aHiVspA3tAten/X5 JIsY6Dl5/efxqi4ErlomkzDfBcsV1vI7/1Ui9dcy9qEHNUTuuR3N7srBzD2h UP+3xHUe97h0Oz4LYX+eXDKZHIaEq9Q8+SoDZIrdC+GqUgiUPTTW9mBAj/JZ M/lfPqJl7M7K/v96rmdnNRx+9GK6r3ahtyYTzCy3xmdhFYhN2P5sjVovbM5t O6Z9hwnZwrHvG1VGwCMsbch3dQxho1lPsseqoBawdLPhJQq4N5u2XtlOhYKn bpq9AhczjZ/sxavKMVW6OEKkvQcd559Gvf9IhvaDB+EmR2homHqjP1hNcJR/ 73UBCy7Obz3+hk3kU9g28iNbWju0Vce9Ky3o4Dkyb5+4j+D0HfmLp/jyYbOk +/K6EywE2pNlToQTz1f+RnXHHBmkDcG/FZbQkeIg3jJQQPiBzsLn952JHsxT 19XNLQRLs+yOgP0IVNd+3uOzYAwdNZ8uvSV6Xd0+Zt22X9moWSke0LCWuL6j KW78Jneh6bknQpHSD/fn9OP5BIfHtpdp3pjigB1/RWijM+EPG46Ycx3b4R16 I2FXxyjCXn9qGuwmcjSlttJhsh08oQJka4sEWP0QCrVfxoBETZWQXmcXpoot gt7NDyOwTv/0NsKv+dytVovTmhHewq8fIcOFl9lMnsZULyRenm/lpnVCqWft /YOMeqjybPuUtr8d7lZq4VkB7Zh4Yq0hmpoGdrebd+zcEPSoEvUNyhXQWOQa yEcZA13J6LWiWC+MkyNfrXUnrnelW/OY/f+/L5bQ/twchaS4I1KUx03QTNk8 OMzshbtwzop4jQH4mfz8M+hQioLz2VvvFnXD/czOqLhAKnjeJq9XOOCNjsn2 hWctxtFz+NgZftdqxB95uKSrqxuBZ57efcVPh1lek6h/JhMluZoRr1IyIOGW UFarPIoOtVNn643bMO8gPzzVyQLfLS+FjlvEPu5MmL9nPAiy4XqBSNMuBHG+ LSm7MQwn7kXBe4uH4ccruvnE4mrYLTvq5idAh8YC4aXC3xlI+iAlG8uqQdi/ 09uPvCzGnXVBrB1LxuExobpXW7sNDc9IEzHHxtFhTTWM2UAHU2XeT+52BQKd v3rQCS61eLxGZcKOeHwNYbfAh5loMC7cHC/AgvvdxRfblo2ipOJ91BaRIli6 3c1/NkpDU5ltmuLtEVgM8vEd/8ZG1uSrPYazbHjd1MoVi+2CSXWZ4qN1NAjx S/48fXwEDlpn8jeTOLB8cENASJAMs6WXwxQYpVBL7Nw5dYQJr2cRgTmHKmAr uuHEamEKAp563TJfSMcDsSqF82Y0xMqEIDWqHx6e2nEJHzohELX0N/kAG3y9 C7xXDdYj7E7wo8e7mmEnGrizfd8Yah4knb7RVoNw51gn350ULPEoeho+TkPb N8dD5uDC8li1nPTaTnR5PBmSec1Eziq2acfpKniskTnmXNYH6aNtZ/VohXAI Lk/g9aNAliUc+Xf7GHSuym23/0dcr+SKF/ozLPDMM/U2DhfBo23NEeHtDMyL XNxjEctGwgm+TJl8FlJdYhbknidj9mBj5BMaDRbL9HUPTg1DuuHHQfejbyFx MlplxqkDlh938EjzloAbeJnrvZMGPsMwB94aghdbzjRn37aAY3CRSOL+FpQ8 /ldrPZMKs3dRc7++VEGIt+iWzKlmeP9H0ZnHQ9WGYXiKSlJJSKIkJEkqlVRu pCypJEmSFJUihEqiJEmyJUkIWUoSsmff92XsOzOMMWajEirVd74//X7mzDnv +zz3c13MnNNyxXvd7CjYXfXLmrcPwvGupKLkoXw40vbtW/ewBqE3sl5vm+sH b/bHV5GryfBNr3z/LHYI8l/Ldn2RqYP5LR+LvfmdoJi2X6/vIXytpuWewY8G NBoLyjJjyKBlXlFh/2ZC1Lj21AdxJoQ30U99lxhGMblxildrFBpMDY+jDZm4 bfWQ19+SCTHDMEb65grkC5xF6wcWhP1a14fxdyJWNV0Zuwtg93Dn1Y5BChRN c65MXGXDdFnknzK0I+H2kXXCBe3QkHp6K8aJgtJdRjpjhFfMnz+aEPWACgGv co/F7xk4cnWFSrATE5Ryb1G+zxRIhC2u00cP3I0vhzwXJvrr3ruzfqIMHLc7 9NHtMsGjss4HrIo6MJXSwxVhD8NRvbXgDl8vGk81vF9+fQSOlgyTBYwhaHTx 3G5ZHg3tbXR/Q/VBGAb9S9Z8NAl7kaaVbgR/lS7LN1L4MAjG/ZKS3gEK+KqU UURwhvufNKON9jQsJvc82x3BRYqSmfmcwQg6NjadTv1EeHSOaBJpVyCmsqx9 NvkN47h2gzb7BQeBW7YolSoT3LOJd0e6fBemqt4ucv7GRkTbq1X/hCio97jr rNdAeFVCLU+6by0c0x7mniS4yvXd1epMIjeDTR0uP/ozjur6hpjY4xNQXvz9 31r+dnj+urlFfv9rJMXtGZA4w0Q9NUnK7BgFKerHewc2/v9365FEpXUv4elX RD6bMgDLDtaF+kOZ4D/TnvjdehQd87+G2af7cb8x3aXi8RjMo4uopplDRF+s sU05UwZKc+qogBUbi8uPyY2ljOFb6XeVk4GT8BaPnViRySL6tkxf7j4LUzuE lGXJfVBbf13RIJyN8N6Xj/R/1UNQ2erVnvEvkEn2KmyQZ8HEOV5uivAmAZ+X W3C2Fz0+SopU6TFEHO/Jud1KcEerzne9zQRfVPfVjHEL8K50p0/sJBvFgyWv TEyIPAlgXMzNnIAo9/qiXJFxyDuf+tIe3YXYuztd8sc+Y73r6z////+lg7n0 U75WLwYelUQbarNgEDzRHkj4k+d2sbx9Om+Q9ceWt/NrG1RPxjYM/h7GnHLg 44gzbaCsHXGKWlQN67x/UnEDhB8v28Zf+asPNqTcE7/3NCHKpMSIh8VEtNVb oRNr2SjltBXIncqFzBNVve7mNphzfx9P3jeKPU4+KmOgQ9ilweyGLwOGf6NM ata2IX3vWgFhei9chhqKhy/3wHXujsmt1xzo/vaMvJNDzKXgIydK6WSYqHkv bfVmYr5JtnafN8GZEjXOVxbFQX6Ub2xp+QQWPr34x/0rEyoVD6aGn/djoe02 dUsWC9ffTYyxD1IwX3WeRX5GnPexT821l+tAQlqNY0kX5L2Xxv38UYGdQW66 LQJU2N1SjR827sHCqqr5E2WjKDxi8W6qkw25is4jH88wcP/qrYv2XylEny0u 3WpGRWPLVFbZXRoEi11lFZJboajVkb1bfBK1NawQu85JRCfE3Yu6RMMBW5Pj Q05j0OUk7Nn+ggo/Qd1vH+MIHrjPTt+8pR+eTRZ5w8/JuNS05ECCAQUUazpP 7kUa5laq2gQcLIWglT1NU6gZ3DKT6io3DqQO7Fgg7FCJts4CLRkdOjpe9x3w SeiErmVlbLke4X/pyx3UMQ7TtYv5f2ZPYGrp8yNfvtQhrCJickEVF4V21zeF LyfqhO7zPeQvDfIxUUEemjVgCP4+osyuxIHuO5EHAzoxxVH789CuHBb+h90n BsdgSZJ/kPy2CEbyn5uctahIPaX+yk+OCeV3Vz58u5UJytKEH0NHWiGm7fTj z4oOGGrpCOc2lkK5KrQj36sO6ysSzoQtoyP83gLtH4MEZ8d3xXVIE/NM1OXg kDnhWQeUuuju2TDs9RVxvTwCRVEBwW5pBtb/rJdcIUqBRt5mSs26YKjd23Ca uYKLCAutmrXHxuF5KsHzZ0ohim90z3+zGkeoxLM9Wkwmgs+/CfA+MAZRLc2N FfKjkIn6/FO/qBfyz2xvNx5hImHV9S+ZbV2g3VuwqFGAjPmPuTx7/tFQ//1f mN8COiwPxTSNSkyi8vAF+0PE3Aw9vqa806oXapW+G9ff5CJP09Lw1A0if7zp S7Q0RhEssNkicb4DlRMhFtfr2HDL/vlg2V4iL8WpBp6FFIh5v3882k7wuKW6 2FMPgiPfu57PjqBBmbNIbqldERr9JwVE3nOgmNn+yiOI6EdqqHdFXi0Mbgtu +a4yidLTU3ECuzNBuvlhNuF+P6IiMgUeCjHhs2NgjkVwNO+hvFN8q3uJ3C1Q UEojY6f9jH7/qnFIOwjo/a2kw/q7tICX2wC0Fy4MoXsNIYNTrrnnGBOC3tF5 gapM6NqPLlfRG0cw2edR5NZ6lGrvPRw88wEMl9j7lK/E/nTfEJtS6IAnS/jw /Bui/tJG33q10qBBWrX0rFsvXAeyPkmVNELZSCVEXrIHao6WmxsdxiAo2RXb rpGLYpaQ+KXdXKh++TDCmShHc4un/rZ3hFdd8NkRlk70gYazhMrJD/B1C/ul SZuEoK9KiVRVFiiZt7eoCKUjdNKZ9cdpCEwjMn/6ATYs+T9/WXIlDwlzOpvN X/YjIfQfZZstweseA6celmZB2unL0VlnOmIrH9IeVbNgaPokQliJ2G9yRuHh dVTI/Mn6aK5A8P775Ve2nnqEFV+ZVuJC41Dd0lP0wozIqfSE3sj/nz906Jyx /OJgmLsfdZmV7sD1X8WrdIj9cL23XYjV2IH7GTZza4fpSJe9UdqjWId0uWIJ dYVOpIfQvkvKDoDUlfL22eJ4gmtujPnvGoV3ZnBIRB/RpyLVT9K6smD4vV/o vkcZ/i4uiVv6jg1moNSqK384hKdv0NsmTcfUr8l0/7R8hLx82Zr+dpLgSEny iH4LSo0OOnWdLILB8PDV4rVkTKUu4tlGq0KPnGhDxHmizi2e7c82paFW49/Y 0O4yKDYs3Jo3xQFJd8d3g45GMFKke99WcaCsce1HOqceUmvSfzw+2A753pix 7gYqkvYfyb5Z2IyonWPBl290w2l4mruZ4HbLvzMXzFI/woK38syDFyyQFPdu wOIbkJJ1e+jMSYDUb+5T6qN0JCzpXfE3qRckfUvXo+vSEZu/uqF8sgF+vVKR IheY6DA9LBe0nni/DX2l+1SGcdsg7q1tPRs7Q3aeSgkmvNCXR7tEgwJlkmaS 9/QIDHua9pmLNqP5rJs7xZbItWnd9tUP+mD5wfXonUziehOo4VuYTXBfoH1n tpABf7N6b7lYMt4d2P6M+4LgnWMZvpGLWmBwcdOBf+x2/Drz1Pxs4RhmSK6W H0cmkXfHNmi9cB3ekXI/+GoQ3PVAUnnJN4J3mxZvrMqohJREnZyaVDYUzEa/ mDSNQeHn/kO3RQheLR1fpc6zBtYq/V7uG4bQp3HpzQoNGmJJvzgGGWmYqxqP uf6XCbWjjzX5wli4Eq5mGj/Egr+e26epk+NwTFX8bBNfBK74W29+M+I6XwRQ 61Or4fgxOHHR8Vb0vA6475jYDM/Cfeza7y/gO0uOmSbyRMr9hj6jgg7FH1ar Do1MQPV3KGHLZNgkhgU8YFWBdn+g7dbnEYQdvrT34i8ObrctWL2jjfBd19Mi 3imZcH0pIHtpKQO8l89NuFm3QpCtbL3DsAZKYf3qyjQWUlaKGJkQeaJymAn7 N+0oFRxf1v6PDE8rFcfRK0Qea1fThl6GQkg7zCGAOE7wyUfbkgjOsvxhl/7D Kxvvrgvdu7yQyOPrVy+PHm2H4J0lWrzcUejueKAgcYmMiD8HTedu0OF9puHu Fv5hZLGXXanbTseQcMBVPttxdKz43faO8AFXksZuSsM4mlv7MuIvT2Jqat3X 9bt6EcqedLkqNgqblVWpQw9bwXcU/1ZWN2B9zcSKq5k05POo7+H9MY4p33M/ vqvkoJkny2kilIFL5e7eCYZ0NEaseZQk2wqS94lw1cRSaOza9352Ogqqi8cK bhqPIeHwmcdiCwcgMPvkI9WWC0PJCb2NM/VI4AmuYPQRXCi5R0JSNxv+hp6V L9Mm0Ug/XtDdMYTSC6N6chsHEOu6S3xNMRuMYOr09ScET5zM67yYOw6BS0cO b+9jwtSSR+H87gE0/9x9VlyEiakN8RpaJCJvru4UsUuOxxWbn2WmqRxo3RB7 8KOZgnCq7T+jggkc0Dnyrn8l8fo9ZlcislhQJUfn/NPhQnCNsuKTqCqo/kv/ PUisY7ha/YlrCkNQMj+8SDx2BI0rX4lVJ3Kx0zM7TjaBioiAD7skGITHyMi3 znBGcGCY6aiv1Q6/870Bt/tGIZ/46duCmQ6sUPh+7fibEcwI+lz11p5E+piv duq5cqTmJF6/9WEEA6tmuykzbVjx2yE9T3wE95UM1LRnJuFp4p/uQHizUYad S/AqDiqXKU0EsIg5cnJPxuAuMpyET91LnZiE+YnnCR2bJsAU8XBSvD+G+a6h lwzzcQwF3ctsFRtH2LeQ56/3jIC8qmBBunoeaDUmOq07hjCXZ7rwmhwLbMkz +5/k9iMPEpbKDhUYKjOZSmsbg59navzNIC7MP+n3rXXtQ+znu2o8fkPw7PY8 lrK4BpS8V/tog/HIG5pgvb7VCM+KhA0e4a/BlK2lxqxgwRcrDOP39YPpvm53 RsUIIgx+p8tojiJLOTX6/XQnVD7PL1OqIrx8xCKFsY1Ypzg9WWkuGz5PjEZ4 EgkuNlAS1JtlQNeYkTurWw+SHnPxzltkKPfLbuYrycKV7v3720ooMBVuLO0I rYJl49HFjNoxOFbr/3ixOhfVu8cr1AjelOlU2SDOz4BnqX1159s8qEbPBGxK bEGg4Lb30oYMuGq4CsexB2DdcWDhK40eTMdLWpoT51t7OvSaeVQDmIuii8gq 45CRLrW98ZioE9834cs3FyPlnFw+lfg9x3Gmj0hOK3ij4nc8CaDD4E231uWJ LojdlIuhyFSBrnLCIdyb8JxjJkL7f9FhqF7meongZOsr8kN37vRBa5bXP8uB 8PeIXUUe5/5/fl1QzqEgIjeVVx7asCMT6WuOusdoN2OKfTFFa6wAKxysVGdc RqAW0ud74R4NC/c9Wym+cxJthSEpNadGEF5xvqqmuA5zTrIHTY0rMOJQvbj0 /+/dSmt0PH9JA2lEII/qHIzyoETetJNs6NZ8DNYK6obpi1TLgvQxJDleK52z aAFpjb56jAUL8+x8z/0ZVMR58Ocb+rGQsfGYolsN4bVyxzlv6qIglZVYN6Tf iXAF4zRG1xB6NvKcWULkoMyPgE1CH/vR/GLMWUKNjSP7nwunEvk1Lb/D1pnI RUZYyW6aWieEPFkb59to4HLdV+UR+cf95N3zaT8N9FrOlTDZMTCu8O/5c4MB fVLgtn8KNBhwdUeZ0/8/j4nv2rUPlTDmbLZ7RPCjJ69fi8AGFpRD3sjOBIwi jPXR8fK2cbiuzGBZMkbAf/vhumiNCQz4uCrGBYxBftExrbKbjZj77L5ONpsN QVmrq+PPueCNPadrIDCGXwOn9mTfJnhrtcB14SKif34PLOH7y0CeYLLdEa9h eFf+c6y/MwBPwyrX+9s+w3C9+8W0V41obDDurNk/jPVhfM5bGxjgnut7LKbP xfGQx71b2WOQidjhrlQ4SeTSGEd/KQexZ59fTTo7gaQHn5Nfq1aB7PPm1Knq EYRq5dh0Vg9BYt3iorULOmFz2HFV4ZE2mPnwTFxTJPprIKwz27oBpTzt0qHj BE8XRgev1C+HRhaXJFJWBpJR55qqLB+E5KpqMrQp8NQ133Am4Q2OkPety2cQ fpz8nRL+lvDVuUPcJtF6XL/Z7tF7dQy89A7WonjCX51uNEkUd0O39/33R7z9 CEutPitsRMWQNy1nKmsMdvtf2LaIsJDw99bznNI2CEv1x89UDqFxU9eH/XE0 CGx6+6hCeBAKv4t/P3g9Dv9dlg7n7NogJBNtNPaX8I6LTWb8u6IgbdUobWDF hMn3Npk4iwliX1KPHY3thqfKmfAtK7xR+1PZr2kNG0pvGIrs/Ak03haxS00d RG3AK6/9XmXw/pd0vNKBqLtLcbx8lFaoixU/Wf2VA29pvllPXg4K81zq41hD kK/KMb54ugGGA6rRKr7FKLXkJrQzIlC/wd5BjUv0kdWXrQtbxyHVcdjMqrgc LjzO921ku0HJZyv8Qz8aT276vMOiA1PfSNfajekoHPzkH6rYjrnL21nFa4bw bXOLyL39FISqnbhuO9hB+NSS3B3qTFQv6p8YMGLB6/jVz7NE/5XeLQresr2H mBsrTj7ZUICsgKtfHatGIaxl/6opuAeqkik/bBdUQCZjc7B2fy+UK/YesGEX w9NHx0bscCFcra6aJPJXgyQToddVwYVUzvD3N5lsBGeyZ8pjJkF5puKREZgE xdSRro4Cwsu4rbGGfYT/6CxQfzVBhjAuJItq98FX4VnR3T990HgdN7Lm3yfY kaJjZ/nYCLXZbXdyL3Gd5H98hjs50GiwWqi+sRBx1t+ibz+cRLh5w7GUjZ0o 3sehLh8l8nPtptAsgsu8Duz/wradBKnZJyv5xhMY3ovfzBtBgc2BcqkRaSqU ewNTdbs64Fug9eZnKcH/H8PTs75WYI+WX+3Bb0Q9PDgbN5zig8bc8W+xy1mo rc61+FxAg6LBusr1bu0I29wyfZHwBkfFtfYllVXIyt/e6vCyDRohMaKcwgrE btLzCB5Jh7tVoXyQyyS4HXf+riHmNO2H2thvgpcEF9MvXG6pRaH7E96R7b0o vLv9gan6GBrPzQ0LhY0hb+Mqoasug7D7HbtS5lIPpuKGauI6WAi907RqqpqC dJVThvGPxgm+1pS4FTcKgWaDi41/KKCUqThukOtF3tGHdqeNGvHNQvB4/O0R VNZzSMywIVBWM1XOR7ago23R9m2i/QiWfqx8n+BO5b2uh9a6EX1U0KK2cZzI s8OZf5d71IBEPZ1jbvoBKhV+/Ke/9kNDU+Kb9Ic0XP9G6vdbOAFS4Feu4UQ7 xHPF1nnU0BG68LDe1FYWPK9HL37OfgI7MVLLQ6Iv91T+/mvTSfCk/Iep0FX1 SD8jbP/7YRWk0gNrxNkTELz2cePJyX5IfBSv297UAUbO5q/PZlgg3/AzOtHa BFJfxdttHq6Y+W36y24VwUPTCe2G90YRERLosPQnFaXylJ3qSfEIPmJqZetX gQSpo8ONpztB7v60LCJxCAu9TM/enWXDsypW7lkbFZWcrNkfxhwYTIi5Tn5p R4p1r4epIRe6z4f56a4V0ErzVOD7ScHCmRhbaSkusibPSKo3ENysX/jz+YkM pPr+fmNhwoXlzs7lluosxK4XCM9P5cKC4rv2xVoqFKrH39QoEj7+KfJG6GAP DLeWBe0LpRF5cTv/0lsGNG7THcNaImEf0rW0/C+RM0+LjxptbIJ1YH7rLis2 DO15brWcJHJ2wcGSDUWVsLn0y4m2oB07gw7cEVClQ/sVzrat4EBFwlyklc2B a3nUAf975ZAwlXfzJNaPXKxET9vXjJyjGucejbMx39RyOrKS4IhPor0b1SaR NBpw2CCcC4lUmhTf9Q7IZ0dxHpRXIb/N0V7cgAXGK4XRpA9VmC4WWPLyKuHR Z197UvMZSP/dmKMjzIRNrTTL/HUNSgU+bWpf/R52L68rBOcy4bbBKmq0mej/ 7ZVktcEikGq59BMOvqhtdGicIniON/TPIalXbVifrinv84eolyX+D0UeEDkR 8TpMjzcVhuvcuY8pNdhpplHpsZ6OpCrDO0Lq42jU/8PanD0C3cse3S4ebUgx 0Gu+pULD/O9Do4knyIiiBV/7UEuDpde+2A/0argfKdimf2UQc6Y3tz/j64XB b6Nlh0WpcBrK+xFOpsJX5dIxGYK7Gke/7d7JoqJ255GrF2oqIPfTkGxSzYJd YemLAS4x7y6LfaB2dhKcsnBVzfhVWO++Vuu4bhTVQSoKD5cT6+HxVa1WPwNz T/5uEPNrhdS+vqX/f29b442IwvmLuTBcmqDFO1yJnoAY6XpWP6bcBbLZazNh 9F1jaQaXggNFdP/D3yZA7sjYfYJvEGHjIqvT/7+P9/adDzNvT4Lt4N62b+kA 5Mv5JTfHtUNqefw2TdtO6N4TfX3QsQ17um7dayLypfGUZXLqxUnct1pD3ZxK gePW4RuioYR/qnY17nxOg/zXqlNfBLvBy29m5yhPBX9Zcon7PAOGspnJVi+r UOrsGagx1IqEadW1tgUMyDA7mt57TWAu2Mx32fQYfLnZv2p4mtCxqZjPJ2MY tJhT9M+P2tFRV93wI3EcypqnusgUNqSC1g0rLayGZ+LzHp6YT7i0q3N/7rIJ iBWkmT7QqUW61dZF65/3Yr6kzGK2geBKUWH38FURRB3NcHyDg9EoRZUdT23F nLK4kkUlMSde6wVGrEkEWaF2wlMrE1GjO87l2BA8dLZpTYUBG++4D0qG24j3 d7s2KCU0hCtz+5Bty0a+In99/04aZHJPbb1tMQBS5WZ95e3GcHq9g79qFw3h YWnPBVcTfsV5nhBwsgfJdy9aeeXQcICXbYGc/+9rtDbfRYgMn8MjGxuVCV9r K83IfFSD1OW7nzsIssEOmth2UpmMhR9u6grcn0DKrXSXyIMTSN+22ttqMAeW vfE+7O2TGHlV8+KfAgtJKmkjAw3EvkUu2X9iYzeC/ewEm3/2wi0oM/jnLAdh w34RT73ouPL3jd5Vgrc19szTTm7NAmPU76vXRioMRx+b/6xrBmmyc1tlaz0c RTYP598uhbVX8aw2aRCKBe90D4oMQPF0V5aNMxVGeVcmNfmI/RUwC9Q82QLV ZWtS1APqMf2sbA39LvH+lf53/nGGYRnfcvYy/wiklp3UeJkRDzWRzTudkznI 8/gYt5w4D63jPMo6BoQHFmyRrhgn5uqdqvEVS+mo9Wi3etTfjFLZ99+OUieI +bzzNM8aCgyNzzmovKmC5+/CK51P4iBR7mLpHsWEFF2mT0i2FxrYViPpQoPY 64vN90qHkd8o80CFqH/5/H/hZxq6oCR+6EKAOAuuLUt+vszpgkvukdmUZ93Q OqT95ssGOpyCtkav2UPkdBajWylnHAz/f7z7rzOwUDc73L2dCXL+pw9yfSwY BO4PYjJbYXn84ZU84Uo4Zpe0Tf1/X8e7P7zafnrCUPjjBt/LjSDNpBu8/uQL +z9ns7OJfc4pPcMsZ9AgEVN7JnGIg6GN4cZbIgjeNqIffbaK8Kt0yxiPjj5M aXjlPiTysadF9p5Y6RhKnfQPmYV8wZXFiy5c2k2F55E23fuFX+AoMBP1cKgA tX+8S54ZsnG8qDhqW9D/9/Ne45JR0I6IxDdtWj0sBK4o/naD2Gc3iYFNm+9N Yo/bw7C/gmMg/XR9FNsfAv/TPsVR6RQww25PKhP7K5W0PHtEvAilv1tlr9wM haPlJUeboM/gvbDkgtMCCoxJxiv2bKFBKvf61P7cXKQqTXyxGiH6WOTNvicb KsBgfRlfO9IPzzN/TwjmUWGf5hL9jkqsu/WGobNXSjFFWWJ9bKoYefbnk1PT 2AiXPMT2vD+C0hNn0p6lEH1PebRnrWov7ltYFtnPs9A1te73MA8x31V0eoq+ caB4U/VM+pcB/B3MmrKMIrzDou54Ih8dApGJV96rDcL0QqLWa9U6lK56bMhJ TIR3047Yy819iFr+cI56guAdmUseMrF0JAg99tnXxYJ1tbrzS8NOONLxPIfw l1J26vi7w8R8CHzzqEBqEJSBv69VmjkgiQX1zAo8w/Qmj0/dkWSQ/EaeaA2l g0Q+GcsTEwlxhuvtUwEUor4C+gR0muF5cLOB+19PpDt/l3VqykK4dsTFw896 YenssOlORC0EywNtT441QExfStKB0wXPN+Zma2VZEIzd2CWv8BnRLiThawOT SBn49CDSYxyOwR4H7fJGsGdVlVv0Fg6CnzDHGSMc2Bxfa7bt5iAq9yuVdmb0 Q+VV3SZKfCsyNsg5/u2lQ0V15GsC4SOl64UqGQFJsGA/Dh2icUBbO+329E4v hJatMYkQokF10d+3Z8WaIL3oQFaR8QRUNI7XL3TqQemGkugVO/MQsVEuLLlt Egn3zEJ9z3VB4/qzMtmuGOjisl6d0BiOhDM8pv7/XMPxI3f9HwzD8/AYM1kn DLVS79ctSSLm3Ka58spD7XB8xpnfLl2B0LGe/N2EB0ltuTnvlVYMArr3cQ/Q QA7qkTrUlA/T4BOuM3aTWCh8aG5Sh4UDMs65sRsYOLDSp1widgSKmgIl/s86 CI4R2Z4dPYQpy32aZou/INiKGlRwtxOe7+PPLZoKR4dw97WdeznYc0I5rS90 FOEliQeHyMTrCgQ8cmuriP6V3tfUVo/w/Nzhq+srIR0s5F/FMwbpDPNrK4g5 UbiD21fU3A6bH1L77p3rxuLvDnttzYh6ndr6cttwHjTi274KPYuBJ+umUUNb IxJGI5a/GRiEZ1Nl4aWLMRAOcdwnvmQCEtoT3x35qRCf/TrqMcXA/ZTXS0tS RhCcErFmRdNniOW9UrPcTswTl82XV1k7Q/VF1E8nowHMtPPOaP//+mXJaYP5 xDwmHxXaN94NqXfOwg5Pa3HpntcSv1Q6GqsOPu8RniQ4oTRR71o+6pfXVEtr jELtxJtPjw4wcLw4PthsKxuKe65v1SLmi2BXqcK2y3mw60yVLdvdh/sJoe0N VqPwdDr2MaUmF/bn3mSGH6LBxpkrxPYbxUDXshD/5HEErx+dPKDZg8qPA09O 7yeOI8c/a+oyDFJ25YzlkmyQBvdvCLBNgvKu54oLa1tgfvemwiiVg+Pvrk1f +DGKPdbet7LEuVA91nslnvCwLOUoavjWAXzb90D+869RNJdu+bw/gchTy99f VJptYWfyUOGmKQ2eu3WsJvRew+L6o3N3fxL+lXlVUzE0GdwHu9lvP9KR6smW MljBwPx4suSBwUnYpCbfuUwi5oNqXdFDXibK944aRpQTde+4JPtK2Aj4q9sz XuwZB6lfZt+alR+h4ju/95/AGMT3D4zkWU/gLxXZM6MchFeu0ZG8RVz3GacT zhhCrd+uGj7pWggkLHMrv0ysg8Pl5A8POLCWt8pq02tHYNBuCdfLDISyPhWt iyHDpin/Llm5DAPxr6xOfKHDc0VM/L1dA7B+vZDn4NoeWEqu9Xpk/REkryMO OrJPMT+kZXqM8KoQJT2fugfEOmiKjxRRAkCZUr9wSbwcjtv1B8IUK2BUnWpx L2sEPruP2O7dyAZfcwfvkHQfDHRmQyv3EX6QK+L6sKcEuj842zQKeiHVdn9d 2Poe2CWVR1R+o8I6ddM0dTXRlxsTMy/+uQvlYI9MhsYYpn6c+avONwrDpss2 tFHCuxeNiO4caoLARznbw12diFJ52ddXR6wv78eU4+0j8EtrNLCLIeaJ1hb/ PTdewVVUhOvOqoN2eubG3y0EVyvePr5mbSusax0X71cYg/J9pvyAQxe8RRwG gheOQqOy0frTbAzMH/NJDxmPwCZF+7XYUCNiTZLTNMQL0Ljy2s1plwkIDLeo ZRD7J3V2o9zIrRqkf1dUdZsdBqP/lMLOrHGIKVL+BGY3INb7Yu/q7Wko3RqS GPIqFClCOVaOxHxXtNDpa80nzrP+5vu+dXfh2fo57rl1DUyped8to4h5pRUQ n/CnDoGn3l7PEBuHTWHn5JnXnXB1V3b9eJYKR1XR2yY6FTCWnu7NHxuD5dDN mwlGsZBqX/Sv0O0z9uToMR+kcDGy8aC+SBMF2loDm1k7OhCqGKL3eoABg/Vp L1Y/6Uf6iw+UGZluWG4t/iY1OAaNRglX/sh0BG9RDL73fJDgmWVbIydKwLD8 xRQLHoNp2gmzZuL6jX+VaDBPUeAdvCyKfWQSnjM1Pz5Mh0Aj70T6hkE20r9o iIRpcrDT1Oj0YnFiXfemXSyS7AfFkM674C8ZsXYL5XakxMPzJInn5KkiiO5n +m1UpcGPMjDm//9zHofPXdUrHYfbr/fJv0xHIM2Q2rM9lopYdSZl1JQFjbRt xyvevkJeSKfKuoFGyCWtF400JNYhI7/Tx6obGkmna9r5CqBrtv3urS/jCLx8 8eKy8nFoWLoph6+ogPUaMTtRjR6Eck4pXbMgQ/265WmjBsKbZWbkyt4+h3Hp hsNFWwgeGLzp5fygChTvFX/K3CYQVeeYeGnFJBStPs7vs2Ti/j+lvJ/KTEwv VPXMTuqFonhExYRsD8iZS0qE88pAOvJgl3tMGzT6LjixqyiY8clgL/Imjssu O/PlWDXq/Vu8Eq6MY9o5uEFJrwt8hxsCM7/T4BLzvqyjexTyuqrja1pqoL05 rOnamUlYj/hvfrC9FZXXJN+9DuDCVYWWXEXUv3ayRot2BDF/zYo/UF1HccTw wtbWe2xYftiyfaFwB3wjxhdR5PsRLhVKXyvAgvcddeW9fj3wFTK+FVnBBXv6 06dvv0eh6kwnnekagNQfEysv9U4Yil35LhjaBKmuDy8CEwle54qvKUEy4ae7 SYoWDZA5whx7LUJwilbaxsqaF9BQX3hqk/NHCJy6xf/Th+CYX0FaG3/nwnKl 184kmwxo3Fh2zsg5DJ7SCZrdWyex+MU15Zf1HFRmGyyenyJDu0vY6MYTBo50 LX6VRpok8mx9ZMLtYTg+0LnfW0T4Rly/jsbrOFQOGhh0hRLrTNUwFHpcA5KZ F0m+5z7mWihLi6+ykdE13hnoR0OwN8X7X1ohkizC3Q/nTUA1vOXEMxky7ISH hBSixtBct3VX+wEWPGf7RdW6Kcia/ezzXasVU0X53Fh/4vxzXiUsP0dw/OwR CzvJFhj0Zrdp9RLrc9H0qf9ZGgRdEj//rGqEbrKZRSmnHgNvtzwOiG8HyUjz O9+ulyCdPymedtYffZVSh/vS6FBbZL3RdQ0D9mERz88eZWP+za0k9jI27D2U Fh/04SK2o3rNXVo2GCYLiydjKlHKe2O9cWY0Ch3mL9hcb4Ons7l0T2A6Dny7 /37PCRpql2jbRP7og1aGu0762VHUz3z3jf//vgEpp2qeLCLy+hVnjuo/jm+m B14m/f85HOdZQ7f1ZUjuiKFenCfyNainUOxdKQozOr3iw8fRceh1grUVA1oD 095uYQxYeukFzXC5kF4d/yVHYgKF06l7kv8OoFmqZGmsDx32Nq725k8JXj+u Gy2YSIfgiUMkwZIx5LwK5FiLEHP+eMA7S4KXs4o2rPkwzoRvQl7s6SXtSHHK 21Vm1Yewf6vdeD5zEUw2cVrQR4Gy83Wv360NkNux+sKrdgpqh8REzYcaoLb/ uQDt//u9yMx/MyV4lKTxOHIkaxLyefHUZxWNMDwabOL0tB4JTKVSjfOtOBD0 6uCSHArErhSfy05hIE7/2MgMwWlJRpSDD7WZUPWT2r+1pwLkbc98ktTK4LL9 3wPXaeI8zwdsunKKyC+HfK7R40kor7m1PL94En158jye9WxEDwv6f6ewoJr+ zK/RmuDYmsuOz1LrIb9WWT7sXz/CcqpI8jc4mDbgvyJVPQh/fsl0Y8d+zG8W v9psR8wvzUOrAy8ysX5OZODRbwoYXZ8FNc5Pwmc/j8r8p3GMlO7QNFo7CpXI TfUX/v98Sm/zo3yTHmSMHS/LKqRAQj+p/XMuDcUr/3xSekqDdRoap0fISM+4 8+tKZzFK7yfOpM4PYv7+mYORUWSs56tSaiqmgIQyt8sSn5CaqTE8mETwuovE sPT5cvBHbf1FjyHm70n+9hjPPki4Iv2gRSukqrCskIfgmkn/gy/swxD7vdhj 4T1iLl2QleRp7ETtRTPuHYVxqMr9KlstXwdlo5k9K50q4Lha7aJIbhV8A0xH T8fVQNf2tb1EXj/0dT99l6wh/Fm4bnmm3CAGxu7Pq4u1YSqVP9V5FRXcpWve x43RYKm7MPjRRiI378RGmi95CuVfEh7a/IOIo0RIGP9iEt5+59hU9ARkVl2u XfpkEEaOOkOXblDx7a1Wv7kdE05bDkhqLmAhWeTPki9TNKTU/dxXfZTg9YTo 9J6QcXAFY7d0/54g/LD79cNXNILzNeM8N1HhWsbYnavfAwblZ9bRuWpESP2W V7IhOM/y9leHDl8kMaiCQ54jkFKYDbc+UITKFGbkvVA2Up763eXQ6FB+cenX wrhyKHe9+EkWZED6pEzpTCcVqavUVi5ZxEVegdnzuGAmFD+4FnVqsiAXqXsq bfsYVP/p7HiZSfD7ZLvBy5pqLDwboVy4mQHDfUnDzRtawbvaXjWEOwjGIaNY DcFR9NTSFi/PKCd4X0/3ScUHaMeGdA4/6ERhNKtHd2kPRBf/1BbYyILvQQ0P G91RkB/evF3i0IE5YdGs8x5cpPss9D3cXQwbvesxDfoceLrUni9t8oSG5re2 vUNjELb/lvHLhg4lP1vdR6IsZAh5DuyumgRDp9ekIXUCugmrw8pFCJ9oUNS3 1okHeXmkfPZWCnoUzOZNWGSkFsjcc39D8I1GwdOfgp1YMVJ+x/jJCBrnb6/r SxyCU+YBkQc9xHkc/O55lDcLpbLvbLJtvkA48amqf2YXpjj35l5+5cBC8i6j 4Bsdjjw7DlU21GPxg5Lyezk0XLE2F504THDCeYF8r+Oj6Hhd0sH7//8Jsnv/ LiDRYcRLd32UT/CSmuCqh9VlqBTIPKPpykLwkrmT5eU1sH5zduJRYh/0H+/d aUDkV6nGR5aFSDmmQrwl925jgNQXZ1t+7iaSdnSujTxYA9cQ9ZjgSS4YjNEr 4idqUEkZ9LNf3A3lN3o3z1ZkY8AmxqQ8cRgy1p/Gs5tHkeRTvULHjpgzapyC 3df74M6U83Q4R8yDPe1DT6ciwU6wbA8RG4Jyzm6V05eLkOOfQ947NQrL0iTb +fUDUP6stXrrFzKm+pzPpB8chKO44/pljrkwXKn+5z2xz4r9PxccV26FsdiZ qRBZIpcUpPd/u0BHoSv21yV3gLSyVDvd0R/WG9rS+c/1Qi3+qcSOAYKb7K8Z 6kdn4AAj3idpvBUGUWI/t6/uhqCB9+7f99lw3EOiVJxth+tL4dFTOlUQi3Uv OplTDy+bLbpSr8ahOObzWjanH8b8jjv23R4AO9w83+ZlFxT8ZnduZbCQYBCj /6KRiox7ipuoBlTEfT3xLdGMBvPbG3x2X+NAuiZqL78MB9pGsTwX4jqRoFlN khagwmndCa6dO8EPpvammgM1oHjsO/YwpgG80e9EAi26oXhhy8uJA4MIW2i7 Y/gTB3xKx3paPtZgPeNZv2kZA1MPNpzdY9AIwR3f6cpLm2Ey/enitAAd0aT3 9dXx43Df6y2l9XEY/BedUy2S2biUuZ8c4kmBhfkf4+A0LppV3vYNTlFg2ftW UU5oGEY7vipy/dj4Ky93QJfNgVhRXaaWYCPi4nljrmZzQVpwlvW9vBJCofYV n8fZILnr7ogevwuxvfsrBKxawN7/5LDZfBdKr21aq9v5GsKb7CKDo6mgiNlU H7uSCuHGlSylMxOwbKxz2rQmD/Pnri7dojqId1XJ1ySWEv53Ny1Do/U9fP0W X9omw4CJQo3hWlc6dhpJy6o9HEOKb8exazuIuq09r5nDqoSPz9rAGAEOhnYX vfKRGUXtmFGH6/oqxF55t8HapgblVj1JuukM8L0WOKxX1o1GlecZdowOWNQa G8h/oWLk2799tXUMqJ9537Jlngnxh+SZZ/wcKJWrjYqI0xGef/F8TFU/DIV+ zJ5b2gvtMUXlZcpU6OZeJF16WgMbpXTthVSivh/kbtO80ArfPrUbixzLIM9+ F2ayrA4aTUeNl7YnQmP7H3NNvwkM0QQ8+JxoMBRY+mRxUTFmKMLVnU1MiLEO bnOTIObdirORtwIIXqVu1Is6Nw4TlT0Gem1skKv3fQr1oMOt/OehpFwGyLcb N6hFpENVXXPJzEg1dibYDiRkMf+/H9pZ9dfZUGjRF5BcxoBaMS3Jd9sEOj7v qLKb7gLFRd5J9HA3fKqsm/Ye5MJEp825izYJvq1l9itU+jGjdGONeQ0LjvuD 6rVXpmPuiLfC8c9dyF/maJYfQoXy0DZjZf8MCEe2q2dU90M7x3EvU3AQxmcX N2rs7IS8Cb+OpNAIlMPZvbJ9xfA8E18et8YXxpzTRx1me0ES6N4VX38LpaVG jduH+jEV//K16dZGqAev4l8bRdQFxZavq6IY4fJGPIU0Yp/+llkGq1Ag3mLW K2MwAfeUHOUlX4j6Op7s8VkwHeURVbEnRsfgW5DaOWTag6mdvzlli0tBPlLx 0jyvDt6CbgeNsydBVgueFA3Kg3fSl6D6FhrMJqLrJ96MwDC7Nfh+ewsEg5/8 0SzJg4Ts4q1Po9uwmLb5BfPIBGyW56acVuIipLdZ0lKIDvJ61RG2ajfE/4aM rI2fhJvbXlkbGsHZ+jflnpyeRPBSWQ3PdaWwfLa27G9yGRhFahXvl/fBExSb LUYvQdZYfKcqqg82ActYjaRGRLPV75lMTeL4tm7SHTk68pwHbO/RmDDWFFsm YvD//emeTvB97sHfj1WBw2UT4BU/St3M0wHHIx0rthN8RNEkvxqIYCOiIfL3 77hJUCa/Ljz1hgXdjz/PKJoPI8rHQnRlTS/StV+szUmpQGi19a91VsS8Hg9f xLef8MACi01WTX2En7WOZ9tG48qL1HmuxySSZC/lvz5aDqkf+mshGw9fGbOa dXVNSBd6erTTYBL2F2Vu7RsdBa/id5XrH3tAy4zK6z7QipyDcs8fi02AX2rj QLII4ZtO5z6fudcEyhfxyNyBKtgUdG+4mFWH6t/y1jxvR3BgUZ7vpRdD8E0X fiyXP4ida/g+vT3EgZFbQlDwPhY6SH2cJ8/ZoKjeTI95RYF6oHFSW+sESGVq m9NWDqNN+W54KnE+ni6xG3b8iIPgeJXB6j1NxDw4tiUypQcU27KkcBEKvvnx /U50o2Hqy8elSosysDD3nHrIaxrYGbWWIkFsyIym69iSRuFe8TZ4WnUUymEJ ofO5TSi11Vzf9vw9PAefjKcWtGB+x2bJob8cuFqYB3osaEYt7aokbZgFrr2s zAklBgTN1nlXHuZC3jD3b5Iv4c2S9bUmDlwUpn28YDYzCJsMLw2xc6PQMDha Z24didS0zIai7nGIZaqSTKt7obFu5fjWsmLM33ir6SNHg3HRdPXCBa2g3CJ/ rPhZjT4Db9PPMRMw1tPtW3CI8FeDBF/REwTPWeV+Zn8YwM4x3g9rYmiYFuQr Gz/OgbVGKDmncAC19FBZ78YKHLn+7MzhoxQMrBO11YsmvHNjJtN9ZQfcreNX u3RNQHF4D4oooxDLvsV+srsWlEsvw3RMqzG9ofTXjlscROlkVfWJUmBzs9Dv 8+EeJEn/jdLKIoO2PP1DkUkX0i+4eXavrYS3fn+zYUcf5tZ4fzgS1IQknTMP GY5EPax3eNSRNYGkV/EFD91G4Nn79sfz4k+ojA5wqIkawa8rae4V7kRfdYxv ido8SdS7mOu2QS7s1C5k1f5//DYjSmE6CxKfg6I+OJBxP8n3xZ5jHLAdW+K/ lraDkWRozX+tFWzJBe8VzCiIPjF3My+WhXfJTRSmzDimBRR3GoqMgPn9/i/m GFHnupNvJZaUwdqScft12xBKedii9ycjIRxnXtq6ieD8/p5jD37Xw9LgIC1w cR6YD+T8Ek9Q4XKr8m5P5BjUDCashlKp8Lpt3PHvDhU+FbM//q6ioZR+cdP+ TSEQlrx5faBxGPLFOXVLNVtRnkVd3ts6jhVrO38Jbh+FY6rWi9uOeaCsO/Cg JLwAMksmBAevEvW9tPWI+AZX2EhF9124Wgum3GfRkj9UzNGX/NU/+P/33npv F+d2w/ySr79sLhWqvT9mOdk1MJe0lqcJTMKgfpCdcXESjgeTP1CeUeH5t6Im FX4wO121P+TVBOx8kvVlr7LgHbNkddIHwqtXzT8KGgmA5ZaaI4bv4hAscjt8 2ikXgqqcXZFPv4BWwztt4DyCrPhLJSNOPZijGHvde87BAWVNXxNWF1YEbrht 682GahuzJNe7EsIaYo0/3dsxVSq5SohegJ38w1GbbkzA3vEuj9UuIq+pdp0r P9Qg7O0RkfM+k4RXl/EcnxtGcaTMKcPjY3A8RzTQ8s/grRPICBqcQPm1pTLt q9ioJJn80qtrRazRQR4lww54GkWKvH81iuBcv+5cwS506Muu+2jShmAnatHa kSHYfGzseFFYjunVmUKVoq2wO8o69v3cMGjZTd2xBePw5K78YVBVBsGHKaFK A5Xw3Fa4hHs4Bk6x5N5LK1lwjXIoLFZshopZ1zOd0H7U2rqNntch5t37gAGB V92QeWJ53mp4EPpalGBLexaUJIvf5XOZUG79dMiP0QXXAVrUNaFuSOzmoVzN oRI+idlp2/totpk2GDBlo/b+3QidjnaovuU4yXl3QJG8ZfXqgF6Q132/ZV5Z AWVRPZH+xGr48qj8vGPAQE8aKYPWXIsEt5WV7+v+v0/UK6NelQnM3Vuy6HB0 P0LDA7f459Og4mbc+PfVAEh297VX1ITDfFbgecnWDniv+Ddj2jCMLJP3ZN39 3ZCfMXAcX9wBjZOlgn1bMzD16PHXN1UTcEn1Uo65TgHf0Wq5FcvrEBtbIstU p0O0NUxhmcYEKCXFzOf6XGh9+dMXtHwSdvV1zh/7J+FLerbLRqwZqgdUVD/r tYOmkLYwfSkV6X/uB+46mAHLDQJ3aqnlUBJY89PjLxM+MducqxQZ8NSRXt3w KAHTC/emSO1vg8amxUM7CW73dmhlOFXSkBWT8bb0QwfCczwj/RzrIHZI6Yiu Nw05mwQ45GdjsDuUy6uh1Yuey4cihoj1DB16wPyyjOCoIabR98P1UBmYsw+s H4LcaIaK+OFJuPw8yzRaToMYSbLZkvAesR7yNcHHDChdFpi/JjgO3esTl46L VUH8Tr1qa/IE2MvSN73THYG75Du63x4uxJZprKy0KUf57KPz4m0T0Dh1QvFj VQpCrbfU/RjsQYr2HVboKB0aW7ZtGVuXAougAB/xBWzw5ZQsuhvRgZ6Xuz8Z eFSCdGrOU0+4F8cvu8ivsR5DcM9WTk/8F0jFqJwv7RxEUuKjwKuJ5aDFTy5P 1egEb3ZldPolNgpTci/lMdsxo9JvcePUCNRV3m5a2UqB2pTe8p28bMwpJan7 1zaB9PloWurbL/iVEXmWrkJHgnn10qObWUh/+2bPlgEaBh7J7/QnuG6+bPN+ NYIfPa1s1zptKoLXXgvVciWijpLVoyxcJiHmSZ7mma2DG3ngWgyT8ETn2vML huMwF3P4nv4EkU/mDste5k+CVM55yCG8uidMavn0xRHEfjslO7vxCyQGw1Re OQ9jz2m92/4VdAhudjmttqQABrLVtZeJ+WVzIVsqr7UG+Z4XGfb7KBA6nsmV UqOD4mSmyjPWDY3zt9UvPy2H3XDPpktvJnB7LOn2yD06sla6sPz/jaPc/s16 rgcNnoUy8hatH0EpPkXXFPyI4OfL9+b+nIRfXWXeryY2lKvvFLUfHkDC32Py mdZ0SLHeW1/gH0TKVZd1qcoEF18X9N4fQkPKM4MrCsuosHz6dWnnCDFXjC42 t8f3gj60IuMeka9OV0+5ODGY4B327PB62IpQeRZptxoVpsu2/ft6ioH7+X5p P5dSQLqqX9drnQB/w3npxQ1DkHBPtFIZ4UKGc2PVhaJxGJUZm/05z4V4wOtW d5tRLBQ/qWa0hgnXcdHugwW1EGv9FGm0rQkmlxxX6fQRdd7IH7PoPRsGnZNF T+37YSR1Jnw2e5SYRy+MEjd0g1IbkVS6KhXk6Vs1zdwaGNfxF26+NIbQ+iv/ tvq0gbyj6cDlEDaiBN+KLLk0jsLi77OFImOQiJ1hNP0ivKpSm15NGoDJferK rW2jSOX+Y/LYj2OqY1/ASW4Band37S2eJX5O8o1esb0OnnIqkm1XJrFng8XZ fwljOK5OObb9PB1eoJuLP2UiI8WldOFaKvJcFgWs7GvHYodbya5Bo7CrPbHb Q5kDlbYqqerOVthMtB8LqqyEvH0hT+mLZnildiuVGrHgIpwbqU4fhGuQfsoK zz6URgu6zXgzYdT70+VS0gT4flhN7HRoRuXmSMOulV0wnCyq3/mHAWX28/db A6uI/PNLIV2oAN+D/rNFYm2Y+yhZuj+cyNPZy0LrqJNQbX2ZLSdGwbslsx3U NDY8rxnIJpuzIMTbqFyTwkDs1W9BC5zbYWn/ppb7oAOBt9v5HwjSQVrk27RL jwn5Nx7NG0kVIH84eSjwzxje6d/XYlYwUdpryLxeXgvPy6wNwbr5WPwvej2/ C8E9S5ffGpRuw4HEdXcOdowi3Gnln8v/ejFT4Mi8aseBqdnao63rKmCeZeF2 iNkFiRod0p4nDNgY32T5yJLB28WdsZRlQ9Sw/KzDvwkEyuq3rLGhw24Lz9W3 v2nQMNzmun97P6S8EoTlQntgMRw315pCcOT9grDTy8iIXV8vo/6vDmQurcqo gw6BpVK+CsxJpK++I0e+0AnBTj3KI+Es1NpEm/Eo9ENscOLUuysVUD1hxLOd n+DB8HdPPkgng9fknoE03yCkBNRob+8OELw9vl4jtgN24XrhV5PbUauZJrBb oQlc6a9CoUu4UK61HW86VAnHY3+CThnXwLOv0q5adAApBZsSNJKJOejZYP0q pgyU665vQgIyUCjY3R8/OYRa6mMbryNDuC55bmskdRRSDcuu8k1xET6SfVNs YAAuq8XJu+2Jefmk9sH52lG45nuRg4qbQb5V6hyaQPhd0Z6dBQKVmBN0y5Y3 IKMy7u4L6iLCH7NX7E4MD8OegPS/aR0Moh8XeI5VdMFyrfp4ILsQsT/aCtQ+ JoOy5vARSdtRCOmKZvALUtHjlV/KId5PPi8okV+wCY0KPFsLhIZRalYy7PDk FW4vT9qxzZSKwsXZSi1EDpKMSXptzkS/bCj6oGP5Be4/76h7ZXVB3F/0nb4p A1P2j2JsDQaRdWj4h2gFB/dJG3Y7aDAxMmNXsl+HqJdsx83BB/vB+15j26+p cVCOV2TOh3JBCbpSNXkyGbXaFdkPHOsRri3lNP+pB/4cA8bBb0OIzTohP5CZ BAuRz+SyvRT8PX5OU+k0FVOXt3+9ltgCcsVJwV/avbBREf3EtaBC7eHgbZcF XLCfjdY1El5cGpVeyPMoDqnPeoU8cigQlmfV2ia0IiP+7q2pllGouu6i2BhN Yu5ruBknhgXznSnflpiNg1TiwjjZwUHj8QeT5YR/+Hb2mVfsqsLciruLCv/U gzL7yNfsWj/Ipa8eqdzuBO3SFs/1e8dh4TT2z3+MipmsFl4DGxoEVrNGQgYI jmrpj6yfYYIy3uXoZp+AUotDu4y2P4dLwBfGY952CFLdJPrchxGSQF++fN3/ felPt+DxRcciwRIzo1Go1dpb1+Wx4e21bSf9zf/P0QhOWuFHJTxo5SY1wrNV lUP+OW0juGGoVyjPpxLBbq7dSk9HIDUWtPXz91zwvWwzcejoQFJozLvGt70g bQ7465JeAvV4KeVlAhOQv3Qruc23FlP4OfbGrA+i98xosg8nYboytVGn6D+K zj2eyT8MwyOkUkknlSSpFCJJKtwqx5JQSVIhSUqpJEpakoSkkihJTiFKzslh DiHHOZ/ZbLbZZlQqp/R7f3/t85mx932/z/Pc1zXbvn1QHqz68kCdB67bwoqb ixjgvKs/uFGhC3w7lWrKRwYCzBNv6wlXYzNphxepgouox2r3pFUa4Ru27MTO RCbED6VzfvBrMKkyvkMjloNpv2PWL+92QS39BK97TjO02Re22X3kYeDBh3+d UywEa+7YVtg/BM+MjTFbX9cj6eAG3qWCMkjbRZY88yV4kFW0rV08GrKOHZ7L 2GyEskQrz5vkIsn+qM+1vE6oWepvZUsPwsYgre4RiQfqjXvpvdYNMH9pv2+T YitR/+8mIyJZSOrISDz0npgrKfLc3DiinpOlKLIPiTnf1T9y5A8PbhTFK2ua BlG+mj6e8IgLbxuX1Me2zajemJ4g950GDfaqGcvzA4gSy3rJzu5EhJ+rosR6 GgryfuqIyLYhsfX99uszDLRs+yN842YvvJ94D25IYIA2dtHe3p8HRfp4gfXn Jpj/+NolLlqOwFL1I7436QgNvP1cSZiLmXJhjaBmYh0ELoNF+4nj/+NZNzrU Bb2UmG+KAgrUsd+hLJTgoFdPDswj02FTQy/8t4mNDarJCZlcPrxXpqh8utcJ mrnanm2q2TA3vuPBSuoAedzmjH98AmIqeicDLAnui/qtXXU4AtRt4x83kHOg nWVyzHuMgdEx3tYLf/JgZacesX3DAPSmNcNLXAbg+DawIPIzB/qx30VIky0Y X2cypU/M/yjpEvee8R6UKv9clZtDzLEoZ5HA//dH9ePY3imnwDpo2Rx7Xy5C l0ikfMovgm/vUYWPYwTvXHCu/RbFh3OQtvGF13XIivFWbTMdgNvvPLO4MiKv 1EL8LEME6Nl9wP4GqQ36B4ZXn1QREOdJllEPG4TewdJVdxzyEcpMaCsNJLzS Nvn+Yd1PoCbZTrwm8tWuN+9toOA9ZJJbeH+J9bJ7Yrsj0S4X5qWc2c+4haB+ 2mazp6wPdnK33a6tS8L0wL+GeJshSK3mkYXm8EB+9mYpc3ELjN9+yBB60IuX rFYhKUMuQjhLWkMfsLG55M7tGgcmtOrzPboqemD3fnS50NZsjJJ3v9wmkw6a 60PXTW3fMND3bJhE1Jd+8VwL06ghRGVvJL1c2gKHOWlzFq/lw/PqaRvqPBp+ lDA/anMZoFp5aHH6/98H7YLL+oBqIn8yH6wbKUI922LytxcPP8bJBcbKxPn8 +OP2+HYatFpiN6vO+grjZV2cs0TeBgfvmadS0A/q7I/xn/4MIUJr8u6z4UpI 5BRIlQwR/RG/b+rhHQZkrjwOmL+AD5IWff5uhTrI3ZU/Jr0lHdQJk1fLNuSg 6LvFx9+mLKjpi82eLdMNx3exJyutu9GRs3g9q7wG6Q7RTnURhbjJHN8VV8+A lWa4z8z0CMYsViyV1evBhsVG+S1CI1A4/y2xpnYEC/KVB7MmOIh/f/KnoHcA se3hB3Ve8aGuopLJBRuUvvZTDjp1UBdSL8kwGoDfpxBp2Twums4G9MetHwK5 p6Z9nUoADPW95noTc5fzevJuCpH/gcVhJm3dTNTmNPv583rBuuh+aNyZjURx Z1rOJybkbjak+ryjgOQ2e8nq1Agorz04vGcPF/KPlDXFFo7A+3qY9gGNLlT8 DZw85Elwb+YKiT1WPbDRMXuvt4gFSxvtk3JvGJgutDw4PkbwtBkS7tAroJzT SOf5DkMvbDf3ZG4aejybXH8SvF3uaHpEzpYL22U18RfmtyL0n4G514t6SF7J Z/OU6WhRqrCp9GYiZnveLMvjmYi9HzJz2mMQiuNUklw+HfKXsvjv7WlYVuUR Ft84iM2Um8/Z92io36PkUZPPADmEUbn2aCCWHI/nT+ykoqVNwmjXunYE8pNO nC9lQKTw9dutxmyIx/2zfX2wDg5292Z+tjJhNjUotviFALHbdSSlz/GhqFZd p3G3HGY9v1PnxHJB3fUkL9eEDstbvXV3q7lIjCwbtDnBgVxA2Xkf53IUZDzb F7C8F7QrI8t+fyZu762PWJVVBN27MZRuEhfqwgvbxPw4CDXfmPFpdibEzlka nBdwYW2xa4X86zaINO1OuCJKA3mOqYuSYT/UNla/TTEvA3mtDMkipBLxkso0 2uwW2BkYld3K7kJRZIjlfSpRF1E+NQvcomF+6XXTlqWFULgXXz3yfAjm/YZK 55dnomeFj8W1f61oMbL15PcRubtIKVTp9CBKl83+sK6FBoUNGxcvGGuCwoff mWeDOuE2n391aAsL1B+X/kWMlsHdoZni39UD/SUj4pmzeGiaMs2w92eAstPs novrc3AnEv8x9ozA+ZPEufnnKzBtcWe5lmsL9LxN/efmRyFkTLNyXQDBiaZC hTb62dA9FvnOcjMfLy2bt0gr0SG3KGRAmfAH8rje2YE5edA31T+7PboRUroy s6STeZBjvfr3ZaYfo0ovfPJMvqCW/+6y0So+Ar4/XhzsWo82g4EllqvoqCop ORTzoR1OonS9ey10ULuifkueKkKbrs5Qv8Ywpl9NTuS1jyBLzp9k60GHj+VW VrYisX6Xne/M/tID75ELOzYRdU1izxjH/GnAy4BTmz8d4IBabZ73LKcefrfE 55SMtmKz6YFIxZ08WLJSp7TpAojJ//phKsRDV8VB8hOeAGSuVQyzlsjXu6dv 5DNroWcWOUfiXQckTz5Y/VyiFe6SRTNIa4Gn6IQoCB4QL3YsdOz6hhjfZK/8 5C+Q3h5fWD9VjlO2aopG1QyQNGKbZHa5Il/+39H4rQJMmpGkJTcwoeDU6r/W gA2/Gb/6V6fpWJm0VMlnOQ/71x55tGYFB2SLih05Hhx4Po/yk7o+jCwVTUfS AOETRX8Sl1X0wu3JAUuXG12wS91RRd9TAXN+8io9FQryn4jMl5MfBFVo9Gld TT5k2BwPmy/tkJnTKKN4eATuJsW3balEX09sS3klQwf5YKP6vHpfiL+6r6dc 3QxHr/03/lyjgTVrfa7DEh62qPSp5PWxoGdakzX4KBZkqqT03WcPIe3l9DR+ 2xBG/b+5H6otwcXfX1nVTkR9FV5L3hs8RMzJLS17V3Ox8q2So8QzDlgxka30 gwysPPO4ZMkTBpRX7ojOjebCbaPFmeYVRC7udB8sJtWCNmWXtZZJcIi55YUT iSyka+x4vNSyAVLuJ6QVMkbg2XK7MoDgYq6CYU9xDXFcP0TmOYx2YbPvlI3b FhrCrR8KYmwE2NU7M682exgSPspz7hIeTWKedvboD4D1SYUFp1uI+eq9ZE7r Yw78zJd9N3jRAWrhuwy1D4PwfivKk5dqw3hq6pTsISounbw19uQiG6Yd4k+X irJRNLNaPZzINXO/xwOPZbogf12LvOUYE/rzHo8+7huCb/BY1bGJIWgHObgp fBzG3DQH7snuEbQEnrv/eboJLWfGHdJE2LBRv5bpakH0v8SspFytOlQwtGTX /BzA5iXzDre6EuuSqJ7yb+NrcAactfYUliJHePSX5RtivoTrBD2c//8+qcVL j7EG0MGbevRhQRM8vtdun1AcAH88k3y1nQFmqp+s0UUOSPRVOtwf0VjAF/l0 w5wBNbOt0ZU5w3Dr7BR6N/YZSRZSe34qVIAipvB38l0MnIXmG63Q4cEP2TJe 4n0wG2fZOTC4GLffWyxV3AC/FG/yPr9ONLl+ncBrHoI9zCovanXCXcrgrZh6 P0LVviQP7G/FmN8Pxxcyw6AaVrwVcmwBxe2ApPr7BBimpbmoqhN8pnFex/1M C2Kij1SK9mWh9mESa73jIEYfucm56+bCOTCiqaC6HIpJIqcWkobBX31f+5hS K8i61bslFwdi5kW1QrfDAKTaPYJlFhHzciFbXjYtG24eXk8g0wG3ZMZYmyjR B8VpNywMKiDzzlo36xsDEjSjcFoV4eOxgjuLPBtQYeB+w5AzBKffvxY2GdKh NbNjHZ3fhQjTjVrKzq2It7TlZBFeldfpG1yaysXo+k4hHwsexiITXWeI/r74 64iCmBMfAxv+Ve/L4GBmuU13rO0I/OxT2UrNBF8tUxk7WvgVIoHWp5f97Ybp SdPOJLc+JDUEZbgZUyAc01FYJSB4XWYXeVEFDcrXi5Z+X0sDMyZRP02filHG n8Wcb61YkrhOdsUeIl85sdW8r0Q9B3ax7L/HI/Gf65deKzrUVPPv374zjKQy xbe+3xogFvr0pWviAKQbvObQFjegvOupFG85waXH0icPRXLgr6gspnqdDcU1 ewaeCHiQWVB+umQ7cX0sg0pu+zcj9LsJneneA+NL+w/7dtYivv+FGtuThQqh W3QvTx5Wnrzz66cYDaU7WpY9bvj///sKMUGET8YY7RYVz4mF3uETwrtCi3Ak fudidZ12ULiV73buHIbT7kf70j4OQEQ4y/wlvweTWk+Wt2nRINkz747VxFeQ 7C9Vj92PhNVPzj69HwycMmvynb2fA+WjY7eiVAZgXlNjIznRB0oDjd/5vAfc bmnnpniCc5acSA3ObUWYQv6PB0tHMNr+8ZZTaim0DN5qCCb7sCWhOJH6jY74 oiuJ/tH9oBx7b7nTIw6UWV0lDr/SIO58VGhC/yucLufsUPMbQujrexdb9xVj Onm4yzKmEy4Ly21oEnyMm+2vXvykCh4+jn/KIvjYtf3b97j3HKhJG8z8mfMV ipo7zLZPs+G2fnDN6y2NGC3l1xd7lWL0Rf/aa6cLMTrrMW/R/VyQWoyevl55 GtQFjiYZht8Q0NXXJSLUCZEYi/sa0X0YLxp1Daf0gcoInWPkxgOf3fZj8vIw xI2kpvYpt0MisUx2WT0VxiZPEygrqmEq+vXHVXY/pMMtHNXsBTA+N/ilsp7g 66bwa6fE6mHu7DhydS4fZJqhDn48htlssR/eJOJ67g+sSJzHgJjvtshfdhzs CpyT6pbBAylPWWvv/euI2KMRLBtYDpGnrocbSpvRMq+g/eH2YZB0BaX3LifA NPCP2/ftxOPneFlbGt5GtCTCT/ziYLR7rc7S7UNwtLv97YDL/69THNCIkuhA jBozp2seD3przhzsEHmNrqd5S/eOsSHbofZelzqElS/ff15dSkcP9RqnfOcA apeblc+Z4aBq2al2+SBiDvzSPfW+rxX8rz3WgrPd0FR/npxuNQxy9voHe2tz UTSr8VJlsQDaXovN/M4SORqu7j/3+wuMNvyt0Empw0zTQdHAhQKkH+o3/fCc B+t12Vm9Z6kYeyC/mKdCeFW0xQmTjQXwqdlUa2zHR71k1Zv+zBHMfbnEtdmK QfDUqW+fEoj+zfqkco7RAUF6yROJiwK425243UD4y376I8ed54fh3LrDd/ID A6nh7hoPpom8NT2yd8T0Bfh6gkoP0z5onB5br5BKeJAeuSU/NASkc4Kuxy7P ILbNTGITlQuSnY748IAG1E4ufa+7vw60bEZW/vkyUHQM65Y9GYH4FadTizJ6 UW15xjHKmDhPmZ+rXNvo8L2pLDgZyMTofI27D6R4kH+3aOulcS6Kppe4a2SP wI310mBmjOD+nRbmNHEO0vPjA+gzGZCYehNhzGsFKSRR7eCfLixJXdn/p6AF oQ9W3hzwYCD4+YPAurgO6J12WW50rBXU1X876N19sFrz0TO3gQfzNQ7JY+wu /J6V/v0LnzgvxVmpDTFFkApxvX2FQfDc4rHB5KkO9B0T9TKIpCPswNcWsZ9D iF1nHGoQRoNtQObe46K9kFt9fCszrgVa1qtj1ngxYbo47rD/bBrkatOMGao0 pDKdmqeN2kG6Xn2/4KUfmI6u0hZ+xPOt0dUJl6yG3YK6P5/L0qDsumRzxWGi D8hHD6/9WwJF02tdmUfKIH70nr+kLAXTn1JsAhWJOvyrI7wim/DH6Ltsp5xu kKYZNQ+WOyPC9eq39VqlUFy3b+/NwxS0OU12kv//nMlk90H/rddAcUo0MjuY hKbwD9qBuTxoNObmKn1lIcJ8ZcqLoU6YO0jSPTbSQbmpWlDn9gose0NB43wW 8nxG2mZCGyD7z0mHbPP/PiuLD89zDkPgXgej3xM06DOX9dhJDsL36e1byx8P IuKI2MdrWQzILVkrTu4qAW1RyY5L7RzE3Da1tzuUBGtXg6sbp5ohff+3fcWu HiieEvU7WN4Ou+wOVdcJ4vG0xwdGF3RjZZaF7eUFQwjYWLHgI1+ADStemJPs mNAWc7D0IzdD3eHKUT2CS6Rfp8V4ELenZn+d8r09hPEP0xf2WtNQsP5l6WQZ Ddqt30+fPtwOZ83P99dFtoC6bXZx5TYqwRP5l7c700CJCbSmxPZj/+dftpm3 huHnpXHddPUwOgo2L0ro7IH0W563whM63KR2f3y+oAtk90e8xk7CW03VAopk iFwbbzfX7ToNu3Et2fWRaajaOKfkTwQDA2sTSoOucqEYKDzqvXgAMc/LPa0c PyNd4vOZc/2NKIj90x78phmeKjln7qZSYXOwWVTKgeD6m4LzJDUuQqLH/bKX Eb6sG7lnz+JsyDxYyFm+WQAJhZU5JCJfqqR+lap/JvquacGHrbFETvoWvxS2 uYe+9m33a/79/7qriZd3PMERsDjz9v/9Wraer9x5nANz2X01GUQ+E9PpU03Y MAJbPn1sjOaAH/TN40QrC0nlRaKH1BqgliC6IWQxEzlucjMfCvjYwDv7J3sZ UU/MMZ3LR/hoO7DX4QyFj472119vE9xp6uRpJZLaC1LonZ9fKq2gl3lta6of DVVZL4yL5RjQs0v9k2CaBOXWg6/lrvciMV3Wx4hCh/uX4H2mXwZhvF9khHei BHmy3kHXzrOIener/CbKRdVrx4Sm2SUI3VKhsrGoH37XpdaeZ7eDqXpobfVN Fn4bvzxxvIsBt7oBt7rBAjhm1I65H2JA8HqjYD/Btc5vD47oOTfCPbrhj3da DwJEdaTV1nRB0Z9x7l90J1LLyle7phD8+nH/Itcdweg4H1U3TKrD+Lw/Z4vS WQiJK3YvCxhAwLzKBZdMavCbZV3XYj+MvBXD99/P6oH55vy1Y8710ONs2Vrb FY76nY5v3tcKUNC8SieSNgBPy6MvFmVTQfni/DJ7GQXk18wJvWVduOgUpG3z qQXxCVpD6wWDqBcu9X9D5EVMQ6vmlYBikB45hqcYM+BtvjalfS8bUQ5HKy6n MyFueOb7aEgnxhUya92utSJ0t5taCC8L5E0n9naE1SOmXCF56iPBxccXlIVF NEFvSVy4wmfCjz2fnKdpf8S43aTUa18qrIUMrJU0uJg2rjjIXj6AMaGkHllT AZhm8epB2hy4uTea2y2tg9oYaWVsNhtHTv6aVjagw3rleYqJQSfEQ2cV3HWv gPWPhoFlGjx03Al78nagH+GvA9gzUYSv32VdeNAtQIoFxWG7JhM+dK/8zBEa PEur+VHPayFydG1ce1wTSF3Zn9uC/BDxcrvCFcJvl31/4XWcSocH+cHzWVI0 iL9+NL52ThWkYaT2XrUJ1u9Xnsy37oNcXYRIslwhnLsr3dNo/ZBdZtDk4zgC bReHkrzYLhRw51p/8hyCgq6P8BKRAaRPmuwcWM6AeWZXYH3YEAT0A1cXhwog MP9ou/gNCwVavqSSyD4wjVJu+g4NgTxSEpnKpKLjqpbaoToK7FQOzfWyiiG4 cp3VlEsbdl1ou2pA8E2qePwu/RPDaCrp7ip6wIH6A+P9EdJcaG97mXDVpR3W p09+tzhQBvUv9FVrc7moV07nvLxNeFRc46B/YjrIymtbR9ZVQOrx2rirjwmu tanslnBnYbwyZuHF1ErMHNT4mPOWj4orlezNR4agL58vX0T4Yd6l7vsRXgNQ /iG848ALou+Wvc0LMEgm8qL+xbmdhCc658wSGHMxmbZv3mKzAVi2ve+5RhEg yej6YZ3SWriss59nLzEA2oV7drPnxqDikZDSlV0cuNOFjhvuHETUqze+MmLd KNjy+dam3c3QXrG22SliAHr5piTXkSFYug+/+C41AOaXWOV+1UaoHUmeCDtQ A2rdhjiRFMJPdEMKGbIcZLwP9vu6bhhV+eY1h/eVIGSPjUj2XsKD/EOlmt7z 0GZmqb9mKx/KV6+WN3mNYC/Tq5EVyoV8h+pIsQ0dpkcvPPO60ww31RXfWwlO He0RHSHL50FP+U1Wg8YQPK2swzQJL6pyU/OIaSbWc9+2rPu1w6hOVo+OfDIM z+vbsouGWuFecLS7qb0RciozHstuVMPa/YTp1cvEuiZN7QhIaYRkpYOv0NNq KBzPHV9p3IuON6QFMwfosJo2+n3Jjw3aq6HbrY1tGNvxU/GvCfG8uthY+XsY 9fGmFfNzidzetfszRL+B4hAmTd3dhdQvvRfiDzDh3JwrEXSnHyu/j4V+I3Mh cnMjL8+LhaKI81KrJom8Wmoi0jjYBvKSbImr2hT4bvWJVDAdIfraaOOnym50 pO92GFnfAVnHsJaFqoTXzlEe2WsyAPJVt1U/W8NRS34mzzhMg9qwJelcbQ30 jltJF6zJh/9O1VNiD4YgP5qp4zjIg88iWoJBExfOssPBKZF8hD4JMj081gVn 3qSIUW0dMrZOLAwcomFUxKX++6wS7GUfKVuxbRgzq+ZukPhBcKZUyP69v0vg 9vHAxVqfYVgKTgYz4/7/vNcKtflsDvo+3/nWwKGDVqpBzhysRox+cn2M/RCU 92aHuLOpKCe5qB5f3gznrsrgO/7VWKbTvyhOiODwf5SeOyu9IBdh9HXv/99r Rtre81y0BOSo64qfn/TA9Nby2QKpRpRP3h1JFmlF+eyoQPVxwjfU706sucOE Vm1LV5hQG45smsyb8SOe/53J7QlTKjRqqpZmhPZgXHUyZfVrwjv4pz5XXWBA YWncCqE6FsZiam2lCO+e3t50oN+V8J5X/44WcT9hJStFuZnIvSTO3+ab3t1I ak449HGMqIvfTVelThN+67Ze9WRICaTl9TJu5tajTemXrrPRIEqzRlmPwEXt t7qhIFvCJyoWpNyVy0f6DxmNjjY2Wq63RfkOdCH4CC9i3IWBDoPL/a8oIyjd 3N3mSPR14vbbDqcS6OCf8T/z4IYA5Oagd+HPCG6+OR62O5kCx5qI2NVSdNgl ZAiLu8cgLz3USWMO4e0U08oDtb2Q/v3gt89PgsN27EkXz+Sg1uKNgvfSZrgz HyxouTGMDZnO5LwkLjafPFFn/HYQhp1tBU6rRvBBqbww6i3huQ5JezLa+Rir TzTbcIkP9xthQ7tsBuCuVekhr9eFtuNRL14Q65O3ZNvOYzkjqLeqldLkDMJ8 yavcvwHpGN0ZXbj0XCGk/+3OuelUj/RyzSSJ80SfbLkXFIdBxMzwjeZ6tqHC pPtlvSIXMq+ufDk9txvueY4fPya0I8LJrHXfd+J4ry7PdSLmRenzPRUvytiE 99zM++eXDtsPreqK7Z3wvGUl/GpvJW4Oucq4X2KDFP1m1U8v4rrUUZk34j+j NnmAPyDLAqdMyohykOBJSUeH0n0shB5ucapuq0V4oKHkTXU+spoC9NhxAsLT ho+t7xuC22FL57Nt5bA1vPQraDMb8RZ5yr8dm8A/OxI4Tm2GlOxgQoj9AKiF /K9C+5jYy9JSfEvlQHG10uzyzYPQEvt8302e8OGFkpXcYqJ/5++s8Y7KhPWr df6Rkj2IuSHcFfn//mA+H+WXCFdBr/flFjPd1/Ae4HtVOtBBcl2e1ds5BO8X VqXPjYm6Xzb/1eLyFmQ83lKg9ISYj+aGdZd+dME8bH5tUloWftTN+bkBAqQa zdX/tYEGmlTyRecUYp6t0Evmx/dA64R6qAK/HqQaW9n1Hu+gd/HLF2VvBgLj FLeouhDX55y0ed0MEy2PLndmyDajtnnBDQ2T//dxrM3OOvsFeWNrmAtplcgx 0nxdupcF0lTv5ztHipG6SCxygPD70YafPusni7Flk0dnuCIHIV1nru1+OALJ xod+btuqIGV8YM3kaiJfIt2rKMw2hLhMDTgvHIZ29i+TahMGkqz3WhSyWKDw ChRU9QvhKT33xdc4LlbOOSWhkTpE8IrPIhm5DkRdyemwiehBuWR4QkArFzF/ dOTspOPgduX95Gg7kdO9Fpt6Vj2FnJ2a+6ythN/YfNJuP0Pwklvnyfm/aBgf S9wqu6QZYi/stY79IjhH+5//xjImxBZuMP79loH0ms7FV/f1wy1yqitMoh3x se7a7NmNCJV9Rt3d2IwPl01e7b03ALnZJvYPDvRjS6Zutj3hd1rZm61PnaFi v/nXeFoKwSk/P5+OYDSgumGnRN0lFpwWZpzR/MRHtYXpCf/LBF9SUpXEbxQg /emZfvUaNsTZGaql0h0YXfGZz12WhaS4MGnVB0QOMEKW7plDhfJzzadBx3qx OYakO2cJC1kTBm3zE5shobVpy9qVPQgOYFfF6rbBe9ecooiTLYgKirefZ9kD Z5Xr+mN6FCiGbb/2SLwGFM7YwUD5YVD29i/f1lkEzlovD5HlTBS0bNijq9AD SU9l2jbnT7gq3+YRYURD0aFYzwI6FzOUrx7mNsR5LphozSA4b9TV8pucFQXS b96uk3sjQJR0j29wVBPyeq4Ur9JtR/r6xd23Ywne+B2l1twySHhSuneWXSDs 8k5lxS6Pxc0B+0u8U4SnJP6z7+R2w+7n1ivPAphYckhSyWUBE26cBKaHaS+s rz/yyVXoAnP6YlvQ+15Q/h0LKCzrhMSVyTF7LYJfNFoGCjaUwlY3vY/1lvB9 HeF0IcNBSJ0+6KhAeHqEQ+8WC7sGKO/nxS3Q4cBJKOTeowcjCDDZ3dJm2gW9 gb2iJoJo5FBnu2ySYkPiWWRBuhZx/+DOT57pVXCXNLgjWNMMEpkxcyBYGnYM A8+hNX3QxeCt5olhuP2ljhZqVyKx1mfdumA2Xv7a6JaUTQN1pN//1PpaHHmy 56myZC+Ro2pdC2eGoHb8fYMyvxf88J01XXtoKBe9svW8OAuetZtlHhM+6z5r fUchvx3k+Ld/CpJrENooyCg9zwT1RGBklsMX+K85vEDBno9xw3uihusakLIx tHhRwgiMpUOYFoISUPdrBf9wLoI56c4wZ3MVOOdPqyyRLoXcnJ/ywoTXkXv7 z3E3vIFd/7Vzq7vjoTjBg9SRTox9GOC5jg+Cqx/Rn1lI+N+XU6aeskxUnRal FR2sxBa/Uk3/xyPQWpjJEvzpR+3xQjfZrS2w3fy36CinBVUn9ikXnxtAaNZV T0Z9KzRVRO8ZOLEh/9nSW30vHWrBSbQNdztAze5yXTDAwO+CDZTUrQKo3cp+ 3rqiAzR5rSDazm6QXjgxTVi90A78EzxvLRuKdm/C007zULp3y/iTXQQPbr/f rr6RDkWzyqQAbza8NW7ofXrfCsqT6tfnbZ9jf3xv1afvNGxWybO1Oc2H3Zdq HsX1HexyH5UojVeDVvlwXkx8LwLqP9fHCgugHfQ6sHp4AFl2mmb5j9ohl5Az dn+SBelbl58aVbQj/Ie8DP8nA1Vrxc9WTLXAjW/49cqXegRcYZGvtbCRp/Dm 88KERlS97H422dGB3ylV38/8YUCW4nPv92kiD78e3jj1LRP6jFuNVxr7kLJ2 57zqnzzkjXu07nfrBtnMPJw9+hWUfeP6QbENkHvAGqfu50HrdIXCcd8O+Is6 XYlJIOZw0jt5XefzsFx70Wj6EQNy4tNa+EHUfUTPuUUEP5CP+5stnOiBm396 qsK9EVhLV1JWOrRD7Ols4yQiz67OyLuRn/AQMY/ryGxpgLOhe3urQxcCLlWM dfCaIHflkexG/w64+T6za9FpBtkkW1rlBQ+0K7wBiSEenoY90rpJ5JqeV1ah WjQF+ooLf/wdGoTP1o8Hv60bwvRd72ff14xALGvSYZhL1PET51sfbQg+yvN+ 6HrjK1p2jS9M7G1GwGRs/AvHOqR+XnEy5RPhxXte3Gm5zoRd1mbmMVsuzCcb +cW7CyBxkOxRkjUImthhucjXbFBFVFdsmC6E5LIfUw7UbOjZ1E7QvIbBH2j9 uGF0GB6765c4vqaD8/GZqGpiH0ROeQwrubaAtna5zKoOFsSe/Dt023AYen8v WTa1VkFRpz3V7goDHBtuXpgHHeX0fc9inrRD8n5Ze8jvz0h69cm9msgtcTV7 dsbuHlx6sF/fPJwPufWpskpLCE/b+ORf45O76DOIJTVeH0KMndKv18T8HLV4 OKT7pxyKceav6B5dkLq8mnQ6k46A69ZTpUR/S/tFja8KZcDWIPWdJ8HvtBQ3 0orHTaAdMpWNXVgCPYfFrp0v8zH371WDQU02PDZ7KavWstGh7L+d41uKmM32 qqMjVFB0rFWshb5hQfLO9Ep1NsJ8PkxOnu5EkvSI4ymCt8yzjiSX+Bfj6db6 06GHeFj2juHA6ST4ievCfBqSBfVyO1r4BQ5o4v+W22l9gukcQ9+0B3zCG/8W L4q4hSOSnQ/Ko7jQXJvg+1yWDdmezMtCIUyMba+ea/S0Ed7ZZVPfiL6IFald m/GDBcndv9R7VDPgd6GhQu8QHfLZvJ9FjwRQvB1/sT+pCaHZ26+zaRUoMLvg aqfRgZSm6Ud/hYdgPRSVZf6zFJTo8Vdplh2I/2q7PlaWuF+gebqglAnT/K8e y4l5Z36/lpNdUQNS3mjXqyfmqPr34EPyHSoSDx4bGk0k5vo8+zCZHh46unxT Sq8PQ3DFvX/9fgEUzI+3P6M14WJrcGPSygFEN46fUxSjgTzbYSqQUgE7q5mD 614zoe+h63Z8DxWp0aYh8+vY0Ko385ia9xWj0wW5qXN5MLtS/0lUhfC3prsK D7Wr4T+b3nI+gIOneSnSx1azIaU5Mvz9Bxu2bhJe+VPDsJlaGRnTPQz9/ory z+JsqAmr7zea14+CBNN8qzt0KK8IeXjOvwWSJbd/8QXZkJxVPvHpPg+e/fVN UxX18F/x7nuOBh0sCbZaegQbxvvstZ+IDmD09aGLhqJUqG25uzUiJQMX3yqG R81qQ+3WxVdX1XdCsXZccoz4fdoa8nvTPsLP9++88yT5HWQ2nWvuUKbBvPBP YZXbNyRlWw+lRrOhvb5+4XyffiSahK3uey9A27xSh6SWIaSP7nlStbQNrMgX ZCVFgocH959IHa9DfaZCXbThAKRfdi7NCObCN8hUl9rOA0VJiGcuFIGxOyaK G2yI65eYtPe5Vy36vlnPDF0cBGVWtJuCdRpIG4wZlb+8kRTpN4e0tglW7mKB zYYsuJw+oSn+iYEtuQW3m04Sff/ZjMqo/UDkjyG5814DyLUoLWVlYDy5X59z vweKW23DFYLLoHn7r9rFlP+/v+KAljDTAj92z9UReHARyK4MiKseQZPt3bI9 EQQXnjD7pTI/Fkt4x+R52/pAWaSR8LqfC+lXaneNaK2wM707/eUbMV+ovshJ pUJu38fntDn5xDwe6n/5ZxARIi9vha8k5vUap7rr72PgRpE5uzKHhvyFT/WU hbjQcjd0W7iUD0UpkkFcXzW2HFBeaD/OhF9zpVfrwSZctb8qBNcR2L7Rmplx J3wj0lPXdorIvXBru+0PPiBqP097GzGfSBQTtT7fowh03yJquJdYh8eHL7RX DoLveaj2wAMuuH8d3n0gcplUbfohxzgcR3jr+xYn9YB8/qfX9fAI+CtWXdZq E8D8RZECexUFHUvjpkuJ9fEYXxmkspwG5urEhyp6zbAZT1s65Ubk7+V1KxSZ A+iwWcjWU6qA3BvyrF0d7yHX3Nqbt7wQSz4fE8kW/n+/J7+bfovaoPZ8d9Y5 sUxk5S/3ivXtBVOi/uqsyjZIq/YeVyXmjmLDta4VcS2w28/p1jTkQG1iqO/L glaQJ9r0zm/vgaDqavdMHBtJNceO3bzegplTc4jyIOYOedVGcoUral9feZtL 5Ee+tMvrbdtY6Kh1OLxRlYWUxUINo1VMxG5R2f77HwsR5w+ds9lPeBPFPvvZ CxbIAatTQ27UQ3NWw8pEYr2pOdYOJUt6sb/UqeX7DB0fstVVAxsFqO4pd4zy YSJiw083r+RG6OVPqm9Z0Y1x2RPn7noSf2fRk6rPcQU4tY7al7WCDbmrabR1 ph8wevy7x8HpDJDzxpQaDYKRIZA0Yz7nosdS3czqJJWYy7ZLOvZUw7H9jNvI ChY0FffNS7otgGVdTq5yOuEvutUr7lRwUL+tOSJfiajX7m7be+9CMT6/xGI5 qRdERJW851Wgqik1LZhD9O/paIfA0WLQuImvb1S2Qy/WNHPwKOELQl7Kk1nV 4HTPGWZI9cAJsmRuzRDyKK6DoWeb4fZtW73qpQqErv774btwEyJ8XLYs8OyA p5O8fkxcFxQc2xTupVEx2eNb62szCGcPsechN2sQM1i58kZuEYJ1euJzLgxC ovX9xon+JgiXtCe2lBBzyTDHJ1mJD63GpnWnVYgc2Tq2PfpYLcxF9F7kFpdA /JPrvMxSYv71XGkq3TYE1ozUVUMDFk5ZnbIUXTwEEecfs3KOccDp4HewTHlw vp15YYxRCXMnl2KTBW1IEpd3cdn1FdPzT0suvkqD6dOC8azVfIhUWdw6ua0H HbHK+zL+NeNHMfdmsjAfxnHSWvNXDsI2u2bT0YdMhI6Z1q/e1oYstyGFbsIn yBrdrJEAXzi3JDfYruqAbdKi3oHEHuQzZ/V8rmCh1vHUd6cewq8PvdOp2EFF ugpDP/oRDTF+nfeOLyB8O8XllddBYm4ZJKkr6XAxOlw5021eCa25vGTdNBYK dEKE2o37ISe5l/nbJAMcx75tMsoloDxaJHrKuxgSaec27LdqQ8yBqKminm8g d1pMzzmWA8qnDSXhlwSwG308FZbJhciK1tjMJ/3Ifx9woPvrMCSb77ZdDBxA hohJhxXhN4p3LG83nhhAS++Hwg3HqOj4+2J99eM2mNIG6d+ciH48fv7j4qYq OL9ad2/NU6JuTlzx5enXgLzB55zaq2x02OUszjlcB5s1j/1PPhmBWWypdrUe 8fxv5j01De2E3tzUjqW5UVhp6FN+2WAEbgpLvYz2f4H58IZrccM1aLvA/VhC +Gyozt7ZTE0mElc0mHEJ3hyVpoyt6P0E6+UWtwzHW+HzXnr9NiPCY8P/0dXe 1+OIUE3s65YWyLulRPKShsCJrKNzX9VhCXdCes3zJjit1a57dUYAwwlzv2t2 fHiW3F194mwJ4kt+jfnsbkYSxTOzooiDrFc6fnr1LTBWs+kRf0rktav4uaam Cgi03kzWHWLjg22EhiyVhyqdklbvmT5oW92a2WZNhXT4BYPV6sR60J9VrvyQ B6qH2GcJ1WKMblx0r7qcjRaP8KOUG1SQPFZHG6u+h9rGVcaSH8pgKXL7pi1R p5Smwb/fqL1YsiRMqruKDXV6g8/j7SMQT8iYJZlcC+sQ4evDoi3Y9e1jd3w/ A1aK+aIzhQPY3+wcuSBvCEnPArMPPO9G7akZx+cDdPiT8lK+OBJ+pRqdMZ3C hpmptrP+/RH498gygqu4uCk0366DKUCP6+F0ufVdGK2kx9lPVUH/q1qrJsEX Fcl9twtFhhB8Y9tk9eduOJz+cWDYkgb905vOO77thC17pPn44WY8ldDR1Z4z AhH1+FtBHUzwb/affrqNChvfsS/DD+gY+/pLuqSwBY5FuRY9f9mIcTi9qKD1 AzQuT3ZV7G6E+S2VGUjkEn33JNo0h4cxvz9aZxtpkFr9zPyICw1V5mvObL/R D7t9mrFpE53wPP9y6FduCwKilGRS67ioEi192NNZD8kIhytq8pmo5t49FdFD h2x1nJVR0QBshCZaT5sQc3WRt4ClyULSybjYEON6kJ88YodtD4P5DbcdfVMl mNExMZg5yEeVwbO2v+lM2M7+4rzy6AC0Nze/zJxH9BXHJ60u5z2kpcZPvCAJ 4GBwOCDh8SC6DHLyriZz0DF1Q1jrXTNiFkc8Xa+VA1Lg5au+rzth+SvZvvbi CKgxgab5B3gIvdBiOuZHzD+tkIg4cxr4yxROWO6morS/b20lsY76qz2W7xXQ YWVVWqlB5HP4+6zZ16h86M329lNueI0fN18vvaXLgXVu88mm403wdrh7VzOc hvjahZs+3mlEwIelhhPFfPDjhT/t/daBcck/+4odq5GuvuvLlT+VUE765X36 Uj9GW/eETilmIjiL5DfLoJ9Yz6j9kuW9CBu32PF2hgHzOGdyVXMhpq8EzJ8m rj+r38Cb4cUDt9CsIXApEzE4eWjv8QxYfWlMnM8l5uYv2yuL7Jsx2rM1d5NV FmqVclgm1b3weSt0S6ieDhr5gGj9YDzc3uvmpNVWIT9iC1vDahDpBzwS59t8 Ab9t2XGLCRbGap6qSNb2wzz9YU7RJxa8v28Lr9cheNR5p7zLbwFY6gbatrXD IG9Rutz+sQbqLcnx6osGoeXmdYF8kIeecXNLkdeE1xuMKbnF5qIF2XNuR7Ex btEy9CKjDKQg3xJSXxwUlfhLg6t5kJO2ZOkR9eIs4y+sfJeB8Eta72ubaRA+ ydftiWVBgTuTYaNCg5/dzEnnfRwEt1+48eMdA6StA92Pjt9FmMnGy1p5wxjb 6vQyupcKfvvdNd5BI4j1ux25/MP/+VWVEr+TqLfPz0Kw7ilibBruMub3Iq/q qNWfvB5or9L3znnWjtGywIjr7i0o7YpYoKI/gtE6ib6DF4ah1fChPZrBhdzK gjzudA3i5ZXIAzc6YO212FAnnQ+Wm4M+r5+GehH71b13ebBdeFut+XgvUscv V+60pENhdtDj7dadWDJlrPDhLg1dy3dSDx0m/PnIQ7tPUd2Q0be70fK2DwrL VKNURwiu08hpFt5YCJKJer5y2UMEHJQ4IGdbD+9X34NlguhI/xOl26dZAT47 fR89lPDkuwc/WlUTPhZxqz+tsAZaLrH/WAMUOB08EL3siQDpStrhU9k9/7+v KeIBnYpQkR3b7LjDCLN+RZU0aIR+fZqLyrNOsEYtU0TZxHXN/2q9ztQVagKt iHgqGwKzXd4iC7nE9ZMKkiHHYfpo9EctbWL+X7mi7/FmCKnL79aYWBN+5Z4Y svtfP5p0HyfNtuaDxtOUCEj5gK6yOavCfWjQuzEzcu5CDLIYgrOWhAfq5461 NdDp0NhxtqrmMhXyly41BBB8kj5hZr/+JQuUZb3OP5OywfRd8vrvwy60XDhL SZBgQOGFWMfwfgYyOldkelziwGW3rofQbyJv/M9bXQ2pA4u148j5E8R6Fc2f O6FIeIG2Cz9hMQfMdh+Pwz2D6PiRK7/5ewuSpr0KyA/LwG2929uVQvzcs+5b 0iM6KFaVFuekakH5ukV7ZVou9N55nVsnTkdLzXLq09ERaNLVT0mtI+aImmbm kvV1EPFjnQoJH4bi5qP70wuJOVPwScOoqQmkWUnV282qEcqX9o1XzIcbY7dC sUIxFFeqvJjf3Y3pFcWk8VVdICtOll7ZVAJywTLXlSoceOZ8UHMWtIEaHa6v Z1KDi3eUb7lt78aSCi0VSdl2eId3VISvI/jqTZCTLqkf7r49Qlf2UkEJTrwV G18LwZ89bwM2COBp1TmRlVINtYsvPl7cV4yWxJWhCZZNyBnqg+TOETjkfTTc l8+CWavG2msLGSjdto69IpUD/8s//kjQGf+/Lqwfbd+GKp7bjkH3euhdv1Qc 1JeL9H8nikVYFFBv+XJX3+sBZThCME3KgfU+Pb3Tw3VQaNwWPvBzGPw/cy9m DVEhm7uBdECZh7CxjoCuV52gmX7Z3mT1BfXNa07/fDuCnNvrTUcmeLCbVO1/ 2MwBtw+7rzOGQDnaK/H4SBji7VYzhdta4a0nf2FODhfWPIuNft3E8dVhUPL4 CMZX9heum/UNnus8L/XZ9oIkpkT2WhMD8oOyU2Wm/78/XqSPlMrEaETkRj1F woePchscnAfxUrr5+fcnLFQ1HHh8XZkKcsa/O4OakbBtNVROojciaffDoyV0 NpRznwtvujWCGKv1d9iipeixgfK9t4OQZLXECv8kvLH30/XkT1lI4nsmXHdr hEb6dPrqwR7CV65eCvbmgtmjmnAVndDcIau14f/9KwqPH9GvZeLiSvcnw9xG kKOPNv573gly1LID6+bFgbq5g2T/geCGbwlZejwBklz569/UliGf3tAaNs6G pF8M9ZwvBZzXoUJHNtRCzEfSUcRmBEl55OzDIXQEz2KFlW5iYu+jP+t75g/D +eE61c0Jw7AtHaZM7huGHtM6I+nnK/g1rMj3j6WjK7g2n2ZNh539pivfpYm5 LS9U6qKXCRdjJcuP6oSf1mqnmw0QvMsNLZm/geDlpF4Jszc52HulXWGJGZGL CedIMTrD6ErtkbZ2ZsLBuJuWp84DP3Jqj9VvOjoY72UGwr7CfyKielYpA0zr 4ZTLfgPQV6Kkdu8Zgm9P/6beXTxoaavmP7jHgnnNuZUbPzaDcidxgfq3ULRo 3i9TWNQFddedzvv+3w9lc3XOQSKnj6hO5ymLcpAaNCSs1tkFzoRwTOTrSpAk U46VvTKE9RHO7XXXOFDMMnZp7myFyK5XXWZHB0H21bY/Hv0KAb5HI0rog2AJ U6Q3/mLC6rdHzFoeDRHrbnj9UWnF3HLOMcNkJhT05soX+jVDz+DyFkO9Akwu nKu+a0CAUPLNjD3rWkAe+BXX6PAEMtdsGn68JOaizPeK1pccHNl38FzuIx7a SgLvKL3iQ5lVP1MmTtTrAM/8+gUBInZX3k+OJ3qx5FzQtJ0AN5fVuf3tYUJc 7eqNuU1M9KgKn1mNPnhQlSoHtUeQGDdL9u/kCPLiNtA4ywS4+lJPYeNbBvQd c1MyK4dgzp1M75tFAymRce/iLyp8xN/XdrrRkH9urY414Wdat9a/fFfUh9Do fe2s7D6IPdLRVQpiQPpkk5BZegPMJ1tDLH8JMD5nyovU8xV6nd8evH7Th6jF cRHtQZ0gLUq2jewWwJnvFl24txsUydjnEn3RUHRa7L1NmvAWw2/K/VIC0FQv Fk3s4sKp3aml8Qsf+7l4paRM5MPnIrE7KoSHpp3pklcSQM8wd4HzuWL46O8J 7dglgILuUEzRLhZI9xIo3nEZMOZw7qfQuCBpP9WpW9AKPSPKq9mkcJRLNh/y /v9752227365soVYh6Sc53N7QDWNFkrxpmLu6oOi7l6DYJoWOe4/MoR6C2eD h6IDINtu5AlvrYW0r9SWit09cFgl/FXMiDjOzRZvMhPZ0J+IrL1b3ASKC/tY hFAypPlfI6QWN8C5Wo2y4PYA3Kb3fZ/0qQD1VDFp+U+iTzalGXw86oYke9U3 6zRqILcp6/mB4WTkPRL70qhTiw778aD0J1zYLbB5rM3MJLwr2+apfTgoBS6F 3UYvoE5O33hYcwSUvGfMXUNfoeieLc/+0Y8xQ/ma54VM6ItpTqfU98J3hfCj v6pcqCnk/RNcL4OM+/xcizEGpIqXPrZ7wEXE/JPTJ1+VYS5/9LHRLgaCb+8z 8X/VhCpKMW+9WD9c0r7R5vzft9v7L+4pr4BWjffsfRJMyATvLvm5sR2bNU/k Zn8XQFt++01KRi/kLK4/asp8D5tHPwo/RhF1bunoNqmUB+ac751hyVRwfn9p Vl/VjAimzJrDVxvAnJc9frOOCmPXrgUTt2hwfC6T1jLIwcrrcVLLY7hIImWf GYjrh+zizxdkHvHhd2SWQ7k3HbUarOljN2hQ3jHvzOPFTUhKLrSMnBGAZKSx Xsu8BOGH5t78HEb4aYO82ZEvTYhOHn5alzEC28Gbj/TOjmCD4wWdu3k8mF+x v2Um9hUygjNtw7tHECp/7tOLlzzUjprdJyXz0KRBqZntzoe84HfKTUc+yv+8 8Dj1vRPpWx59ExzsBjX1Ychd8jBoj4ePuMxvgR4vjXpKJxUxee8SnuqXwHy2 Zz3VioUjh4zWDzs0Iq+jkOnwgwXqxV5P+3tfQZZPu7HgaBpivVQe1dUQPtRq Il3DZUP37qZQkWIuWCrX32305CGkOHjbo6UsKF4yT05U/ooPNa/nPiM8dmyc a7KgmwnawPBjy8RYUNoebrvdH450SX4yKSAX1JYDXrONGuF5Q1bn5oI2aB25 H3E0oRvkzNtNzCWpkF+er/18+zDcaotqT/QOwWOrcE1bEOH7U07RJ7U/gFS1 yH2q/ybc/Npcvqd+gdVeX8/0DXzEuBisG/+UCmp/vqLN9W9InTwsbveQBZl6 s5753E4Y2lGOPVzJxuZpNeOdVjy4HXUXo74cgnM3ecmR+BLoJUovdC/ogu7K 8B4fDxqYQWtpRee7oUk73R5nPghhIZ/QUGUWyKuqZp2dlwG73zHBnOvlqOAn LvLqGkDX313PefYcyMndHZEnvIRsWury81YzAiqtP7neoUKx4fLgj6h6GF8Q mbV/RQPEZ715UHp4BEU6O1LvMZmQNm7fXnGRCrX9B/Ya/20k+iNXwa2AgTDN j1f2fWbjQ97evpcSdIhvMpPbRPDwdMerXX+fdID2XbZHbVs5KMnPqmu70sFR 16Z3HG5HaOxYiTfBu7472+tvegkgEx45Y6HbhGkIOuur6dCrcF9/4xYDiVE+ xUF0GkJb95FZ10tBWbjer8K7BtTH1u+VF5bCVlnGz8ikEVobKvescuiDldjN z2W7ecQ8cTh3404ZPhSIBN+q50BCueFypA+Rz3I9raInCD/ftXGZ8qdmaPw4 oqA0l4X85YVHvZ8Q3MyyYJb/IurRQNLAU6EMsZlrHy6eJDhWzuJXWGsVJMV0 TlIMWDC9Fk53utwBsf5HenJEPiRFRp7XU62AWnRISUNaH3y1pWhr3/HgtD15 i//EEJL2n12wkuD+Bf2bD/VeYyCpjXf1wFgvLtL2rU6R7oWy+zKbDu1mLOFp Kpyb6IO+jLerywGiv/RU/G4lZcLao0mv9WofnnZfklzFY+CixsCdwldUKPtP FS4i/IdUeiQx5lo7wc13ThcZdSAn8bvt3kcCuM0ELJjaNwIWfdenwwl8kLIy z03euYkC9Y01mlP/738bnzBi/QYcu6/vgzAAQ9lT6lHSPHQE1HwsWkuFwn33 9uq8VkxKkcrUhoj5UPfl1G8hKvaeMpVrfMQE6eStJWqZBH/bzN6/YaodMp4K PYsedYB5aOcV6d39SI+pDp3vyoS1lPT+pt9UBITskD7j3Y+AhR4rvqX3wsrk RP++o4Q3Tr33HfzZA60JxvDcI63wM7jCUCkYQkzMKtU3drHQ2/Eh6lFaCcb5 ygsSdHsQ0DZIDlpOzI+w6fxrW+L/f1/MbrdUOnyDro4IH6NBsmDznKznuSCt 7E+5l0WG3KRccNDnVETdEH9elNqNKs9FPd8GafA+21JADe8Ap+fQTD/h+V1V JZo+xmxwNCYJMarC2PChqrwoGmj1sc1niytBsaxtfutIQUyk54KnsYRnsKk7 G9La4Se30eWzfAvic9PcZQvp0NX7q/vKhwly4QM1p84K9C3MEc3fNQBm0cec pzYCVIh3D/DHBbD2/C6S8pzgQTfjxjH+R0j2M/9Fs9uRlEEt23CKOM9Eltbm v50wpTlmie5twY+/h7U+THOhe0haLmEVC3aNIcZPmwaRpO2l+nxDE1IHlu7M /cFBwGOtg4vmfIW1weH2VyalkAlZbJGwohN6c4xOV3FaMEr/j6IzDYf6bcPw JElIkkQJlUraEJLUJQmhSJKkSCqVSiISEv4lJGlTSUJSSZKQrbHvjH1njJkx ZsYSKoV6n/eTLznm+D3PfV/XeeY45qdvWOVG5m/5ZsrdimaSGyuUBo1jIRVt kaS9ldyn3bEe2rOjsKBSdI3MS5Bql+G9xbwOrhqZrxMl6xDsqyfbpliAlATR 3Sm3hhHAbvUbIznHnBV95BPxQ7m8NBUN0j/Zjq+2NrkPwtjLaG7xBOnnebZ2 Q+J8SBkff/afKQ/URxSJL5olSFplwjQ404eWSi2DKd9+JLgxe3O8uXh2jFVv GdgP1z3ZZ37QerFUq7Xu+0kuOG4v/w4eK4eLZZFT6edmWHlTxdasrYeMuc3Y MZkSNJh8DRny4MEs3a+9pI+N5MyCW1e212Ns5ebPkcQLOBVaW6/84WCNY472 FRbh1EPqb9eGR0Nk/pdVYZo87G/Z3dC5k481vww7ou8Snqlg7jz6+j3kg1Yd XdnUD90rex4HvawH1W9LSTfpb1Xb6lnDH3tAKwgtbTjBgHCAkdLao62wyHMz WDLcBYk9C6/vufEJSaWJXldD69F26feHONtuNHTJNheXk351ay1bbcwk3vP3 Tci6IlCan7+Z+pMEsRmvaTzqAuXHlYR1p+qg92OEctU1GRwl3VQxzz5Im/zt aZPjgiEv88nFgQW9ZQmKQbvfEv5ccVbwQzUUm+3EW25Xwn1q55OWDV1IlMqI vhfAxLSg7dcoxSYMh/5UWtYzAm8ngZnxoyR3Nf9WZTZ3QNjQmy0nRLxwjuPV LTP3Yaz415OewoGgc779PNJb9Fke+qJqeZi8tOTZkyONUHIS79qyiQX3tKeP dW/2wXVF7hW193wE124WPKDcAurnuspv52Pg9HfHmT7iP8FDo4f/rquBc5T4 TY2IQajWFxgldbbAWTvv5B/hSigPxJjJDtEhY3Mm+119KSjdtjcUPd6ja6/d XSMTcm82zyPTbQbgoP5w37q0GuiuN3jlc6ERuaw5ycM2PRA8wDTdLdkECsUw XuP4cWy6Wx28KKcfGbekKqaCSa5WrpUJFaxE08OjayxnM6G4/XAcd+ITJHyf H77bTcWowp+4WNPPeBy0fSDGm4Fy+zQ5sz39cPOeGMslvbUySqcsisxJ9rIH iiZyZA85H+b0KnTAe/aQdLMBA7V1ValZa/nI4laaaxT1w+HhlY4FN9KRtutM lddiDqjHNjYqXP6MWH2bF9mNxMeEF99aU92IsLdKVgPB/firNvL3rBMHkV9t tvoIDENGJTp5dmsJHBrYJ0JIX1HmDxoEz/ZBdb7vhWni/+7a2ScuJ/bBJ579 vC6SAcFX+k8z7/dAXJazsb+iD/S5y79PsWMJl8SJ55hVQttdIjxLtB1d9w8H Rl4bInlIyWkmea0nSqvMpVVDdbDuwUWRYigGKqy5HJGMUfFFj0OnKhD8UT3t rVcnLHa9Dr6vVQyD6kzXqfoGSLVuFRK5zIOdjPW5F579SF84OUtVgQ+Lmy82 LtDiomG+X5TN/T4Ub/GY0zyb8J9N1WxPixZM/pqbfmFsgPTREk7xn2akRgZf mE7NhMyyTwoC2VSkZ3pGi1rwQe8YF8kVqiV7SLNGJPGGtL+2JtoMUFqcz7gZ 3Ufw34dhvk3VkLtop3TjFQdes9xiPrQ0ISytyITd0wb+0FVL3QLCzYvv3BbW aYRX2O2aLRGtYEQPGYzXkr2LEJx9KeorjLX0OGuqeyFn4ZxisLAL3PJ4uzC1 AchJm777fqwLo3uz99M2EK8aKaLlc9kIutz0b4NlCyj/lJmzEiph11thF/20 F2EzD1xFv3cijCkpdH1DA7JGFX/pSzWiOOhQ23UOA5wnkudDV5F9okfV/jfe g7ZrN+bCvBhN0yvyZGndCNtZMck834XU+J11l3U+ISXb6dwVB+LXL+rzUlfX Q9FR4rmdRRwk3VsV8+fQYdNwafyWQBnEqwtvUSJInn1VDlcd50Lx9j+NFOlE nDOXf3712wgUxV8tEWQ3Y9o9bRb1EwuxYZc0n738gFG/Bp/5b9qhsTjlZstH 4ntHQ94rcuMQvawwjrq5EXSlt+uDgwgvd+dFe0d/haL0paBLyf//3g6949bh 1ZgIlnzxaagNUccb0q45Eh4RdVLrGAyATNWKgTBFGhzyPt/xzCfnHvrD6G5I Id592b59XgIL9KA7H04sJvfE/5WqKNsI109y692SKuAaxll7K4YFjkpHdIwu yaGyG9e+/nkKlW9XN5m/ZyNi90W/+rp0JF1a80PzZRkkmMZPjvzjw/CfLJyD 6IiUCL3x5BITqmaca+83tsG7JrSjiToAZfkJhaKCGsRqi1eWz4+DhJb0D4vX 5ShMSv/Z60j8KSxeWYrSiuHzS2nVKzkI6hD6PIvfjaR0lfWMWB6sGZ8O7k5m ws6dezf6dA84X9S5KlH1qGZ1CQY8HII//cL1JqcGFJ4ZDHMLH4Lhupm6eF8+ jIUCXqTPrkaSyvzx3KvdcGV2TvmUNIFTve7bgS9lUGxdvuzQ3V407Vziuq+2 EZyIyYTqhg4EW/YL3P/VDJuXibXB0jSUP/qRODjci8mDZoatSTwYUAdGJzj9 MHu/eMRnJRfuIbe25VsxyL5fj6y92YbgQwYHLDJqYB3ftND0CuEa204nW+ky WLTxEybPkP2XvzYwPcWFsPYO5RnLdlh5yokdOTECl8K94lKHmShXkQlen12F 8sBT8kJLSI8oijzS29KEn/x9npoJpHcetJh7yPbDZ/Z0D9d8CEHRARuXC3WC f+nCsZ7JZjAenTvL2M1EQtM/3evFPGSt6U1f6cZGl1sZQyKEAdVRh2S5j1Qo 3ro+O3VDDh4KoO5EXiuo8gvmZWzLgHvA2dTO0j64qDyY6CJ+xL76JKUpcATq Mn8lBXQ4hFPF72b7UGH9R91xuyEDTvcDN8cv6IPQlQeLOp9z4KS69o5iKRuC uhNreu51Iqlhk8k64WrSl46puYXEl1SkZ988T/Z47dodgVdbkN3f1yvgQUfb xXuK+rZUUM6emrttTyiMqTO0XA0uJG6Fuzh/Ifl5ymjXXoNBRC+lPwqy7EKb ibukSkAdbHQ2xywb7Ye29499y5ePgCYbs75G6jO0Q3xboz63Q+KSfeJCDwbs Ag4VhrEHQOsxNjevbMHEc76vVXQLLLRrhwzri3D1utZnNUXCkWoT4Q46dJgp 6C+I/v/3JXVMeC951wubB4+aVp8jnHfzgYbE0iJQV/nmZd/sQfZurV0ephzo mWj0n9tMw+T1md1eZq2gG+bcWZ6WD9d25j52WA6iT4wr9e3uAO3xBzuhlF7U dv8s3FRB7v3TM4bZvQHYfXytup/s7aYvh11m/LhQXXetdECkFA4Hwpgfmlvh X1ulMSOTgXPHg1PvpHLhNG53fhmVAZMT6+olibdaS0zU16oNQvAyg3ZrTSMc uGG+37N6kTDeelH5CQMGBps3pV4egH9i5+oek2Hk9kVtkie8HPlr47bhRD6s y7+eTorsR2qo+n6hOVV4KDJ2/vNtOtxv7XbofEj4QqR3Zxi1CdNHHidZHm2D k97LCJl3TKhnhaztG+eRe7Oba1RyF7Edf7+Ne8ZDryyjLja9FcbndHL/O8OA 0uxvbdEhNMS6C2XmXmrGhhG3jcsyOZj+JDH355c+jDIVCoYlG2EduFjXZTUX aVPisRck2Ri+bfUolNyHHitr5o7Bc7hYyKt1TzLQ5K96c14iGxLl1vzqneng r93xZSp7EFJFp/98Tq2HSsqplDl1XOj5aD97T02F4vyAUH7/G/x1uO4wSvjC 4h7t58OUr4gblbhcXEGH8L/3en2cQkTvMl9intiL6KzzPq+J39DVlA9reH2B 3YHx2rvk+cs9r55WqOYh415U8pJ/I2hbm/xBK5uNFNGIVnNbJoQPJRZ62jAx +nsk2LV5ABTje7pT8Q7wd72dtFKbjnLLGwsyWlpBGZWJwKfryNrR1avzrAAt zHVMq80s8O3Gx78UdIAum3fwzD6Sdyt26u3y6YRrtNDvpIMF8J/YPvfUl9to a9iZxWrsRax95A9B7bdoGmbkBDSQ3i4VU30tmQGxwAcrvzPrQf8btXZqTRJk Xgd4+JmWwNnIYS91QS1yD/0zL6jogLq61BzVV8PoePaTGSA4AqufawdyLzCg feLiEZ41D0kbNQQtvakobczKFRkZhPAtjx0rhCtw0SrfyiJgEPIsdX1PMl/s HsvJn4f5uOUVsmWyjY3wPYOvnrzoB/Wfk+ptSiFK7/zx1KKxkHy42nNClg29 HQXV/QYP4WowqnBFjvREWf2Vwst9YHtfmz5M8mYi8yxXWnIAEbJJ1+3i2+Ef /vhB4OxipLYeyS0J54O61T46yKgMjnOSqcKW5LnFVzU8EU2Fxesmc9aGZghl th8MiB6AgRNXW3eMjskIlgm0mcgqr3vyd4bMRURQoYPCI6S+fqW2+FU+usrO 6C/j0mFl9djnkQrxGJeJhcoV9WAsd1jz7BEPbmUntxeF82AZu6E4exkT6Rk7 qyK7mXDbvq3R+RUDYoxCp62EmxRPbS7oUviIqKD/DhddZsB4P3Vb6sdS+J+f Z+Qk/g1Z1/MStkvy0XRMnsVT7YbDM+65FqE3MLBseGhV34WJSaGWQNJzejOL +a41BVhpc9jqiDkHtzYUumzqIvn6KdnZ340FO0P9R5dP9YKyxlqcfaEQSgrr FaxE+FDxNoy6qEn4+BVlZPk0D128h05Oz2nwD51XtPBrDxw++2yYNxkHytva LyF3b4PSbr7uV98zyN2Jk9hBeJCuPbaKz+rD/tJVI+mxdFgabC9aSnLx9OXW mSKxIXTtFzL7F9GN4w2MbeppfWjz2/66/1cpRnfMujJbowauhi9nHXuUD+19 ExuPzSuAV5WXVZxXMVyLvro/+PgF4fyy3nji43pTzv0On1uh6Kf2obqxh/i0 1pRjViWSOk82pFbxMGoXGbTPgwUKNWyqw+MaHA3p/D+mdFQqa2XeoPfDdrHe OlWlEeLv0vLJmunEh/woL2bIea77d+iTyBDStIvGnxgy8fDmPcofi064nL3A NSVcUjsVv4m5vB+OK4pu7xEcBsXK/Sh39AuUH+98fpnsv8TjberK3tlQynih nufVgGqqP+3N20aUq9X2vHnZgg3b7h8+OjICB2wZp9kNg25b6y3G+gA9gce5 szq+wWHxU9z41wWXe/kT9rqtkE6YK9SfRvpYa+v5Yz2Ev/yCVC0dyPwuqe+6 KP4UlPrvSe9e8ZG6abdAcugwlEtvPL39ohwR306nvGwugvVEV5hd7TCiDD+8 WH2mClYvmUabxUjPSQ2x8wZaYei1YZHSNB9isoMKD/61wOb82r4fSQ2IMjvT fVK+AbqzrG5YLhxC8H2zODdFNkbjHDoOPmtCl9SOVQ/YDUheq9NboNCFEA+5 p04hgzCc7/04yacPk29tTu/Tb4FU4N51Fa2NEHrg2uy5lPSxw9n/vj4fgPDZ hoGL6bXEL64PXKjuBGVu8KszEh1oE402uebJRmze3KthTwqRWure+fFdMfYb rzlqf54Jrxv5oyZkHmxo40EzdCa0JxTKK0+24FaJsK5L5CDE3Do3B4nVQ2K5 YUhPMfEzZmbn1SV8iMh8aK+4N4TYRIkjbTpsRB55eOVVIg/09W0th8x5MO78 cPHN+wHkb1KuOlbIQ4LlzWvzvvUTHxyz/avbDlV668mQ64Q7j0XO7aSxob03 62+6KBVJVjHFRYdKQPWUf5ka34Qx+uVE0e90GE/Jzc6PInye8vkHS52OrsqE rTpJLDS4UDsM/rBhWPpJ4eZSFq6+sauM4fEQoZbYUXfgE1y538aD6SykX9Tc 459bD39ph21+PzuQMS1ouk51AJX+utdeyrPRYHsw+KwHB/RXh/MlRj8glWfs OyvnM1KXS6klLGaCviI52Mt0CK5zG/eUT7PRpNienC7ChcXcJfdV39Qgl3L3 MK15EOXT55Lbzo7A9YR3dJN8CaQWnRAQDuOAYraiy1atD5SqmkbLY1mEH9RV 8WkYfwKilfepD8M7YPufQp8hNPToFUeRf5d+PUyzsp0Gwyxd+6L1dCTNZJ2I LW+DWXPF0eCldKTfF68TkGyFi0TgnK5hsp/6gfnC+bn40/JoJtaVgdErxU47 /hVDz+1N4fafT6EemBqhXt0HqYq78RS5fvhve6W+Ri0ZMc/n92oH9UN4ZYk5 4xPhF1/TGye3kr1e+8M6+h/hiA1O78vr7HHxTgTPK5qBTQ8FSjf/okPiTtYj RdsBiLWqvcwjHOmVOTTj5F4IZuG/Nyan6Lj6hMktPjCCphNUixSyX89WppYO y/HgZFTX49/aBcVf7lqCH0ivyCZt1HRtQ0SJ9UI1eTochjWngnzSkP15S1ux Fwcr71HmnE8bxlX7S+t2yTDhU7hvbXJuE/ITlloETrHwZ9MWSswAyeE5Zs2L KDyk6x0ZWd7QjNjt9XOqC9sRMXuBvuLfNugdVlVZ3JUGYavNrqtqCG8cG41V nc9AefhD2u43XIgJx8YYbOwAY9+XU5v7yD3v/aOYVPyJcFD2jzVPachty9Sd T2lBmPvBHVb8Dmy4nfZiuwbxxHvv09pdqmCz+VrT//M1teqD9vG3eShv1tn0 V70CtfP/xtke4kNGxV6Pf64BQmN7ndy/DMGn4Mf0TeKxuSHNkVXvB8GJdNR6 IViAYtb8Q3cXkL533LXX5vIwmHPtzvqL0iE2e/cvUQrpobK004Z67XA3XdD8 fV0nVlL+VO+0GEHCx9UV1Sd64Lpg1suXal/R9XDpx4z9g/A6cezJxwIyf7+7 Kt63VmGsXfSD/Ccyt4lBk3HriMc+GhRZF1MDcZ0H4xsZ/Qhz8qz6e6kBPrzV 2uVMkueOhMrcCfdqHFuuvSwLys9/LCxa2Aa6/eCVbAsORo3051feHcEf6eTA heMDUOw5K5QnGgt/jpP8fqsCBLd+Puns3AkbaqgHs4IF6n7ezr5YLorXDzc/ OUqDbb5aO/TI3G8vE9wSzUekIe/+S3L+7I31y0YO9KGB697xdTYP4j8FJ7Y7 cOF6OG78D6cRfLmYY2oOPdggFvNDrbkdwVKrHu9d0gaNV6dGs+wZ6DL2yD4m PwIz+4uuMW4jOHfxtfbuDXxw9osfll1Nh9vF9lYB7X7oJ75MDJAdgpVl/63A wkYUC32t/eHEwOMtOktDCffGvHo9VNYxBMrmDwaSMW04/lFjxU3Sv6Oiu3Sd 1jbDbB7VQ3Uj8Ze/h+UWx5J9NG0rjMwlPTYUdm9B1VskZGQ+mQ6n4afVg5O2 8SNIXnlI85oV+anetPdZYye0T3/7s51wh97ZGKukxlr4C63pkLZrQeWX/BOf Dw5jQthZkNrZgtgLlYLzkxhwTR6aqr9ZDyXZ4PYDVkxIzal+1riRjXLnUe+T 5d1YM9+Tl+zDwjn2rKUND4agITbcmDrUiP0ac8fjnPjQl56/uyqdjuBNCzRl EgvRdEvmw/i7ZoTnf3p0hOTww+cPLsU9ZGB6p5nmxO5BTJ76wtfyK4AcTsmG 5xB/k+43Fmkuw8TpJaY6XzqRvNHO9casXoQ5jEiuERsAXf2i8XPtV1Ce2zd4 LK4ILm59U3tCiMc8Pypw8Fw3UjpEDmvpk+cwi9cd+0x46frGbivqI+hKJ53c xWlGss4tY71dHeA72/p7El4LHvrgJ7auDsn1CVrZkTQkbXL5oaLFg8tgfEVp Tzs47j7ld/Z2obrgettvTgPa1hjYmT4jPu7TU64mMwCNpcvSGA/a0WKquWCe Tz9WHpKJX/G6H9O0zSFl8/oQ+31ug9dEHWgOLxRdDqVDkPn4e/Fv4gXtuX7R 7i2QW+2i8ul3ByLSwib/eDCR2vg+yN48G5PsRR7zo6lwEHtXaUzy+HTYfxkL +gexv7j0ovpeOnpieBFHtvAQG6qWZ3S+CBYhxWW5y77gnOBzysHnQ6A5Jv9N SaxAqcSmVbx5DOT+Mz9qlE7uKfrOUyMyP1E+og5GhwsRPNXuOuVdCsHHzX3C 6k2odJuj6KI5CPUIFntu8SAoNaID9WXViBo876lNclZiZfTvr3498Kc/M835 yEIwy9XL0LsNLexq1iRjEPTAZVG994txK3GVVcyHIRivq7ae9Y5L+q3MkSHd j8dFc6mz9Mjz18u0l4QXQqdwpi9kaT8o79t+ztzjYcNc1Q+V99nYv+HJ+682 ffDjj7zLqRxGwJRKfuEY8ZWTwouGinsRIDyizv3/+9NPRq2ODW9DevUmbsAk F/53Hnuee3kfxhujfA/5FiDpxp+qHAuS5yKl1surOLg6KLs9pZSBaJu0rdHH etDhFjDg7MJCz/zvm41XDSHoP51Vupt7kKsnYr6b8Ia/zaDGHo9cxLYu/3wk sgc9J7S2Nv0ehtL4nP0X9Btgw9lrcpJbj7+LajQsilgQnqhVuTxvCA/DMtkt mXRQbLfEz7lHBeXkvvr4B53QKaiZnv4zguA5css2X2xBspfys7Fvg3AI0HD8 YsWCccwvmVWhReCzZJu/7SY+JVO+tf16JkYPPOdMPy5BkqFICfX0AAI8K3UO HuJAYjNbaeYAyXNhz6TN39vB1hTl780k59K/e750ViFczvmtbEpjwfDxEdoV /hCU63JSN85tQcKDZ1eX2xBPd/vhHljUAsG+N32yv+rh1JT+U1N7EHJiU+MN 6o3QYKtZXGxthkvi2iXFQUz4C794fOtEAERcxS3cKEzYtPFeLw+mgaLlEXVn AwdB41InTngRjgpRuxS5oB5J6WqcGIMiUIrC0j1u//+99narQqP42PSiJH+B AB9dufZBDe+6oRrR4pWzkw2V6oiPlPkslL+Y/SD7QA8ol9cJv5jzEtQ6j4X1 JI+TJdtCZhNuYSZHXD5jzIPz+fxxi2flEJ/YpqQ+w4B+tenRy8/5CKbL7lDx rMStB09SDx/gItZtlfLhiyWIoL0613ueARum7d1/wt2w+Pd5F0fr/983zTq0 NWIIdj/KNQ5RuDB74uZEu8FDQ0z7mq3E+1TF4Mvs/wxngb23fJcXgO6zTPuR QAsUTfghr3zL4DDLOSnJsB1OswOH5USaILHsWMwMm3Dzs1Wu+fZ0uGZeoFus yYejnHL0iikGhOmyLgJiTFAal/ctuBKK0QnTFf1fCyFzX+TO6h9FoF4LVtp3 sxaurnnfY5jFsFakzZH6///Hl3flWN+0Rs+XxNOfn3EQ7BvWEj3cBfEFyyNl 5Lkotc34l0M8cOKR7j6eyTBG/2gc7ZMj98gMsumltsJ5d3r54OwSKP5M3qD1 Nx8Ce1dJJovQoaXRLqDsNYS2EAPzt6mtsKmx3Z1pW03mO7KsYX0BEsLv3JkX RUO+doRy7RviNT6i+TopvYiN9TVqe5+INcxSHybxI6cnj8S+1fQg4qjAxKRd L87Ru8zOXB6Bl0uN2MEoJoyVx8UfpPci96t/bEs3DREqTUuDT3VhWPHZVmb3 EI5fjdturs+DUvLvAVZcMziCqkwJ51Kk+/aan+7gI0jxnFt89DCSeLHhCapl MJj9eom3UgvhzSafwiA+2pZeWl1zsgHS1QtfTosSrp60P/RULQMcqV7rLi8u RK4Kc4ufDsHiff4DN3YNsvo4VyVe8sG1/Z71UYoOGcrXOV3Xm7Ff+pFYmdgw /BOoO+XMBmF3OKzhZW8D8icW0yaIj7nKx2RmdA0i4isl4N3tPmT/pGwKPToA r7XjCnZ7qjDKN30rPZ0DC9WfG8dXl8FVa9Jjl8cAMr4uDLG4zwff5YihcGcb KKcsSq6tTAAz6V+28lY2KlcdS1T4PISkGur3Dde74H3kZ9gNO5LDeksnfu3g wyuG2SDU2ouJ+ULHlHR54NTNLdOKLoAxS28VhHugUiFnt0qNjpal+0LOlnAx efYke+/JKlBXCJXkJcTh59PYlXFhfVCdJ7ShIpt4uJKNYLvDILTTjdJ2uxRi Mkuf2bayE2Z1+vM4uwbg7/yDs6/WH7qK30PfN7bAQfTahUUbK+C8aLfY1fAm +FONUmtc78Eitv+KutQnTLdZebJ6++D+iv62PZTsXcAucdtVFdBLPxuddq8X Unt2So6uZCHJLHHXfZ9i+B+I+y/vWAD8vzFDz9kPYuw8R3Df2iF4G7/Z/KmI Q3hkA8vjCOGP78r3QycZeBjp5eG3ogNhhZee3s3vx8P39r+9R3sgs/2vWfi2 AVj9Xvr79lkGkm7SWWoVhBfzh5/ZJCbDIeNFAP12HtpundzecI7089RHp/p+ Bppefi4wohPf/Oto8NOSB4OzRTKnE8hen+oLaQzuxFi3Zr8AhYFhSsZD2dfD 8BLJWfRqgAXF01pb6nO74HNlWaOjKR1+q1P2mydxoa7XkauVzEKXq/0DE/E+ hA+xthk7DcN5XnXusuxmOKygv8sgfiujxtc/+6oLTuqdgk8+DGN6vkT8PLl2 bLjOlvi1iQZF+plrJ/9y4K9o8V9KFxsrb97qjxmnQ+jKUV1L/SEIxyZRxCRb QI3BvX26DSjeCc0/b5tgwSlY+9iNinTZnSomxSz4a63kPg54iKgIndqt+cQr B/8TMpquh16guogS4VZlGnvP4kqSz94n8+rdWtAUObdK2p4Gmoul8wEHHnaa CiZtLRgBdfdeN8u7JDfrdksUpPbChD+ryukdOYfBdQPleSnQjhKxO1FFuKFe 1XL/ABOxvtp3dDRrEaz7KOraRy6oCg8b4u3oSIissLgo2g0Zj/U3rf3ZCLLS lN4Sy4Bck5qmchjhoPo0f/vtn1GdqPpc8c4IVKd1a8NJTwvNvbwyM4OJ6q0X mLc3DyK1v9u0NZvwkfsGmlED8f5N2alrFpTDpvyFVeP7MtDMXhz7fJE8Xzvf 5C+Zl9PH0zKU9zOR7Wm0dKic5NyMmEaNM/HNodLqlYQ7lNkfFqlbVUDCsift vy46Qo601BcrE1989W2taOErWMx63CkeWAzd774LJ7t74P7iZV5ocivcHDaP efeRXuTNTv5H9rR8QJH/tm8A7nXVYrxVPZCI9/CtrCzFxIC4iZ9+N2IfeLzI fpwFk6bBHa3Dw5DZ9vnp9ckqhFudNFQjOUSdkslZf7wCGbv8uiTP06FYsLRY zpYLkyd1Inu/cDA9xvY5LstCor5U4vB3LrpSjwo/quRj+FWmZBmZF45HgFQ9 hYPTptW/rMl9OzRNGH6w6EFIWuTG3hE+LMJm1c0WzcSmO0P1uYTfVBRejO6d ZkM4ICdbk9UGg+PZb5vWDoL65Im8zsEWrOQpnj+pQvpr7fkT84byEbZrbumO my3w/mgXLTSLA4ZUxtuT74cwOeFz5BzJz6gPQS/vniO5MHCtJnF3MJxe3MgM m+mEz7ekqsHPTDTEe44tncMA/8kaw8v/fw9Nhov0evsRpL5TGZn75wuZuziR b/08smeDmjljJYj+lK5+2YUJkVO9CdbLmKjsV7I9+3QQLkeDbVZXDhLPDJmw VPhKevfmOe4T0ic25kJ+Ka1QNBdhHvH6hNLV/as+zNAhKDqSYy7VhdQdfpk/ c6swecFNr8CjAZOn6erdJ5oQJBB/6PgQE2Me6a+cwzlQ9y17+byNzMGXdRyl chYcYu2PCM3PgUPLGffQBnKPRw39xGkpGDVvnq6LGIZD8j2F+uV9oH8oXqr3 KB4xe49tnDeHzP2LynV/6vlIMn2Zd/NRFbLejyt/X8KEReYFVcnYNHSdWSTm u78NLq9+09+IcBDeQJ3wPjmAsbadB7ctGYINKzDWxaQDo5/rtyRcK8Pk2wGz 9kv9uKWgpJSlwweta15DdyLhqYi5m1KNCEdf0rNw/vsCwkr5//JrCIf6j1bM Ws2E3ucLzsuvPIb8Y/n8S6Rn6aHXuvgCH5E/s2Kp7UI27Pw2Pix8UA+v3VL7 4g60QXWMPid8gnh3R33d29n9KKbcehxo0Y7HIWHXxojf6LbFSHm7dyHiqmHY rc8toJ2TmOMjUIJb4bzGrHQGlCnraq7olSLppEZgzn88RPD01DMV6uFv6WZp PxUJMfGegt3Ewyj+C5zPiF6FUubiH2ZePcjaf97PM70KftvKTQ3iBxGm/lZ8 Vyrpk3zRvZFyXOhdth+fMzcdS2v6Kg7TCX8qJzpfUOEizm0we+O7ERgkJngP qbdCeG/4w9Y3XNjce5dwZ+EIKHbnDhr2ngejqVBIhHCvf1X/1lrCNezCcS36 Tg4eXtpZGnxmBPz9vf9S/zHgmLtq4LDOCMbCt9yZtYQDsfOPjWwVeBBg65ZS 5xKfaV44P92kGw7Xrf+M6cbBvY3pp2neD7NTFF9jwV5I3C96oFRSDL2FE1lM VCHmaecCIxYbPk7DnwMW9YCzQ25MQJyP6dFgI9r5HpjZJhUqfONA6YO0m7fw CKaF8qxTVnXh5zPZgP8OjmBC802z8U4ezPKdlRc+p8FBaFJ47aE3kPE1rrr2 twoarZwCiZt9hIc25MbkDEKRevcjndqN4OBbs17PGkHsHUf70ieVZA7eTh31 uQ8bn4YFX7mkl46np7A2cSFnmxJhzajHfu3tIxrvOPC69qmnhXCMoguPOzNA eDLmv6J13W1oMjQQz7/SD/cjIwpqahzkPk25f6GZfO6JodItFD5sk+/XNrOJ r34LC3IlHul67oOv7a02TJ+0ULnI6EH0zaKYpe4MHP9jtiH4MAvadIEuk8Ah UOh5rZ8KH0JcRKTl549hjJ2+8917az9aFg8vLCHeoa0i62c7Vo502ysaBsM8 GLooPwOXi5TjHfcf8Lj4qy6Qme85jNh0RmLL4CA4DP/NR3fWwYwXcnsrjfiF UO3HDYezIfUs9LDH9050ed6Q/zm/BwmWDV6OcUxwRBY4HhHtA3+p4LuKN02g 76zQDKU0QCo4eo1wHQ8PA4cqtz4ZgPLeLYMmP5gQvLSu+JQt4VSBijzxOhqc d9Qt046tAR3Ta7YHxyP4NuOJgngpcmt4/+luGUbxS6fx18RXGzpkTAwCiFf2 eZ6ULisB5/iXtWa1pQh4q3mZ4c3CxQ/RU1PnRyCZPTYw24aF6tkR114ur8eG tqNnIE0D3fDYzfuy8VC1+N28Z7wEeuLVNebH86H6ISSuP5qPJrsb+iZnG7Ay 77LGD9ITbcah834MDkPX6N7Ptkw+XOI7t+SNsiBpwnt4WYsB5qycN79LhmH1 2nx21l3SA4UnxrZU8mAj+P2cR00/bOx+7Iz4WgvFpNiiYye+wOLp5nfR3xuR 9DNR7ZlGBdi3D3w6Opd4Ceur2PLNKdhwqdjw67JhyM/rOtz2fAA2a3YstAnq g4Bt7B3lNDpiXzUef7o8HRyD6AHWzgZMxF/r+sjqQNS+bVfjo+rgr1v1kjo3 HCmms+0COsk93hRQmKXLR5ZebZ1eeh1+VkemjhxnINaH7S1olADrK5PrFC7S IZ+isHT1V5LTbxV9ORc+QPVm9+ZNeZ+RqEHV7XtEOO+KoGjfBB+OVBeVsTWD yNCcGl2vzoaZUizDf0Uv2pxoEiW6daBet2cl2bzC6I8oq3XJzYiS26KcWlsG Xce3+ymBbKi6TCQ3fO4GJ775nXoAE8qnLMu8B5rgsij6QutCMgf2s3sfUztR WlVp8iuVh+rlKun2n/th4hUS+Yv0ihlzXUWibB8mvX485+0cQJTAQdEPjnQy /ztYwv//+213nfuMEuH3tcE73XYy4V340szAmHBwYfiQVXAG8Wg10+xHnnD9 Gpn5oZkKx9Xz5wrWDaM8dddbgTXFSJUzV6/hc/Cz46RXxvIhaIWbvbPt4IEm vJY7VPgF0uYVK1XN2Hgm/vv0pY9knn8kZFnFc6F4XJh6rOwt8q99iv4/HwcF tgifFCb9+s+9It2rBH5rFmd2WLJBE21cUJv8BTZWJe2FNU0wyXA2ETUdQdSh gAf7zSqglMZMO5XARWTBWqtdx4ZhHK9jc0ayAEpT+oFvukluvL8m+v/3maft k6pzsWWj7aVCVb8WG6eDD9Z+M2FjQ76yz2kzDlwWdnidPdSADWpl55ZeIedT HFJnIZ0Gqvu8nfkRhdCNkT9grNWE1LR3f4M882Fx08X3oVceJsztr4hupsE/ xI4/MtMOPb+hp3uo1aCe1cEV4TYYH5N4tk1iBLaHuaq9i/oRsdhaK2EWC1FF 4apexKNTH893F1rfBr0tS3sn3n+C3vrRaZcLLZAwE9+wWmkANLEV8/okWKC8 EXc2Pf8NboKR33I/kRyMfR9kdqYf+28MrPtryUTx+as7BaX7sMFl9fPeO93Q EUtYzdXlwOaIFZP9fQSKOY+ph3sT4K8Zush4WTKichhrhPr6QTU5e7SN9FF5 Rl/B/qPNUH22L5SfVo4/OUJraw724xyvp9RyrA92V2RN3T4ySb5mneKvyUSE qJlCAC0HSuIR5wu5/UiN7P8xdqIdPVeWtDl+YENvtuTTTXtqoC6/wTqwbAiJ Ob7b6k4NkHle4S3xig/GiMX3HtLbSdTY6sJ4OqK9Zkk+/cHD0rd6Wp/tuWBe uJp8y2gAFozsJevO1yH4ykMjdlcJ2r6Y9i/3GoSxr5+m/LUqPJRbe253djts PsRO5L/rgKTzPyt9Xj+UlP16i7RZoPMc3ZfIDCLp/sPSlCTC53Wy+1fLEN54 uyL09e96rHSliXxOIXNws1KoWpiNpFuf7rcu58N4bf/q6fWD6NpUmdL8r5Xs S03JY9d8+GTPbN67go5R+bMr383Ogk31/sVz1EpANW16YZyYgrRnxTPS4eS+ XqwU/D6cA221ia5bkxwkrGmkvP7eAO28v9NGt7igjJ709p/4hIbu5A3mbUzQ dD8Nefzrhn+TZUeK7Fdoh9p9OcEaAOPkc33h0wykhj3K+FOXhod3NG9rlDBB D1jMMfmRi5+3oh8vIbw6mUCP37i+Av7NtnvZySWIWDi9QjgiF042080BZXz4 yNRsalJrA3dsBbN+O488T9i9qKBwaP+0WK1wvg3Uvd0/pRNfYTJUXNVQt5hw /L8Kae4XdIVGSrK8eNBNEjZzpbMhVr88JaydeGDWbClJfQ4SFyb05kVyEHvs tc7s4024Omwrvi13CLdUn63Sf8FHRNmz+rb7A/AOl3+XZMpARLzOAqUjjTBU T71zmOwjp/c9+wmfif3NzxOX1LDgXLOi+dq9IVgsfTsvU7cABluWhNqfbIHc kgq5VbqDEP5mG76ouwg2zPLqOOkqqIR67p3ny4LSoWL9MlWS/0tkz0uqEY6z fPFiYV4jdK1aKtNMhsEWi779bTYdkRlRsw3W9yGVt0R4/VEyr9Z3Yp4vZuCP 6tfLSXf6IWKIBMHUAThJX3lSrcGDdqKnh2DrEERoux49ix6G2L5TL668YcNJ LtW3IKEdqtubzf1XpSG/I1iCT/L3Wcxz8cL/v8c0tm7q8IphqJqcPRal+QWx U9UdHWT/dLscHq0hvjq6XH2TbUQTbp1/HSas1IeIJcsnriyoxzsRmp7dauJD ZqLf1VY9gvZp6eplj3jQCWVdf/2ZA4rbbitZhRyERU5VWpzkQCOPKuIx2oWm xYYuD1t7kNie0elrMYTS4M59mXUDcOSfntXZPAgJe3qj6aavKP00fw7PiHjZ njvDE601iNbbMcef8J5JmPC9iy3D2JT8n6IM8cvRIbkgy9I0JJ1XnGmLqEbE B6OubXfr4Cp38I9VTzciJQ5Rt7JIruw6evn6+29QXlIrcnojB3qLXoQIpZI8 u5DKddvIgNPeU3MXUZnIFYw4fFuKiVSJXPvQP+lweV0to3psBGI5A/YrK7rg oNNx4UNuAoLf/RYO1CmDIYVXccORgfRNSxvneY1AqmPtWVPZejgItI3TZDpI bslMXbnXC8eN/ruWaXMQecnysE8WC4oxBEzHaEhuP3Cpx3YA/mKW3NwFidBY 53FCU34YD2sf7Bm+Rwft0LPa+ndFOLf+w1JjKumt12sSFggwkOFQ92JmJR8N PyqfKx1hwGCcwrxS0Iad1itrvSt4KC65MVH93yD8UyR8zb68gN5SinWybgX2 y/ILa+kjSLg0rlTo2AiNQ+4t8es7EWfCWtryk4WEeIOXK1NIH5VdDHGsocGx 7si8+eN90K7VHeCvK0OEcvju8ZAyUNbS3bZW5kAv9/u2Ul8mJGN0WvRrBlE6 prH97D0epGpWrSpbxoWLT6SX8u5B6PpTvKvO98K/yMlQUO8Fsl4ozkslXMZ4 e/VZOMn1tqf188WI7wn73bh+VZ0H60MOKTYrWIg4fTv5hnADRGQXfm4+SMef JrVzLBYTKXYZj3I1SR4NNPy7P1YFm3PldzfId4Jqfmxfz45oKK6tGXfziMfE FrMDp2sbwMlZcSH9aAGKJ570fX/JhiL3iqmqfBsmTcz/KxDlQavf5dCePwPQ 4a0K6e4dQHX8mOiu1S3o2uLg0qXaCuqi91WfrWIgQc81U9Zqh7/3rLawrw8h EZYrpfU2F6pL5n3jU3Owcwn79dXRQahoePWsZw4hmZum1PqICarLYf/O3FSo 6nTdDDTi4HjAIPXBYxZUn5TLmme3wvgwtYsh0gk6e9WROHYa3A78vNRL/EPy 2TZB904uvBw3/Tiq3YaIiwL73f6Qz3f4FXrqeReqOXsyNR+wYdHHbk0dIz73 ZHlvTH4UJI8zKJGhhA+s/16Z9ZnwcNrVd3MH+mHc8vvGb3EGcteFhSyf6kXE tobhDRFfYFdnt6BwvAttRzRV01MLEawew9hfXwurOF+jR4bdMHY+NGRuUwzj 8/Rd3+W7sCmwbzzoNJlT2bPB2kvr0eKgcOa99giYse7Hhft4SEnqmNXgxobN vqOJ2VsZGHufcH1EYQDFYc33hznEA6u3t3pJVSBizOjxqEAlfMoM81/u4SJp Zo/YwWv9SL4/N/7rk048PvPwfl434UN9zVpjxW5YvMuYH3LyCwwOjT7LEG3B LdPOO1Uk3y0K1LaZWNaDErEi/F7PNTxO3L/leNwIHHJ1lp3aw4KgESO4bUcP jJlPTFW0+uAa556xzqATwjZjfaKZZA9yR9bECXVBIDS96NFFBqynej1LPUmO Ob0X9x8cQWqu2uCjilQ4H/K03figAdR7o7LPcyqQRFEQ385jwefAAM03mw/K lm//bTzNg/ND98600UK8y5I+9dJ/GNIVXytfxdAxeeJqoR6d9JZ3LW/Pjzfw l/ZKSAjNAMeErnmaVwzq+cSNlkZNKPZxzJz07oHqK6p0kEQ7kmUu66uA9Jf8 F+nL94dBffWVu3LzN4hkFiSdvDqICHd7wxQmD+X91DOfLnZBz0dQa491HtqY z8XluRyEHbq4h1PdAfqJqv3Jk+RctCMXhpKelSq7KZ91awiTrtote8h5//W/ Gb+6bBgWV2etO+L3Fcmfivf/ecWATULFhHI1F3E/F6QmnmfB/QmXu1aCg6Z2 9ulFGzqQemd3/IblXMQOvlE+HtiD1PRo5WT5cigb9NmdiuNC+Y7ic6EYksvc vMVz/+WAuu2nq/mLSsi/S+BJSvJATykoqHDNBqVTpTRLPAcZewO4WWN8rCyM kX9/nA+9gz4TibnPIXTC8/n7swzIic/dODG3AXqBX5b8V/YMtcLOU38XEF4/ FuZmdaYJ7Ky7C91rB5FK4VQ5Rf7/7+5R2tb2hBdveCzkzCeeYekxIRc1Aur3 5Z9znJ5i4ubNjMjvzZjOXXbK9wzhAgPfzUnjhH9sAjOjB8qh8Umv0Cy3E7Qa N6kvd2ugc4Hx9ecWOrLbvGlXhvrg9eS+m8upAvgtePC8wZSJ8sxvJVl+hJ+P Gh5ndNfAf2pu+Ml7N+Fw1PRNiSwTQb8KGhaM9YO+++qjH+PvYCX470bvnRak uBXzlob0g8b7tyq0uxr+vZ38TPdWqHp9XvX6fDZOT22Q1V3KRI/SrMUPpOh4 9t9eq1PEo5Nemr6QprDhnpb9OvEtD17WFtuWX2qB+tEXBjFZPMLzEsamoSQ3 EqrXF2/KIzksfXjlItKDok93P//dh5/Fuk9973JgrPBmXkArE6rXXzzy8yrD hMhtWXuZEeQXbeeLnCLzHRXo2nT7LII+r+CfCh5GhG/lq6M3uCi3ln6hmUH2 V+5AYqBnK+IGfQsqBJiQyJMxs2zIRpK/4eHQbiYs7DKiA+LoqNV08Ojb0I+/ D359OjvVB5u8r+1q9Q1Y479j3HSKBQMpWepWgSa45susv7Sc9PPupxlmO9sR Vro3bMMW4vuXlvy64ZqHld7tx83f0WHlcLFocroP0+fET9Y59IAfHGLBe9EC fyrru5vwG1yU9GXMW008zXPNQ4E4FmiOvfE/HxXAwdOkzGt7IUwqVLjqDYQT agUu3nv5ERlN/95fHB3Aw/VTO1eeYSBsa79gbyAHfw4sZRlJk1ytmbVagBcI /5r7zY8e94Km5xiYtjMP5UcNuphZBaAHetBr/tQhPfHn2fshI2iLZ4teTSyC /4/r49sb74JWIPSWpdYIm9cvI1gthQib+DArQIsP3cKZS6fD2XBcJm0U18LA 6OWKgE37qpFkkHxcB22gGHYoKQ7VgiKdE3RdOQ/hKg1bREJ5kNuaJ3nUrx7D O+Ktl18l+7LkqPH+8RcYnYmqNahNJXNsuognYoYWt8T/xvdzENQcNu/9Pw7c 9FROn9nZh+CFbad+m7ZDxNlxTMSPB3UyVVsSuYiu/9qnLl6PUcdfm5fYZUBG sym8kdEKG45YSkteDdy+VAgFajAhHO4kMUDO3VV754xzDMmpmpkhCeJvxdVz RSn6TNzaJVP18SQPPsJyJ/cQzvup+vb0kVVcCF86H3tuvBB6R57OtKi8gaPk 8gMyzwiPKpyfne80CM7jTvEdy+k4Z9n34IgOD7HdzY4773RBWyZS/1Q8A/rs tbmrRbhoKxPdPnv1MJrcrmw9nNQBRRdd5dtNqYhdPcNl/CmGvOFq6YZWPuQX 8drEAkdw/P2ChQIGgwiekatKK+kC5R5X8OxlshftsfMYm+5hVOrVzKWfxVCs 4x45bZMG/pNtKg9TRuDXs23r4f/60NJ3v1nyPR3DScFeDD8G/A5RUxqNGDDZ cWTr201DoHfsmImM+wIK96TXodVDcCscVFpL/GNyQX9GF+F2yrnnfxaXcqDd X5q7R6cZMnh6dLdgD/SCJce6CFdISS7VS941jFh9oTmybm8QfmFR8PZOPmyK g8/VaDbCn3HqNnV/Fibr2t+u+FiG/Uvn3g4XZkH3a05/76F6PP7UJO1A4UOx r1lPyrcUOvNSz4kfZKBN9sdZZ8F6+Bw8cY6e1gUJHaPLIsvI51RVS91TqIOi h2FLlwzhzpbFJW199Zh+VR5dltAH4dPzm7RnaLgVtC7I8yLhbubq0yVzBsE8 JRpIPduK3FXBbbPvNCLhtmm3as8AlLuTmhp/DmDCY3hBUu4gRt/5HLIwHIGg vlLIj23Ea86HLHs7NgzD+MMj9P/34jXO0kB1FuTtrnXX6NPhkunJ2zG/A+ea Kudtvc2F6/wTs676En/+EVy+aWkDIlTmhjcpfkHWpJF0zMUG0Obdu+Go/AUB J53EPc3ooFvuO91+phbC2afmGyYQjsx8KaqvUgCpVn6p+IEWhAWz3z54TvZ2 ZfrelDW9KB7/r/boBOGO528ebn5Eg15eVUbPnufQGBeg6T4nXLmk7fqFQ0UQ rxYuMrlE+pThUbL2YDP0xvunnxqQ3BmW1FfZPQLOol8nWVTS7wvNlyvWlsHO 4fmdCIEuuDJ1xO5uzoecgsT3Jyo0RLyKU7qrWo6sXQmMxk9VuGUSdol3mfjO iTSTHpL3lFdSwSdXjSCpT+fTc9VGjH5Q7Tm1vgDuOQtjnx4gvLotfKcUj5zL 7CR7XTPiJaqbRa4/yECyWfGjt4ENcM+dycniknOQ4VsFmBVBpuPEckcm4aA+ lcXri1vg4HMz8i79FaKG7F9co/QjauUJdznnFji/n3tPfTcT4gtS97cpDEM7 X+Jn0z2y/xukXZuvpmN08kP/uuZeOCwIO610PAcdz9bxxDWG4PC7T2y39WvI VF+wLwssR9s6O+9+4uNSa5oErWtJ/1hf29g/MwSK35aptHpHBB0UvivzrBNd Ap+u3VAZgtK5K09i09sQFH01N+1iO6S//63+cZGPsLvVo6UKvYi97ZKbElEO qeuZcdGjxF+ck5V7ZBioPn0lIWIe8f6bcsqb6Y1w2HR65POrVGy4fcE0WZnc a7U2LiwYADVgyirPuRL+38q+KteWQNdlrsCWmC6EmbR9PbW+DZYH/11b9oSN Si0jj7DvHOz02Ft98Q8d/q1JGflJkUgfc/+VbdgHie8Jp9iriiHRsWKTrU0h ls4VP1BTx4XEhYazfiZdCP4vL63PuBDa394f//uThqQCG02rb81Ys/Y+917C APSiXGSybEpBnXplmjCTCieqsNlCl06w1c/s8I3lISa6WH51Mh9NN6gzHVpN ELo2b42l/QC0TAaeNhn3wS38w3F9QR7W3P2rGRM7CMb3l3ey9/Rhp1nLxvEi BlxHwx0S8lsR8s/hdjeb/N6CcZcgMZKnG5VXHGuhQTVFYYWDYA4m3zB2HpAs B83ejTbm8BlKQefkg8g5u4vn/L5wgYNw7oVTyYN9kNsUseqbLAuuu3JtrQn3 1RZefLlkmPDjk/lz9awYsKVtsg8huSM/XPlG7N4IynVObxnTqsffr8KTsfdZ SMtVfeoZNoDCC3xaXPQIHsoccz5KYcHhdWGUv38y6RXrQHXRerDLH+foDg4R //1+UD+vBQYNEsxc3R5sGFkVuP7qMFyNaieVzzNhaGkZNi5IB/X41QNyT/sx 3H7SxvwAya8/c8oXZuZB4LTeEvlF/dBjLvo5R+c12mLEBAVXtUMs2lJYz5yJ 4xHfBTf/HoJZWK9F1FYOsnIX/cPLDshltC6fbU3OcU7SVBPx9MSq1a/+LRmC WODRp2VPaeB4XsuIITwRe3Pvt6tvvsLiUeuvBU8aiA8t2H9kbQUMrqg7F5Bz Y8ek5y81ZKPD48iOiigGnG8eO9UV0gClb3sXyobR8Md19pcw4rGut5OF05oz oZj2YjTavxxOtpLNWYv6wKa+99lp0g+nmIJFCbY9YJyZc8+TcP3xsXKz/F4+ RGhbLOdd6AffgGOryx6BauGBJwYtXcQzjVs981sQ/EKNHbSQAfkysTrHYD4m K486SXziIF1y7XGKEukNLUaTi1AeziUIVJsS/gsw++ups2YQMsaZX77TSM9K jyXV+vIQHqU1IUFlI8UgO0mH5Ph00/CXHsF+eI2J3ymlEX9b/yZvUX8hXBf3 ro37mI00JSvr67VcSHm87BgKIV4RmbmpKpIJZSGZFTNTIxA2E5ft6SuB64OQ zFN/+yFZJSwWcpn0+33lfVn1DFj28rc7ePXBzpBbf3ADD2I2NlNfAtkk39Sk nrR+g0PK6lTHtaSf72dUFO9+Cqf7X2u1wgdB599duWs1D5Z2eze+Jr5N//Dn 92z7Yrh3z9XYbdgLx3WuU7cFuTgn2MuxSebAZ8BMymFOD3qM1HKdf/EwYR2Y E0XmQa6hPnJ7QAf0T1w/pqI7AMGv7py8WCZS5hxQvGHPw+ibOdG2r7iw89af /q3ZBbkdmtsKEuoRcGdjidw/wpPpCdT6Za0obFm8X+ZGHyhXC45uNI9H+YXx NnvFYSjz+MqX75D9rVccdl7Ah/J73723pjrQcOa5t5/QEKJUWHlBn9qRRbtT 5+VLg5WH/4Zar3qIvzv+e9H/KjjzcKj6N4xPUuSV7ElI9iIkJNQ9vUlCURH1 VpZQIpQliVKpbEklCSG0b5ap7A1ZRsk69m0wxlhmRkhK6Xd+f84/55rr+Z7n vj+fc80c+0GQVsYGNk+3ot6Jfv7HaS5Yj8RSo9byINwpIXhpZz9O/nFL/3ug HCXqglVB7iNo1PVViMusx28mm+x5gY5gk/m8LZ502O7aq1fAZCJHRchczqwD ZdP+1leaR/DKwmqVdCobMs9Js6uUaAhJLrpgUjMCxwgTpbA+LsLvDn0w5uXD wqFpa5k0B0alL+4NuPRBJLSrW5HwKcn6C5473Ig+5cqQVdrz4BwpJpm3rwtm Cm/dlixngrxOXlnWnjjH6YkTVopNOFXzKKjDgoEFhpi+aBORq3WFo7OLRqF4 +IqmwADhm9S6VwIPR2GxI/3E3f/6cDitxeGNLRPCGuJ5Mv1MUC/dr/s02YvM oobF6ubjcLZ+8cg2KRONoc7v7YIboKR3tEWrbAiTb90FNSVZYISLUKMLmkCq /BtS2XYQwWZRyZqtvdB23H4/sXIIpqpyW8QU2Qi2jAqc+dII417tm9+3cBCx V3L4pjbhLd15uTzCs1VmP/z3c4YDtxWqK4d/jsBicoVGZmETDi/h37L03ijc vjN6K06MwzXCMkdKeBzeS4M495xYaC6+vl7CbAihxnzyhmuHQRJaf3XieRhO Vu103mPTQXjW8aPb8icgKWZTvsp7GNqzUp03ewcQuy61Oe55MwqsXx1f/LcV tseOHTPIqYXPfW15pvUoFJQP2hRNcOCTFvW2KI+LbItIEXdFHnIuXJd5P0lB IzZQVudRUDZVcddRdwS2AR8b7haVQPSNoSjlXxYUr93QMvnxBKT0ODWk1UD0 eJ7wXo0mFMRpO/6ilSNZoN7B9BMDGr4LXivdOkET9AkpsPiKY7uUZltaJ2CR +uXXj5omCO98dlgym4m5u7tm3ZqaYNeubSNT2gnFzPvbNn6rg7NTZF45qROk kBr9c4W5IJ+vUnmR0Y2J8e8frgS0gWqpLat5LRF+cmNb/1CqoDGYukTOvRoW pkkuSmV1+H00yCZ4Rweui0rlj/OI+bokpacRuSSpueER26Dt/7+Tk2Y+zUWO +UvP/z40InxRgOwRmXd4QVYstEngIpqcVP7tCrFHZtLmv6tuYPCgAMVtGQsl 1efUXigNoJHZvGKbYTH8/BU/CtlyiflsFNnnXgSa2PzoYuNeWN8aVK5S7EFI lhXvbS8bpNduCr0l/ZCLPLLVhzOKvI07V5s7DCD7TY+A148JlLjZu/+3agR1 l0TedgfSMZWX6ZHPT9xPhrsfWzQRHLTMpymltR3MRUX1I8rNmJy5Vx9g3gM9 r/k3M5/HYZHdkrvHbgwqLqnyFn8IDlEt7bLalweSk+Had98bQPI5+iZggeDm kJrbJkOfQU3tnd3i34BQ/vVzDvlDULi58qqkFhtKVlaMXyFs6F8WuT27vg8F D1M3ihjUI8Nv2/N1KlQUONt8OW5XjeZQhUC+IS7mnEq6bo/3Qna0tOzWAuEp 8i45Ydy3UJKuzqFTCZ93p1+QsqmFSsgulochMX/e2gv/7qYjVNld3nsLEwxK Aj2n6BPIu8kFndRGLOzxpX+RnUDOtEOwwCliD5aw7PTv8UCKv6/X8ScBTKmQ MN+NdAjz/dlXONmEWdlWPkHOGE6avFgQXFwDUv31Tq7gMxjfthwIJ3ot9uT3 yc+e3Zjc+Q/7kV05KA5iVwXP0UHzI12uV65DzvIt1hZnOfBbs91AhPDKcPss obEmOuamGg5Zfm3G2ctGBhsXMxBsJepP8yqH6bTt2lPGPdByfbts69tG+K34 ZNOeXI0nYvEdqYsHEC/ysfAHtw6TQyfLD/iVwej2fu2wndWYMHd4/oTw+riF 1xciSkbQ4/O1IovHRupDpXkBi1E0kq7xmccMQy/IRcv5IhvPyIv7nzoOQv/Y P+8cxtkIrzYt0bldh9k7ShvFVEewUNyvm7SMDdvw9193m9WgJ3P7eRGDToSX aXw1iuEgdFHnV6FVnXBW/lV/luC8SjpzclNPF0p6Ex55hnNwOGfjK/6jQ7Cr cF0SVNMLfh2v5NSYUfALSPDCTwwRuXpYxG8NDc4uO/XiM/shXVghYe04AOnf nmF8U0TP7jaoiFAgznVwyeqH+e14tSYkyn+QDW9LvZK8Df0o2r3rNpTHUWeb eONmLOF/ezYEyi4l8ujGh0M/9LjQ8mqd3ilG8IXfw+svtzOR9kyw/Uc7D9RM 2W7dq5X47d+vv/CkFaERa/+ZyWRDa9XNq65Go+ia0VLZZMTA/vbZu8tmuJDc HGe/xL0J67NkA82shyATvd7Po68e5BVfD045DMEvZnx59Qo6KOqThfOuhO9m SDprVBB+2nv+1oYaFqhh9Hv9l2qRsWZHtvziUYRuNr+36Hw/Qn3qRk+9JHhN 6qZ/7vVx6LZyrMNjqGC7erg6+Vbg2aY7OzVvfIbku+tfRV51QmtDzOW15hP4 5enzwvTPOMwOKgfwH+tAnk6aSN7gBORkCyhUNx5ir+naxOj0w7bwin5lcT3y Uh50Hc6YgLBiWUaBQAsqqQ8mhRzYyCg9Kyl7qBRF68SzZz0Gib11kfy5hgEj 3rXAQfkGxApNS8mncMDPenXUpGccoRQX6dMLbFxf07VCgkXkkaZ8jyrRP6eY iqt2TbJBq0/OoztWIVtMcCyW8IInqkmkvz0TIIlGzQXf/gLS5ME50rf9mPxx NbYscggZ20t16rb2oyAyxp2hP4aEC3soARgG82iyUYBPL3SDWlLDK7qhZ/f2 l9gPDihud43jpTioi3NIi7Jshpz70Nhnygg8LCi7TRQHceQ69Tm9iAu3BhXm ilg2Go2LT4fzVSPjwpczmSF5GEtObSk0IfZAIL9i49NxJNDdN4sXjaOj4Ojn ceJ6p86u/HV5moVwqY7zaQ9uwfl2Vt+FlpegzZa1575pwEK68/ogBhuOC6Jz aSEVcLTXu2giR/S3vWAky/chtHpkPEqCWbAYvSAVuoILleIHT24U9yAz8ZbC TccJUKNrt1HC74JJz3SvVyR6p4tqzqqnQDHb6uaN47lI8k83Ugujgpzv+7S9 kA67JxTN/uPjIJspRjHVHyAjpfEZPSoDEZv/7gkoZ0I3PzyR6/wRQQ6PXi9h jkL0yoE9Oq4toJpGdgvrJyIkusvJf98IBPvslMV29ML5RA/ZTvwx9OK8HeMr mSBl6d+YyM+ErcArZyj0QrDiAq2uvANpy3cKBY8yQNtTnXZApw4ntVyqp1wJ fufKC6ZqjCOgLzTj2mGiZ5PXSiQS/RynJmF5R4zwH6V1el/rRyCboit33YmH ELPjv2fkB/EqJj0mYXwQZ/emxMcn8iB01sf7zOMRFHAnVPfr1IKBG5SyY28R Hoy39hPvQPq6xtf76nmE3wmK0F9Wh7LHCYfm5XhotFybIjdF+AE5S0+rchDO lXzHn/hV4CBf3rYrjgwcGVtzJM+tB9LN18vJpQwEWXCfWIVycTD/qc7zynHY Rqy1sqtvgNqVS4Ib+1hIzhCY+7l7AFROyk4nu1o4ajRk3FMZBzVLp8vRKxHB zo5FXzbVwFt4tHbN8wmcfNA/ZS3eB9KLojLl1Y0InbdNSacNIsmZ7e9/hYmA bS80PwwOQS49ybCc2YSzpHS947FEr1p+Xzp9vgduGh/D7vv3gKybvX3qXDWO SJ7dpnKX4OTv6994kwlvr6Ib5FMGER7uShlCCRwnh1dY2Y5CQ9jS5kAXB7pt 1uKr3Qj+0dd6GFA3CutonysDbh1g8U39R1Uj5u2pWdpxmvD+Ahbt+YlP0L9v fjXapBv6gy4vHN42I6nMZ4u9DNFjuxfUEr2IOUn1dbVUjSHgYLXJtqVDeLNO nK89j+AROdG/DcVVGNs0fOvfogEkxN7eMJ3Xif1uJqsMPDgI3pfdfOIPwWPZ gi7nNFtBurj0/scuGg7SUv4u2jwAt4eN0itf8WDXb5VZ3t+MyLqLmz1X1uBO xeZ/rG8wkLDWsF3iMQdm84FXxRxbQBLMJs2Wl4F5+0y6nVMLsqc8Pu1O4cK5 Sry/xWoU8bsve3a6EFx42aOMdJngoR8Gpbk3eJik6puvetQBb5dlpys/EHub vjXrVcT/3y9KtrEN+ALbF5e01f2rMfagkL727zgULkb+lxPJxosjC9uit7Ch G+v1eGQJFbrCi40+lRM+WRN/Yo3NAPQWbRfR+8wGNSZqqGHnR+I+v2T2PoPw hu4/Pb77+0B2+5HycCMN4ldEKw7oDiDAz2JWZIQLxQDWlvUdb/CKHHE9b7oN tv+sWW39oQr1b6KWRvuxQMpZlbBpivD5NC8a5S6RWylBwq1EP7waLijvnBqB 7q+ipRJ8BaiL7BbK3z4MfVs/4+uLiev+1dNX9csF48ti+S+V76Hy6PBGq0IW aIUhdTs+f0LS8LnYsJX90O8w+vvlBAMBQ+vtRxgcTNYHbNy6rhM9Wl7OtlpE XuwJclPfykbeA/97u+QZSJzprs3wYCLD8+Shg1PFoKvq7Gl3GwcrUWa2RJKN 5NP5a5dr8yDjKrS3vq8aDAuJM9+vvoajqQ5fTwrBBSG5e4Mr6MgzPhmhMMUF ucEnV9a+HIrdSRmn//+/K/6eojNRH8B3nhO3LJMDwyU+tdM7meCb61RR3cOA 7kXTEgsDYm/1dA3bTnfh4nfN4oBaHtjzlzYtqDdg/X1hC1I4Ax1sDa00QS7h 09n71JaNod4mvjaf8M+Of8uKssKaMFcwYW17kwtSte7jljO1iO9v3zqynODR HdNyf64nwZsXH0cu74Wa27cxWsMwZvXOO3vpMSBo92uR79qvSNT0azwtyYGz W09iNd8wklfd+/WvCeFnucVvSJZtYPwmSTwkuC3jsJfvypoCcIVuMNzHCP41 cPJ5e68A+vp6Up++jYIWPHBNxX4Y5LJ7nkmt/ci42fB5b0otOoQjqDNphAfp rE7R2t2FgBiVhhX/tSHSO7Ej1ZmYQ3bbYbh2wJHDDqNsK4fGa98Nj+MGYBRz py5bcxQzw2KUwrFGUAKXVC172oycdmXn/Bcf4RhnckjMoB10CyGnKoIL+ubf Dm15wkGkKfOqhGY9JjsjM9+fYiPA1s0gi/CiO7GJC+eaeDD2WWFmlzaIHLcj 28wPEx7eYSVwIWwElIW7wyf6h/CMfWfvxaDPmKwmBefceYcjpwZ8DDf1ImdD j+oO7RboL2xOf3GD8Mgt/6xT5wyi+cdw7EZTYl9OBIXvHG1DklMXNeF7H+Lv az4qGWIiHNlFo6HdiH+kS4/TyEVdNmVXtA9xrpa56f7ePDDnNm+1mhpFxrZe X9U/2YhujAngHGDCXG2JTMXyMayvYB0YNhwEdZ7M7+P4Bbr7v5XcS8kDVXWX tNE4FVMXDxUW8I+ArHbksu6Kuzg2//2ou+sAtCTkpzNm6VDU69MsuDaIDNlj DYd4pRD1DZB9nNUKx+K2+3fL+6FnezX0yNUR1BsoNaiKEvnQ69FfksaAYb/7 WSFlHsKFL1n0RfeB8fKzfTSV4Jpvt/YWfRtCAe+0cI79OJ7Z5a5WvMFBCWty X64cwaNn5Q+9/tREnLesl09NK+bm7C6nJ/Zg5puUx7O0Jmh8M/EJaWSiQCgr deF5JVhPBh9kEfxWUdMR1vWD8P3esmPp979CdLt0p4JnEYTnnTRfVA6h2VV5 nXj6BC4q75r5HcbE/qMBK9SXsHDFtLfbYj0TZivVpPS6x/BCzJzvc9s4MoQN XvtcoUDjZHZf4LJBxG/vVLeK60WF7DUzm+MssH8m76oV6APV1vWI89tPiIg+ dHufxDDklmcVrVTvAMl4u7aY6WmIelepyUg3QN8k8us6F8I/DDYn8X8swYyO ZUtWdBtoA321ryo6Icq7e9mBmYfILsYnCy4Dbzgvzz05N4yEkhAp5yCC2x/H 1gvW98Lo76REqCnB0TaFP8U0u5DqdM42vncAOVXqayWLGbAoUr54W4GG6PaE +V3LhmAYE5tqRvSdILN9zDOB4C1xUSkzjz40UnVsxNe0QWbnhj8Pz3Fwcsxf xFe2hvisH1roWgvyHC/jj/lX8EkIb75/dBAU656vhuuGkWTt9rRygIqJ33wy 4usI77Msf9j8PhT8lXQPdaLnxLsekHf/y0Iwk2ZvfbsVKptLs2KSGHB+vW+a P4MHZ5r1g2uuI6AGOKUe18wFbUyNIXaRi8/nLhZJexHnJ8a/erqgHUqFX1yK LxB9Nz3XKvKhGypRz+j5z9sgDnc5eddRaMfudvpB5KKefZXx36gJOGdLRyRT 3mNy+bMxTmQPfGq1I6oniDlKlSbXqjBAF812Wbm3CfFL3VKfeQ1DUU5Ec/+m TiTMp/RdWNOCRt2Al4yWL0hYclHoz/EBTP6K/2loXArHlqn3K4VZuD5WLv9p yyCsT2zS17Eew1xX0MOU0kH83iBnau7JhO0dzzCJNVXIuflz33OlTgi+HGXY hzRgVlvk5pZxHsy/jxwPUGfDUEvZjdZIfJ9jQrEBM+NgR8f/l7u6Cx0mmbav KkbRs8Mq/f/PiwxXViZfcxiE5B3RattTxB6WJGQKWL9E+Pi9RXv4S6BwiFn5 9C8HjddljVdUluCIn2rPxYo2kBJ3bH16IIbgwrSYw4Fvcdba6V3tSeL8b3vP CM/UQXFsj5xzPh0VGT+Vfl5jQ+2zt+p7TRbKTNYfavXkwqjY4BTTrhpKs9Je v6KIHPUbL61K7oOtg+HHCQoX5lcs5qIluSigGcbpTLbD6PW7ayNCRH4YS+or i7XhZHzLU98EIrecE+brgkehdqZdR6KOC1pI93Nc6USjt9yMbjkNJBcBETPz O9h/wbL4/+/nOTzoIJCdPwCGKWfX72QqaNNq0iG8fsjMbRHR6xoCiWVZ8eRl HmQMq8RL/ulGUJVoAK2SBYpMsRyvgInQE77HzpHboVj1YODW0WJsc6ftbpQn 5hlIO6zygYs4AUNPbjgTSUcVTBT+qQfjeICpucoEKO60kJDycYTrepxcW5sJ Rmb2Ia/8ashUPHw3vUDstWXgvSh+BtaHWZq2pA3Bm6obERTUgcmO84sVaSw8 OWRbpCvOgd/FFTbvtjbA+BuvbO/LUUyeeedtcIu47hLPeapHLsh7lRWss5JA tXd+pN6RB1Jm0sANdT8UKPTsUN0yALLKjclHwqmQ0fUPzJYgOPrL8sXkTaMI Viuit7pVQVQ9M87LqBzkMVs/eHzAKWfv4mOBA/i9y9SCT6MTGdRlyidaWuGX UOZ3jtGMro2/de7WsUBuijkjdHAAoRo1G9a19EDIpOr2QvoQLMizj89dHkCH PjuYK9iOSNKZY/sDudBQ+BzHOvwFJ6Oa1EuVRzCx7nSgXD8D1YdkNr4j+M9U VcdBTYkFBRq1aKX9BAqWa8sZbBvC/wDCDNj2 "]]}, AspectRatio->1, Axes->True, PlotRange->Automatic, PlotRangeClipping->True]], "Output", CellChangeTimes->{{3.603475703157722*^9, 3.603475733294929*^9}, 3.603475979170746*^9, 3.603476214429304*^9, {3.603476251520877*^9, 3.603476265147698*^9}, 3.6034766707101107`*^9, 3.6034767702341347`*^9, 3.603479927656534*^9},ImageCache->GraphicsData["CompressedBitmap", "\<\ eJy8vT2MXNeWLlbD7uru6l+S0p1734wfMLlDz7XhQO43aOBOBR4HNpwaGDyY nhFg2nh+6IyZMkWKBBbppB0wEgwwUHKTGzBRoIBJBwoUMBCggAGBDhgQOK5T Z6+9v7XWt9Y+rQFcANndVafO2Xvt9f/7T//8n//lf/3f//k//+t//Oe/+8f/ 9M//57/863/8v/7uT//Hf9q+tfdXi8Vf/cv23//2d4vx92GxkP92r38d/yt/ kN//h92Pve1/n4a7u7vt/8PiP8x876C893H798dPu7su/hu57tPH7XUfd3/h ddNbw+KS3G9vWtI/7X6shuHD7fD1kyfDk92/r4e3H8YP7oab7d83t3fDu++/ XuyPn26/+Or2w1Bei/9q9/9R7/sP6go+Dt9dfzW8/Tgs/uvde8fdR28vGL7/ 5umD8vRv//Jzffrfl1t8uH1dvr7999Xr4f1gbvHhp+Hb6ydyi29evx0+lVv8 cff/6e7y767Hy8vm7t4OT588Hd7uFuBWOG1o8d/vflzsIPvm6yfDs9fT4n7+ /qvhybPvh/EA7t6/H+7Gx318N3yzvcP1zQ/DeNPh06fdSfz97Ht8Gt7d/jj8 8MMPw48//GX4+unT4ebPb4cPn+5zj2F49+fxvdfTGj78KLuEe/yyW+frnz/u zuv7Z9v7fT/dT+7x06vr4cnLHydIffxpeFbuMZ3p2Q6ar54CNLf3ef/+w/Ap Xt/irxCkh7tjv3l6Pfwgd/jww3D99Gb7riDv/na3vwyvtst7cv1q+OXT8Me6 g/Cr5bVd3Q5VboY///m73eq/efXn4dePAoX88dPhHwy3r54OT759Wy74dQu1 6+HHu+Hvy8cjCl0/eVmwcYT1t8P1y7d78u2bp8PTm/Ltu9vdKrbfnkC4hyAs +80XRcD36houvftxe+mr3aX7Ar7tafz46tkWp19uVz/8/YyvTltfbnH5++3X vtl+7dPw+vrZjqD/OPv7B8NP313vyOmbm1fDt+MJPvtuhBOC7tlTAN3blw10 y+3HI8ptv/V0usv1q9vGDEcWQ+AWrcjBbcKNifOMyP1q+wi9+E/vb4c/v/mp 8JC74eX2+pe3H/5+xi0EcyfE/3b4emSGd8Mf7/H025vr4evvfxp++fl2eHv7 0/Du15GuFOiebhHxdmL+E6neVKy7291xd97D+7c3WxC+GjnBH8u6fvru6+Hr V6937G7L5/dmrKsA8J/K2bzdLu/pt2+2p/BxePNyRPHbhTz80y8j1lwPb99/ 2jHVryY288fkqw1Xt5zoqye7r98KleRPu/vpu+3lXw0/bSHx8efx92fDz58a oEak2CLKt29+2X7+y+4Ub2TLAqhvRr4y/Prm2912AVDD3bvhu2eTTPju9m4/ WU+RFY8Kgo7fKK/FfysIvZUNN9dFwly/HN59HOo2xp3/uD0WEXBf3bxpC+Ff XQotfBzZyjNgzdmjxm99Gt6+/qY+6ubNu/q9j+/eTDS3/ffs5Zsdy27fez98 /+11+d718P3te6DHu+H1FlA3bz8s9pM1JFDa/f8////5+bJ+vnn+w7D+0/89 /tzJtfFE4D38XVQv/Mp/Sd47K4+Q97781/+3fvaAXP85ee+vyXsn5L2/hSVf /cNm++8FPo/dZkneO8p3vtp9fKSeMv5uAPiY3Hlv5obPyXsX05EdT8e4PbH/ Zfzvr/oHOUFq3372oKxIdigIjDsH4I1ff1DuNL51+cXz3b/t78cEy+Ro5dLt T3rceN34/fG6IwLg8We5j+x/+upDdUy4d1n8+FNugdeMj9v+nDDgpH7tP/x3 08bGn+Pf41fNkytpM6Q+KKsnR4HQmG5xrGA5/pOVma9Odz2M7lZWtf3rwQ6E B2rJ7rETMgBQpoM/ryAfNz/+E9w2j7J3PU3QTzY63fpF3ajAeYRdget4zW4T 2y/hk4HdwMO3uDNeeugIEIiy0Dc/DVnN9ud+iJrTpvB0piu3f8mXPI7v1y+N z9gR2+5oxtuuFLIaQFYME9UJP9vea9ry3vA//Y//jwGwJr8DZAv6I+Hr8B5C ZlrkcbpIgRKwBIFnwSfGVhE07oGH2QMV5yh4slgVipDrCqTrPUYoPjDXEIJI ONVRoRInSOQey91pLHeX2EdbVr/9+kJOT5YxDGKeHDGqQujJZeMqhHrgcfJV eQIAsuDCvkL93cmNlx4bNhmKM8u8J/D6/Uz7PnEgN0/H9xZMFD0oyBpx9yIs 2FIXVk4V1NgryxWYNR6yr6AQCMfprseIhPU4hInBacfA4YctEm77c1UuBiZS DaLgiQ+K5mL1lXaLzXSK0aKWDtLIhjTb3ExM+sAiqXxtEuCU+zANKNYLPJcq EJuk3LHCsPGF0BH2vr2F3SLKa1mRp/8lOyeqMco9cKdH4XXHale4ZCO9MoUJ pFJB4kf1GP7hckIlkRIGuRXjMArFpEQYDiLqTizeV6FiItdP/CJFwRimViQT nu+wqDHcJo0L15QjBNCrJYiIEYdAwJOBgRyrfSPRIWnv6HS85ak96d1RyZGR oxFywJXA78JXkDESmbfftJAjhQjyRDhcxgEPCzYIjArsRDdDKtkraCFbz9g1 sjuNcicKToi+TGcqbOdhcpLje6LLocLQTlJjvjWIkLUGxwJ8HFFS0+qh4loW IA8MTVm6ZYySXbvdPeNWJ+UroP/iDqavHLs9i10wchexparK8chtSO4+Xm5P TTRFc6oFwTJGcxQSY8Fx0LQ18jJtPZZGy7plMHQrjwE7pqIN2IkL1IoBhNHZ A9kqTGXIPi1x0jvx8yLx1HI0K72IuEeKZ+WoEh3tocMUhqtEfdY8sa8nCPuR rxYqy4xxoV9Edbgl8708MLdDdchwGDw3MRmQw4gMEDgHWqHQ40wmAwg5fnwE i9F4vVSHXA6jCnhcgXVGoOAefxfpVOTnfoVqZXW44CVZkYCHPcH5IY4V4QH0 lONgLX4HrrsxdBDvBx7S9rMJhGdzcFWBZaKLym8meBv/USGcA+eCWoMmK4zB PhgVFOF/HaFg6TSXbJrPoBIyoVFT8xEO1anhWQLzXC4JfgNIUasA2Rzzaw0D 4iE8JIs4Jre70OSMCoP1CkycPgYtnGwxuDkGHgHYkUV4Pse0Yc+VcA3eC+nX MKLsxAGOds+VF1krumHlI0Fu8D/tl3NHShbzi6gLVvVCgGhto5ILddEg1nRM pmmFn4VkLLBEjQWpVb4nZlUzF/6LlJ8hhSKrzFgKEfd+ewfukvJzp0nvGYsk 0h7Lkh40UpfVUAxkLtJlvhxL+MYTz1RX97G2vgwCLazzMCMP5H7LhEQLV3hU Hh/4SQEmSwDpC4OgTQajHjlZPMfK9venXiFxFvKz5g9CstpSp1i+I87Ka2eR RJKAsZt9K4etpTepoZfVYQ9glPUh4sMW2UOFZxFBT1mA0LU9dE/XdAmWEEDC xDEqvZ6LyhMEzgQBqbXSELOJV/N9UW5AoVig+yCjbUNKTEcU3EX8FIbLoDDd Y+Xw2frd1zsfWVWKtOIDN2QaIeGKHSCxs2GqjaXcQyRybXqIpuAJXUubLYz3 cJ/Boywbm8DRQNKMtiWTBjWeyHYDkgFXCJeJCgcE7z0UhyowZ1CVon/jD+17 O3h4yBuJWPiFtj8as6BmWih6RNQhXBgVblA3XlHhbjSbRRSsYxKD5UI0V0EF duo6huOktvZJIVf2fOsWRVHD3NtZtDO+v1ZakaGO15wW9mDlkQ3cT2dX9Y6l 4iHloQoA/ff27Vl3eAZz644vBFHCH8Rd6aGnqW8tdt2p4/7maRFVEgG1u3SS BBPLILdzLiwgJ6UNle/U+EHP7pWzBe3fwlZJKDEBZA2Wu8DzmMSZ0PTCLQMh KUta/2MjY0RdxsyZH6kuYWKVoZ2zD4fywtjv2jKceJOPa8/TLJhm5F2ywSFY 4w8VHOYyQWc7nkvmd2bmeWyyH1R8MLhwamgRhAllTca2UlyhbLNGfYxQi1fs UIEZpRYACYc4gD0jvpenMs1HSBWs5UiNASFZ1p9fY80sRJ6aUjIxS3EAwaok x4GpJky2HJnNYW4EXHdcLiOsAFnPjrr2IjM1Dm44Fx/Lp1mraMGBW2ZZuqCY 90jMN1WQqJVHnfmDD8v/qA0BTHY3FBJva23u/umz8xB7o4Q4w4r9qTL2nDla 9fWncL0NrEwneUpxlC2/kPsEvaPejthqfo/ke0Gt/MBja6V5mtfoiXXJNklV Psycy9hypZURq/aqId5Y4R4Cpb4HgbkarrVLI64sapAQHIhTwDRUbIpJOUsw rTRUWHRBUBb95QfkPZbOIkSI+qg94Vg76WeyZJzHeGIa4WtnoX9ELpr2DDWh m1wcFpapVGpqYUUkUCuDITlUhcM0Qc/N8/GIZ5e9ef6DO3kMdyL/ZKe81kqa XMr4GkoQeLxKqVy6hIY1ceiYZD0xHNAktGaX90VxHr8scLN6ExPT0zNOlD7E VHgUcNY7VLC2MBUviqP4BDIcBLzk5eL6m/JS4bNMQMBU+90yditjSSnLQjvW jgFES+LcB2oVoKxh9M8IrrpPhC+G2cpj5yTjm1v3sUP7aSWxekTGduKbPbAj zWGkfgVR3DM+FAeCedK0QTYbfpRXpedN9f2jPuFllUtPjqNETnG01j5KVUTo fWQPxyr/m9CXsIxY/ePeGXbYlvQ8C2mnRFSIhZQWRG7ySXBe1jCnrJMlSmTq jEVYIfn1n7IYzbE6EPEmiJnU8SCwwImcPdMVHPLuFQWzHJdisfC3ffakiF0a 7wAeDIukYOkD3HzChzijGpMzNEVx3rG9vj2pRYfqQpdU72ClQYDQJ2Y/62o0 rKogxUiwvT2mzzA9oLyH3iVjqNpLcSkTKl1QKmxn9oKCt4+ieyjokwRa5SsQ BYCldRCtm2GoZENgFJG46GKlVB+XOOFx43Dr/YrFL+q+YrPQO4uR5TRNyObR HSjsBzanBWlYpsCcPBdkY+OrbO7BjgUcoqbm0BMj2RaVIavLs+Uco+tX9+vd yqUSPbZrrpqXeVqYr4LOMCi5eqDAqdHNGXFOKMaBjFBdsZqcNy6YFq4dg4aq 6fem5zxS37McG31S4yvIY5vQe68AEFntFkLK/XesKoU8ZzHp39oAZpoqxhNg FxMNtgRSwvZ+o1g+Udcb8W85Smrd4TbQ42FdPsx+tu+1HP4DdTgAUWZIEAlt 2WwgX44M8FBk71dsYGA8Lidm8JWpwCyYvGlBek9UfR9bI/kqxvftSWYUuJy/ +gN+aeYNZKiBDuDEdYdGnk5FXoVfAxdHGnJFDfDEk7PVt4hQEloTNJGaYYbL DRAnFnZhYA25vSyj0WxYDsKMd80CfDrqBo2q/YhveWJFm2TjNo8nHts1+9ZT gtSaCPssxerIre6FWx2EO4pTY9/CK6skwI0w/YwBYUXey/JFBWPwM3Z06CfT XFf76pbJZ/fjyBoj46C4prOICY2fPSKw8Ybvxtz/IpRcBlsAVs3PhaWKe1NZ 7HTgoCulaX5s46i8XZWqGX0AoZrEAnpmfzW+aRgTYjBge3wyufMGE04ihQ1P 9shgqqwc0qUcdh+R+zDLuJd5Let6nAM3KzP0Szh1SGr0QwT++JMZVT35r1hN RFadBNt+R5OdDMEPtNGljVWWwh/z/9NobbubWcEIKai4zcC3Dp6NxOfWXykD idSwBMzjooDC8mSbxpKKUS02mIhguv9FgQIqzCruvDvNOFE1DDUh6Fg5RCzD DhQXAObCTuCkYC5jxQiuJkqWuDShqqRqpUW2hEsblxkeBRK+l0Tcd2FRmkWh GBPB944KBvXAgJ/D+vAxBenSNNG4YC5rU8Nd4BgoupwCyy8WusaFZL9YnoJA E2HCxHicoXgcAcfuHq0EtoyM2ceZ6IyTO6vtoqxUMFFUelwhuA3ibgMsa7YB MM4KcyvqaBhz9xslnNp8ZRSQbaXN6wt6Q4C0LSA3Wm5Gw10ELqi4HEW/xxTu c7M1kOVKuYLPJ2p+mAq7htwuI16+E1kszRPMkwfMWYZeCEWWXpCO+G4Dd0Sy UTqJLYHGkBDI4k7GrVrPIpYqySth45lsx6A6g+SEB0eKt5FlxyllXFb69/SO Xaojq+LReU/II4281FxkBZeGGOfYazN24wh+RtNa7PpAkeUbkpm7xcE0U8rL The2naD1aPc2tg+zhDhnmfFS2tLRkRTntua9juxxqN44eXVZHLhpJ0HS6833 HeeU/C1EUwu5jThXwmaKWesEXQOwKXxVc6sNJIawkBJLnCPo7jRC3EniV2Tq D0soiZV2W3pXtQwWdGZlv0aEREifGa1wNolvP8x091KoFJlezowyOBu2dJjx pMLes90Xrlo5/UQpBrC7xQBeMB48x4dlIZipD4pcjx25Mga8bnUfLHvU8moi 3zSrnqQX+4pxqVAUYO56kHOenXE3F8Okmp/FCxOIw2fa4DmeOOVerFhkIxWR zTwjVRqJOLmfC6wio7FA43tpHUSoGVXgynd43jucBZJXJ2/ptzo8zJNtI4Oq IBT5ZjEeF43q5dwlMi4p3T+QS8ruxYcK6mrY6ifePreF/xaJPJbJiBI6dBCs I2aEPjnf6hDB36y9K9wKSdgIbVcsVw9+fPvfq8UwJiOfmVANvRYVL7sRL9i9 8G68khaPWE16OpLLmj4iL3gUajPEIpVCAgt9wb4iGRFBAx7uqVjrMo0vNDtk oz25Cq+8KWq9fOXO0owJ3xZXia0kSVwpYi+DclPNPAkYQfYLpe246I6zKS+E dF/kiEY2WTfBToiFO4vwNpKBkhx2VgSGqzD21CD1DaXnEL4i6cni6UDlC0lC Rp1X+DgWOEH1jDYIuhUKG9DYEU6sT4c5LZqeJMkslsF4KaodEXMlzITJS1XU JvdlEltYRIB5qlQMg9KwT4u8hOcxfc+H0YL6NdSVxQt3oAAIt2Lm35UUF+tC 7fHf+MLeVdPzpoMyx2l9ape1DQgL6zgH5R7fYtR4LcK7PXX3e+tIsd4UUEKr tZbXOmi+NMHnxO3EijUMXSacRNzyJktEpfehiqYSEmu7IarNmYN1dCvhekFg rBljfaUJR0YgAQAr20hkkXLIIK5OvqT2HMboCLvOim1YPBC4gzAToplQTMqS XSjAmhPVBye8whFkLDKFkxUjE42RbaxV05ROrsK/DMmZcz5zeoegDfgC3VnH fo62fdOgzsYKpLDf+Hi5B7Rhis38JrKvkWHf03zGjxkLbWTvme9G8imI0qNW jc4w4v63YGYhTkp20r8AK1gazHHdR1ZBsTeMffTLf8ttWZEDbAs7xMHHQXZk Ryg18rBpZDo5A/pBYS4pT8MKiVKSI1EVEXsLnsZ6bwfASAKI2ebylunOCC5+ qkJEip9E+mvhwwuW5tg5YNYVAx+NX9m0Bh7GIzNtxg8aIAzREQqKwKZiJa0r WWDJV7PYTZi/WUZXlihMuIJ5YpLSGORmhrmnUsNswel5kGXIl7UOwqF4fMa0 rOEie/ru70zpsME1QQJmiTHhClwujuBkadghbLM0B5YZjvw2Tnrm+lDc1L1l fAngR6ZnIQ1CNctvZdjkJMcJpZCc02XtV1m2H+fFX5Yeb8WJI7I5K6lCoJ/C rbHK5kpX/WK6w9zyRJZIEkT/gdlR10xn3hljcmtpmswKY93wJhs+tgoXcJiF 9cQFvDCQ4qJ2Q0LJAgt4YFGZI98jvbdBWg5ZCDmkL6OTljNdOdccgZGxdE1H gn680oZIWXSFMDeGKnF0JS5qiA073szflZ/lmRdTlcekq9rmFvjIpoQ2Z+yZ YWggwynilfuFDQbiJLxClPt2sEecaeMI7iI8D6fTZL4NI86lJ4KVdiBoq4xB DbbvrXEUN0HiGE5uo0I7hpZPOda3MiyjLa7KTjLNI+gHIN00Yi3D5hC6gOrD QgUBK7ArKegS6bx9P7mOEFboMKNnUC0x9FeupAME863FrKXgG9U+Aqdhh1dO d4+b+Sa5POpJWLeR9eUEV4IO8jMvvqbFSxn95xIropCBPzjWA4nlXwbeIu3w 2/CcjWZ0ompxUj9DMkdm7WXHyuIM44rUiyGnjveHXVqzRU5llNsYrwT8skYr KAULHMYEwFFnAXCfOAbPHbJCEWgsFoKaHTatqBK7rFaZtmGzybktlRwzyhB/ XijFz1VkDgDPpPKkWiHe8kJOAV+b27CANQgxOMmUCVaOZlzr7ZG7Jc7gD3gA X47NEvwWbOfNy+qGzJuEzk1VkoYDTGlx2Jt1FsiV7424MvXIoyxHj2HzQUOA /knbrQWnzeKcQNPCHbLdgfV2ZnaE2rsoUyaKz9K7dfrFkh01VQQYCkmROebL b5ohgCCzS5FbfwkFnFjQwXQM22SMCxetD8rSxNXfFNq4ka/hr5YCgIUcEtUs bntV92D7JsjrXkpAP6csYoGb5z8sbEQuOmLrLPFs9MCij+WbjsxA4S36QEYp 6zYpFfXeuVXP8h7Cdn7TwqYfQlJZJd44b/3+9a1zpHgv47WWM7r+LTpDF8u3 tCeJTWEQsmEFA8wboVOs53WcZkqEgda+YZcWmNSQjIcWIlZaXaRCh0Vh4cu2 SL98xKwQiwIYMZ2jxjCN4DxmEdjcFh+HihuDAFoBcU0Jn+QW91VsCYA+VWt2 9hrv+FW59Gdl3/a8245o7t6qIBtuaK2ya/pVs7a1Eq4MAI9lXqgxNNgtq8cI hLg7m+ZEZEby/DbrPA4dsLUYGQ6RbGTRuxWNLueDprBywW0F036BBHPTZV1z nGLF1JcGHLDfC5ud3c7+FMhuR3VCbJkO8NvEwbwiTG9C2SjvBkShs86EDu3p 4N+wjKDhzkV5W8ujF6LCtxwjmkrPSIiAhiXUuI/7Sc8h5i90F7OwD2OnXGkL dBwFIy+bJeP8ZIytdDNlyMcqYwFtAlM0FT91nq4Ct64cSegWmYaHn7NQmZnF FI45EwaEng1Pj5Ab6dl7xLNBN1mXGYZvjTO3bElEECLtEEwgwiYw/L6SOQaE x/eSYMfcv6k8n3b80EEDyVrQHLpP7b4Ma7LKe5RxwVrUF4gkbqycjIzewGaR ZQUbZHf0sYJOTLEwZBKl6eLhAoDPy52NHmEtNayCYZqlUJcP9fTL1WzlExHo lQoDV669nlAh3D0oQBIGhofHKux7CbdNCEyZ12j5231ZUyrqBjMh0WPKhdCJ GeRu724CXC1uStmGGhpGcb8aIB8PF2UUbQ5mAGip41pTIr7C2WU4icb6Cbnu GG4Jsg9ZiN5wHEvzG2B5j6QqdKHTMWOewRxhPDBnExGydcX5HfMLzZjQ/czT IdzO5h8CtpVVnigojy9boeUd3nnuWBPxHPIBbwh6SGLllYX/doWlYviqji4p n1OH2cRquOGAyUhr1Njy6lTgjNj+GuVqwyK+5x0VzKCQDHOh1Syzf3lPgrgr F7d/EDGMfuOQoIe2czpC4sDkuSlTkb7JvgfcfbEHh2e4O9Vc2rO9AwafFWQR R8UU2bLVYGHmYdYjzprbcFKRkFGNr7XpVgMCyTZPJuKN2gXrrAHKgcPBOv/i alfLadT9+80anjPn2fury3Wu7S3AyBbv+MNltoPmVyAebZ/ftVYzoSq2opMv aDtU7aIsKbKUHLmm7CApxHNBKUxwtrbpPAHtYvBMqbGZusThitfv8cVmiqM/ JWbQLBHLZ0j0bqMsXyPYzVsTR93medzuQ+nfB6ro3C3CGxmTErx5jmUSyPpA 5q/KmhPJN2HweLfPnTZhJJ5aYFSc4VwefMz0HJ+byBQMeWokYFPLdCyxcn9A gIoUrAWhxho+2UdSGBnHd+WIYUp3lHxc7hDOCIzdqy/CKFbzgqzUCbdVk4YB GKL3jEa1d2NlHfK8IGdotphGyFsxfQVzwLwR/lBRYcCNFKxM3AQddKhkokdb ull4FuXHODJNxiNWhy3dfzCCykPV/Aa+2p16A7eUmkg4h7qCoGufnXCHzFFT 6r59YtZAykvBJBI33f8xZXSBfuF2D9fEjQhDordGHdx90WdHPMEufVScPHQJ jhjb45OlIhQ+oRRPWKadIAQYRk3JILPdprUVVaXVSzT5wPp/MZZsTg09yQ0G ETb16+7bSjeYPKFv4zvbsFVu/PQXb4x5/wo6kfKTXv8pbHTfKZ3ulptwjL1w tNZzl+NjstLr1OdAGtludr4sI+gAhEplDWPStoQLc477Ga1aBwmqU5hgsC6G sny8q04227cwZSR4CqgplyfHI6ptJn7YxDJDypZ4an6XSEl5LNK6rafxyc39 cgypmcX1B/ItHcwQVEUxfoHpkpohBJ35zjKpq/5GkSt0QmQrLSmpyN30W1Yw 2FNXui1w5jdNiJW93zRtGOvawBWliMGyPWM7ho12vZbhu+cCymOex2FmOdK8 j6yMlC2AucGtVvmlbp1wRsA8sUQFj4lKzx2V4i4SU3TCFV3kYXkNoj4hdHvN wiaDINpn4cmAxLLeA/CVadLEvdWOQN/p9UGTNRpCivXBrNg2GN3Ep3KbS/PQ faws5Xm7xwGfaLnKOiVdgAv4i0MrtKbjyQ1wW1UmAObMafJ/1dqVpqpTdiJS khPxe5JMl3j4Qysg5ttHisInqHglaOFGhbbpplu5Q55ogTCrWAOAl406sA6t QCTcJzHYaw2+aLtcH49p44EYlKlx0CQP7dsqLKyYtNfGWeBMsPomVcnfylxL lB6nFhzSgWobNBKmA79AJ7dQmeUJ4fIY/5H0RrkecNjZ2uz4/HtZBtihsi3Q kdSYzWdzQK3+tsXZvdhcnHBsB4n5TAjkNCx0C+uK9SI2QaW1ONgrS7GZPVqB YOUlx3T5RPEI/aaBXMOTRSWiQaFfpJRFaqNINDbcA7HEVs7yptgymDRPI0Nz uKELE+p4uJk90ty94z8Yc08w1/UnnNuXQTGYx1YVKZBsvKNAVmxxSmfb9zGG hAJ4/Sc/t0vZ3ycOhYnJkWrodiTT5RfPHYdimccGlYGz6eYc4mlAal/rxldA pbGWscJvO0LPRCJDV5Y3UdWOC6QAdVRWLJBoY1i+Rv5WeiAJdHpNxrEQm3OP kQZ7dD4dU7wER6rPlzmq8Vs2oaQ5Y8+VjOvJEjKTiIk/j3BOV47546zRRLA/ XmL14tAQgbwQ0SOvZ4aOioOcVhUFpLrKdEDoXUnh14nSw6xEM1hJHfhhO2Jr vsgpelHK3IRnCvZYTGc5I2CGsraMkofXBQ0+GFfLrJVAF3kAG2BiyVKW3zwL KdsWS9x2R2vI8H89kQ07FXLT74q31mDybVV4B1EdLMcqq/9DyAmj3usWmjZL 0PAo67tDZnkA0kW2Za1cDLvheZMc18/Lx8Fqrau0vC2S2g4GaGShZ9fAgmzM TCijfP0Y+cJhnW2H0k5r9O2Ap4dffoGdECNOHCk20+rOo9WxykT8fjzZ5pE7 TIvtEa7M46T9XFze+G9aoaE2Q0r1fcZPWBqXn9lr8XFOjqF2MhAGZNNTMHX7 D+UxVg31CHAEt6ZBwXjWm05vkFtEUt+aSltqjLNLeLiSOEXnsjlW3Qu/Zx1E ZLxDoOLgnYmtwUsPokU7p8V4J5w31hSPQ7cgjFdNJ8T7sxoLgdYWZm0v4J4s ZIDN27SwOqFLicjgITlGlvlESKkpMazfROwKCwVB7JLRrBz8BtNTHlFKJ1li 7qlo/tlKTziNcFhm4yQxFsBPqiD2Uji0EsHsR9/4wisUWTXt547HMJj1+U2v VCCuSTyqJ9bYURPr1WPi3XwTjlzuSkORhO1i4bMVMoEW0Fz/SadbA+inb/DG WgFWLYoDfRi4j/iYsjJivAVjaW0OoMuC6gzsyMQsbiOuD+Ht6kxxWlzyGBqJ tgZ0sqeb2UJQXP5Gb4rl1XNaYck/FPI2OwW5gvWdrScN0ia4qdVpUDKnn4WP QV+muAi2w4YPzdrKt+e0H0TpiUlO6OS0WgORLcxUG19gmExVD8RDfwWlSUIU bVmuo9gO4kjXO7Je7KnMHXTvARWzXTGWV37uF0VFmMz4AjU7pg0C33gMtUZ/ VkovRG4IjngPnAe25xZG4CPhWrt6TiLlRmLKXHYidwPZibXcwgvHhlNrr+5Z S93ocdpq0r7dq7GTe3uQvJxGkon9bpQSbWOUbeXjudHGbBamoMAWQvTcDugS KirFcVRdkyslUUQEq4OSExiXeF4eHYiiB020r1y3caaviPDMkkpcaUQvJ5ql Taxb70p8WygraOEbO8PYe0u1TWGJcY+Hpkcgh/aSWY8HLN9Jsu+DUXO+vGV8 FehubzdZMHAKZZmn6jSYmDIkgqkDkdIOJJMOcXIpcFlzbIs5sNbpFLxHxfoB Ih7YU+ZjGucpX4yQlAD0t9sho4ztAnFFNVB7PKBPxg0b81iWvGyKpKwvZn3z kxaaitoyupgJsNEuBMuvN6Lj98q1kO6dTnb/vi9xVuNc/9tBxRIsWfmydQTR J7Qj7omZw6k709dH5olPL2xtlXX7QE6jVR49EtIrhC80Pno1xNigilzrGWHf Wxe/U5n/5PT3ClOIFKcOT1EUFM/GzLMOWC6pR6nO0CT9MegPEQ1vqt/7jH3W 4/DKYU/OSlwoWDWb04xTak8LVshmRHMQJidHbs6HVRJUtYwmPccmW1DPcpgx WcwwZG6hjjO1H4vbnRorsiwXpVUx/uZat1D3YNNO4u5+mT3ANHtepGlTjcgJ OwSKx8W7Onvhizbu2/ji7CZ39+vynOX35vwBlQY+oWyjns34D1sPQkb7v7mx i35ucemw8gOflMwdUCPKCnruPAvgYNM1mAZBEwXcpTp0yf5hdsT1bxShkFFQ 5WWropOU3NaIMpSqnRRg8Qdk6sYE34tMS6KUgxQdl0PmPYwMpCe0PaWPY+As j79P40sZVilQ7klt3BGr/tnF0oQfqLozhfhIDGzETla01DuIBlBdJGkPALOk rGxS+MK6lfnkCuBDNciEIqBzaBNoYETJvVoyWEbRTI1VZfd9pHcqu+UKWS0C Fev6BBLOYQtY5O6VxINaaAyJogAqkO1VLZnU9qS4mMn5GBcjMgEkyaJcPv7p jYJ267zN2PhiWRoTjs37PqpAMrZ2Wqmnhel5tltI3C/Wym8miWxW6DqwA6Zj eRQdRbQ3emxsHRJ1QAeH09Dz0cqBZOIGpBZwjV/7lkuJtEpCUXEbbBMOFxLE 7pobrHT3KVpxvywdAKuifuUWwZyl3TKL/tQC67edLIzpRrh3k4If6thtEHfL gVtrLVOUTItsURQhjvJrD0CStdBJqWR6k5aNGjSs4QBXcAgzUGEq2WOYncEG orQ2Uk0Tlj4asmiMamhFgNtFmHUdxLqMfHA/K5xnN5Q/r+TUHzwcqgBxbKdZ lsjzMefEtpKerncVXlENC/xU6T8omqCWZYEt6SxjytvtNYzRhMt7gmXMbgZ/ YFwKH1NZ9MqdF/FuT6x7ips9rhgxvnwkEiuleIOp8pM1IYpnXLmwS1Ymo6XO ZeZr4Yanrzjgvh+zprNCO2iZWijBbeLWhLrIY7+u6oU+EcP1bLLQmrgc8X6I i8c5hUr/WNR62PLnpJgw1CeJzqQlVBaiPrT4RfSMvSr/JhBKq1LDUo4IwWyF IkuPsJqfTEgaZWgMi4R0V9iXsJKNKSkjuLup+TJIdoQTBfkryxCwzfuHEYKs cs3zRJfKZAuUyq3jWopDc6lq5p0WyMe5+V7RBzgnLkP9nm0B3sLmB9hxDL/D XAQsU2V7qwNQxOTltKK82o9t5HNyfGn3kznDAoLO4rzWtFbbHFa+ZgtzNs+l PYwPS+PT3dg5QeCTDrWJMEeOoZHZmbn7hE6wJ12kMqEXHoWj07z0mfy2Md5R +bkXDF4hwuwp5uvF3E2yItm4DSqhCS2yJtDFsFd5OWbK9x8D0SNqbGp6qC4h iwMceaE+O5fPYY1yXTDTZU5hAiNR1rJd8o/QF2lrhTbSOONIiZJQFEwAxJlJ ES/Pp15LBjkG42S/jvN7z1j1gy/YMLVcz1un/pOgE13XGmG80YQMEUravjxV zlLLDcYXdRrwvgWx2NFda5s2JYVuGzte0ICCtd0gZNlrSoPWy8g4JvJotoXs EzemfZRhpxVGGtJwOSOpz7Kz75cwMx2wSu6Axpeu9L/tj81D4BO946Zn7bCF WrHOb8Mzr5eeaOHOMZlnEy91PkCG2PD5PesgDi2t7e5Vll7MnwPFQeBZ2aNQ Ek3I9YdQUGKmcyJMLZLZzx+a41Yu8wMhVftE1tQK4JSl1F/pdhPRCayhCCs4 UWa8BX1gWbpq0IiA3VW+3tPBTwkJrsUlyfjEvhVJkt4PCkZdcMOSfJL7UaFI q3wYApjTEQ/tWhHiURmGouY9FMGpazCbq4LvTcv1Q32JYAnVpYlFtvQM1E0C zTfs6iD3xQ7Q07ofhiECXFsiIBhIpDDOH/59ux7YITJ4xmIUNj6Wdw8Mk/EC Buf1Fk5o/uC9MF9XdyO5L6QZMarnqYWik5m0JMysTxyHrDIKmJ0nFRwWq+ui 7bYN3VAQHwRgGvHynOygPdMk/6sGuwaHFDNgIDVYTtP/AG4tei+LcqJmdzli /TE8zmyGuh6zCdfYfkde5b5hLeM8fNXvCVP0iQS+IR6VxJx3Sha2PXOTGODR xMaqPNQ6hojgCEo6Sa+QYNF4eVADWTHYF0T1070yUyv2nHN7n7VmAIkQR+J5 cgvjR7bbJG5BVF/DwUvyt2zm493d8PHT9HTJ3kBluZl3l9XNykRLwTTWe91v ynKibq4/gvUsxx5bvoyudbHVbU4T5RzMHcubG8Di5xJtln5IEjwXmDwDnz+G M3Y5+llixnzez+JAcS5/oDAQgIjjsuwQmMWSYYIKpzQ1wss/tr9ytuX61jQd pS0kJmrsO7BbkiXvdsCzvd2EUL8TLTFNksL42ZxiKn94++r9KxmizOKNi108 4MPw+uunO5If/313+353ye3N9u+b2+Hd919P1vOWOby6/TDgC2U48cZJAF4Q h1UrwuW+C7VtchJbY3CWj/jbzKvIEmOvpCKsFZtA+HH8KTo7xD0iNbb6eBB5 4FaxyyPPk0aU1plzDoVjbypXXZkgmatgy30xWOqzNW12RKbbnSrtA5AlsoKw 47UBNi5VcgAQaOosSzizBQPSLpt28cgK5StbKS+RTlxUsMDFBXnqmneV2/C5 T5qnNpeRoVQW2BH2cD78+uab4cn16+Hj9o2P777fkvxXw89bbeHj3fvhw934 y7vhmy0buL75Ybgbv/Xp0/Bp5O3DIE1n5GWY6ML2CWf2K7Ej5uYVYogoEUdf 1o4L+zZ5I0bx0LOOnMQVfWYKUFDheWHxAiDJbUWPhr4Te8a5qsgKfL0xY7IG b9wUZ96kgcYFskzMrNWL1bzrs1jSh2PLnhdeSQtm5sZj710AmzHS2j6zXHvk QBnXVOQZSfIMlGJW4VAHvtgC5O3N9fDtD+/LLd8PL59cDz/eDYL1w6dfhlfP torB9avhl09DKbodlQOussVZm0uGhCrobRFevs+ijeuW4g9vb4F5uctHjbIr EZvs8bVkUBZWYFh9qMALo3LgGmZPZmxhXls3okzhc1in73IrusU5diaa1lEv qZYrpYdkRFtKkmDxb2qksOHVKORRhYAjrutkce24H6mfiDTeQ8qpLdso2thc 16U1KIy2c1KJ9fbmGRDrh+Hm6bORWMXRuKXW4cdXz7bk+XL4VUTysRLJFsqw DJz6qSVxw9HM1vXIE4ji7gioynWhDaWlGF9+q7000voEGSasOi5TOlIiPdQk Z1WFsLrL6gbKXYGx7J01v2BVzj5hJvj3g/IlhGygnVXdydxuOtt49pNV7JAV z3WhZCaIp1mevOYJb2Yf85ianYsffcQmgaWX5wTZWszZMnGBp8PTraG+e326 Ha6fPB3e3g2ikX56fzv8+c1Pw+Thu9tK9CfDy9sPste5gTShBis6jSMlK5LF 28WDudkRt+7JPRHhXeA+1dbzCp+4HHA9rC4hSXtluzvsmBp+EZtfaRqCUuFo LpsyZgyLOJ6ctCFaN+vCOKscrGyrbdzH0pyNnIG9Ryw5TuBanm/ASBvXIFoV JHzRbPCsy1SPfYQOTGNFQlGOn28/0VDKN1igUxcyGU0g8eMcKHMAPm9848Pb m51q8MvWtP/lzcvhydNXWx2i8Y1fRmP/enj7fss5PtwOX20ZxeufPyLfKLdN IjzxELDgwGOXJxNoYSbGPIWEHz1LgPDo0HaGLco5+je7bUKByJuhmAGgyDrQ eaV4lXj9HLGelGPF84CdBj4uqTGyp2hsTRlLZIV8AxePRGAsL+DqRdC1JklR loOngZ7tdCldFGP7HMXJKYEg/M7iWC4fJlTqw66JWZEfoS0VJgKtFUMDcAKM XoRDjAf3cXjz8lkJDTwb/vLurrKX8bMfv/u6hg2+unkz+v9itYJxPDZZybay 4JkRcDBzg2tRpke7ns9tYWWTWU/GgALZkk4KK5HL7JCdAH8z1RPJ7Crrf8V0 tG6rAly87XSJYVYcqATseSI3n2VleUOi5VV+Qphelfx4/TEhcfbMxo+0sgWF TYxb4FZQcsRKQzujGjFf/8mORqHcKp6E1rxpl19I34SWdwXJsio5iHgCrSKj Gc8UbKZlJaziBdYpHjIb2UaQZb4QNMKBuFjePPOnb5IGbjbx8ZKETMYXcGvJ T0EhKis+J7uYOwUMtRrgeEwKWy1jwyPN0dT7kStIzIjkEaqKYDwzxlCJg4Q2 pLC8Xt8nl9b3C5Q6xiMpIWQJrt46uY1FrQJ8HPohizcbQOyJWYOOOEzpkqWd pExfMAoaY2VU4CrSbR0fDaZNT7mwolg9xY7zkZ2VJqGJuD+2xGLQzjQ91DYM PIp1Y7VJ7s2EOlBsHlb/uJBVBtINr1mUVGwDPtE7bc2bRrdL53DvJLxLRYcR m+h5axj5Atv6C0y35C69OZiEMV4AmpUcUDLV5HBF7RrWDqffjYegGKyRtXRi JlxMOEj2PtrYopNstN+mBd6lOFce0RIHeKo8MFXGxwJJ2xBoSd1ZE6DP3Aas l9V2n26OXJ0mFFQxxJyXO6outfkLaDTHNkC1Rmt1c5X+vj+ShY/CflHSx1/y 2aHYuadIsyZKWZM5QgkLIXDTlTny3tYkVfQooZjC/QUDONIgR1jBFgttHj87 aFyN8Ufu+fMe3z4G+I4tNslWezUtb4s0oqi6nrmU8D2dqmL6/6UyG9L75IFX aVVNa5OAHAn4ApNP1tSDsy4OB95GT1iLFM9Z5cgaIKxPVKdmOnPOeu9Nczh7 MeBn+tqRA5fQQgTBw/rMbEqetcwRMKThUArAQTUoVj2sNdhjezTqb/he7DDp mG/hIczPeW6qCQCa2bCSNsESmbXHhcerbKUscS3QJcZJS8dq91ER1vanZO4Z HiqEj2V+QS5L0l/RyhcM0Kx9byGUF8AgJj0xhp6U9DQG2bz1sH7JETD5swY5 L1V0m9yS9uAB4hVhjywz7q2jC1bgsWHjxGUBkPhJUDeJk6fd+Ccp98HmA0YA r533IfM8LnQlVJDvbJ1WhjZZBzK49IR8GzKzgpadqs82frX87sr75OXJymnU jMPGrTtnFyIiQ/e3OQuDKFZOob2Q0Cnrr2EYQiQ3mB/nrBBkU+poFGTCzHP1 JHtplDgKnAvNdBFkASiBvxZSP62eAXLoAFLHGBkbRtG7x+yIcr85OTQsQ3AJ dJaJX1b/WDjY7JLUuKK8O1cpbT17ooCLu7Z+9Mp+xpX9o1VgTugqxp9E2C3Q 9apPLUhl9owRDwWBYvswYG+xoA9FnMB1iOzMigRXveeXkVA3T7sIgMiyMuBj xq5iGceuC598DDhmxSJZAZJHPBiPp1IgurOiP01i3hQF/qSqmcARg206rf1A lLws/JwNsPI7OVL3ILETZqnA71n6PGJzZCnDqSqWI17fHWHbNF2P61qnEF9L lDyOHAPYepKO55gUrOvE8E9lPTv6wxQSpl0ahBHToNsLpk/K0XgBjxRSQeSM R3Xt3JlYD8g9jYKf3nNmb2q/jHywh9OqeE34hs9p2YNjjJ4gxwjlIxhCBo0H I3PEA8rI97RAlRCZw7lgbGY8NJSLjgcEquMrILM5jjKftcjP+arNGJSVJbYq lVpwzRyfoc22wV5QGVu1QqPqeAtdEj+pn01DFx5g+JuTqugIg7W7uiFQI5jM 16jBizUEBDa87SktKOjjla14aYAmLHFIKkJR03fYxofcoAlNuFoWordHojCI FWs0hw9WWwat62xpvEeuwItyyg7MZmj3uGTMOX36KyFYRzJxMdC545ONL27c PV0alI/DoROUyQzrzCjKeRxN4N0K41TUufprHgDxSsss5SPIe5tQ4yKVSSyB Fmn+0ACueI+IT0Cfuk9lxLKt6cisn8uRA0YjO8zkAbnDrhb5soQD4iFiu+Bk kyUIoQYR22fUCc8ovwNRJZ75yHsFxp6cbF5RmFnD5DIYE+gFg9XIopHE8EGw gHh/3IXJJPu6FTn6tCnv6YZMB0qJO0SNo21ZzW2/mwATFLb3oyLRc8pDZ/xt J3LgqTM9fvyHxYuzmg0GPrpC5YeoJ9j1OecK2LKKz6BXhJ3XOXkva2+n89k0 NwfyWzzY4e1+5ebl/QeTUKkJSLJeGl2LSynmdOjWkRWEidFY48BYHuhpkbhY XWIu/tYBHvSkyG0bR476EpCxSMPxXTSyKUs8kG2Lgw1jt4oVmTxPuTLLvLif ykSS09dBXIQ7rWBHtko1djE6ryQ072FZ2f7sGw8rdO9raRmsjRYCZDAh3jEy 3/5dmJ85q66IG0MDTs9p+X8FnTm9MaplUsyXVmp3iIs+MpsZv0zq9n2SEslA GrIRVRPkiTJxKsoW75m8LNkySXivVmJZewCeEuMlBF9+FDTxQrvP1WxVFEpC G3GC+4sRRbhP5rYA6O9bZ4pd3dhfHXNkymuWcoCtLRFfjQVauMLURfXz3VVS FyOFMAkMApjVsSMT3T+kXsbxZc0Ii1GK27RulBmtt1Pm9TKWjqJmGXH9XBDB WTKzixYYZj2ssDR3fLXgJE/cMWyGZYT/ztAiaCoLgaw9yytoD4lnqyHcCpxQ zsF16GluDEoHd7NYJMZ/7Pfhd+vqY7yX8VRmitkiHcG5xnWWFUUdb5eUKcIR Hb4rXmAFHip3wKIXf7P7X6v8sNJjpObJ4zRSMRjKNZeOKJt4V+tpAwWm3OLc MV8EWRO9LoRvx7ExKQeUS9Efi+sNhbtdcY6RJai2oPpUbHLVZjLgjRPOjSqj 8awynT12j3JfL9NkDwvFEHFpFexxa2x4VFpKywp9lxUeaGnbOqJ2iLnADqyT LFxkJWD5XRQj5tTe8Ysp5RaZsrR0ExkacDSL6PKkNDxy4vDSgg2tH5azcm72 a8oeHN2/KHRf61xK9mc+BYJJ+0YVf1MJO6OyqFNmlLtD+NBc9Z01e/tSCpIv HAcn2o9FQflbcXrEhraUNn0hEMEox6JcGVPMYNM+rE8PAYHqZOxc0LZN3EjU Vh81Lij3i0v09AHspq97AAVmia1BsEffJgwdIsO02Bv5Li8MJ1r/iVf0ZEZb loaBdd6WIOD+c6JfqAQC4rvrPRd0DDMOSujHnWiusSm6P9BF4RrHlfIZ53Dc cJaXhJXKGF5b8OuhE4HERHAiDlbZKzoHRsoq7QU3ZVijpfvgaRD8WmReFGhq wxx5TIzqZmAAgQnQRwpIRMGDRx67WwUVIrGdpcMcNeYwpYvLZjqJXijjdY78 nKKfrPVvloXEs7gYcQOK2OuyBmzI+UiFSBT49Ku41+Cz3XvgM57V4S3z96IM EdsaKx5ELbWgYCn8at3MbdwMV5XRcOwa8mo96oUG6krhMcPpav7egz3IHJsM JYhGzFGmk+wUTE/WuC4ZdKwC8sJgDqZjbfjgMVZLA/uygt2cBjawRu8zY5AS nI2EiheLvN4WQYh58IhHPR9/Y65eTLGmE2Y/VP2KXFCVsQn7tbBsskw5VsXm Dhgh/bupERsmX1hAabruM+ewS5qp1cdgdb3XdHiiONyXVUVK7YBV3Y1Ms6Ue ZfNLkHAJi5UN/absy+Y2xjUxT4g6yCN1OblFnFvFDuxE+fFxfyymyHoUOG01 8HLqPFg8fvakqRbcm2IR/ySFH9QRG6fnOK4ZDL6bm9fKHA2Ajaw1QaNg2l0x 4hW62W9A1wk0eHOeSMsD3oAnyTg8HIxd/QT3ZiIEijzexhryl7Uy1VvUhrxx ivhGdEZtQYx3hVZUVINhpGWt2+ofgh4cu421dD/RM/Dx1rWgJIRSNkI9hzGZ luUTtL3HTAJ2Ble1SUJz57OgJyh1dfvjy8az6qF4XWCNlshK4THjSznd8UzP uZMomQdVEeNC1wCJ420evc2fQnQGp0OwA9w6F4Za9EQ6RlXoxbC9T1DjNWRV eYaBTcevOifl3l3eTQa+JGk+XoE4wfcoLiFOYV97/AwlCxv5ZqnESxjWjpMr 2TXWod3eeLTttlmYXuskqw67sF0VhupLCGp1V9UNZyUP6mJo0yJFmkl2wOVc 7mpmXmxaEAXhGw0pnHA4Uth4tr4XAj5Jx2gmzGOasQkE2Dl5L3U75YXQqo+e X0/M/Bs5BPmtjBK5MxmoqbqiRKcz1GLrSEzEwl7+kGwsqLI+ILYMCzQHTKmg w6kCdmRgwH2YxYm3Ru5z0iFR437GJiXIuBuYWztuBiBUvTbedrhPioPNSosB yNzZv8lZtgRM6TlV4BYIwE4BK4uosfjIytzGmHRiawGD7mKC6CqQ17HAwYeO GTfRIy+UA8j+xLNmFG9rbqP2AKxIwsW4iWhDwcFNDO7E7iO6xag81/QDFIhy HaT4Z603tH/42B24yYKT7++XW1rwelR07DlplhDDZR9Ra/yMFaO2rHjbCqrT Nqg7ddQrKffPcT4h9wq8A6B5uIEaVspcQSEO8qMzskwhSRuIrbduNACkBx42 luGgH/E7OHS4Peq6+HR0zIFZJhjL8mmKJ4CK1qjNab1euI6lmITSep2n4LA8 u7naVVtdfpH2V8UmKTqxJM5sjVLZWJ3C2nQSWqmBnUHOEiVGW7pRFHTpLi0b aEcR+1aAqUx4dMpS/tyBgEnwsCBhdnZRZ/ko8RepQqmTOo/A0jaeTjm1WZH2 tJUP88idOOXKCne0yQL28jfk9kwXtnOZyq116bXLWLZ1JFUge3I94euzfRYs Ny00wrw/LPAm0MTZIEzZI5ISz4xFUrU6YF1AgWUSAzmXkmX7URAwlFUoKrWZ HPYm84jHWtjomhJyWlg0aFDfkUKcEsNLZCzVe9bFKBoQJ2xXmTpasnySQAn1 0iZTE3TltWsuMrfEhjUYZZrLnPH2TQjy9o4SN40oA7a4YHNxlIQm9erKX36g Hg/+Emvgesd9X0HSjTd8gBJIhaYyaR7B0tb6eUuPkPKPasoxBhAdPvCEKjs0 ywq/FmPU/TOuoPF7oijR5K+gTjmqzgMKUOk4jdVX+cKYgc2ZUwR+GG666SJL tdCCMos5XevmtPGBCByqn80xiyxZQGR5qr+GZ+jMLS3GRq2YMeiDCLO6azEU jjMF79VgBCFxpZonWjjCz2l/MlfMsivkqC2nbCLok0JxBpkUPq7bABfcXD9z qptzBKtbNM2msZtkRA/rMTAnCR7zpOcU57NUYrFSMbxyD0yxBhsK1RUwY2Op 7n62QTMvEi9a3EVe2N8a6iHxANet8o7kEC90gk7rr27Qig3dVcIwqwzqtOO1 uQfjY8FAytrYs76Uxv6aVPzCy2VlNejs9M8lWSv8zhrbnYGwaOxuo7qU8xR4 oZNJrGOXINsvqvxkOV22NzAJDbpQGi5fQoREA7D0Q9OhOk0eOo1NAwshkk3S VsYLfz5xESml4tK8mIDMKLFUQ/zRKjtevi96qjfS+90GbCKBbIXxvKDFkJQ8 RKzQJkbb9xtbZNG0jiDgdfoA8TDBEus6zcFSxSTXERrnQHnWvE7HGWQ9mmrO zFTvC/JeFsm7kp40rJQzm3GODbBfNGejjr0B4LO2rh5mrCig2xPLW+adsG44 XjBxrh8WBiDfxPZsiQ0vnzH3tS1xKwzMWltrSBFB/tv6eecV/HFvf93+0/Ii 4FHTSv864qXqa9Z0tbcjumParKw/c65xjKyNYEtcQnIDLSiOB2bpNfuwKWpn m9XEGV95oJNF+rW1WE+RhRjT7PtDJVsMuyigPUXc270wkV0jAPg55/Qun+u1 4p4/k90tLmvrb4aNU8//QUz6mG3KjqcB4kW6M5bAcUjuHQj7+p2zsmCszyeS ELGCpBzFrS+6TfCDj7PsWHzKUWE+8p7VowxysZFI4M5JA1P2yJBXsml25Xfn Z8PlZ35A9p7f+izPNos+rGX4J0OiI3upZdcTkB4pQpZLoqR6FmFEhdJvrl+2 k5VvmQSC3c6gxVDaQWxHtXFDi7Ad5+PCMjL2m1VePiy3tx1bA0K7VFWtvhcN E13ksfgIhn7MYhTKQ0Bg3e94HVg2GHCEQwmOYs4YatuT3svTE/t+ppdQGsve 88DguXP4HurETXFBdTOefB1JazDLg6huKx1zVd8OqllNb2/HzDKMi5zuwbmO mdtH8ZEit5TSfa7mcwVo5P5et4wWlOlxZOfc3Q6lgP3bCddW0YfsFv1IjQI1 X3C3WqqD17EgP5JibhR9Dtv6faFXuxXv14x7RjAatxMQxrV9XtZBwLbAUQT2 niSElyXQ+fcs2cbdxJjrI0AC53fFod0+0GkzCjwYWk5zFoq6R7zZe5rixHTm KQpa4mrmjtCJ8qiUWr3ECZwVKBOOXiiVA6U0kdjuHqJG2wOz+AM/afqfcFsY XzQnV89WYWDT2JXDBxP4DjLV7AwKJBnxAPmKi0OD7xty4D76j5Uqp+Sk7X4Z DR6V80YQOlzNOuhpLyazd2UIPYJEtmDE5zxHEHd0TSe+UjOsEDkBkZwTQN2e 6/5m9RnbZmfPiggvW3k9zb/2YVEgEOpcUnT7CPrvhaF0hSTA9Oop2/oTxuiY v6Us3cUANtU3oXtQOBF7ojw/jD0g/86cvX1VMPueptdzs1UEQ9ZgxcmASynF cKgV+IfiTr1htCSKb3rJwxkd2gaBr2khSa6WOaFaBfdk3sFA41S9+4IQ0/gz dkdpJ22F4UW19RDhI9US8hkA2Y/s8VjAppp3wzcsNbVVuMrbt2ReoSoNRbMc X+jhK7ea684nhWGKjif46RZgZt8hk2DmSTq4wHaoup9Ax6NZ1/4Wh9USY9/v N9Hv+49+R7bJSlGLwkHZeJwe0eI46mSXDpsjhynW4Bmdx7PgOYPtk8QfinB5 6jIrDzXPxc+422j72+PwtIIUx3iGc0O+JVoj8Jk/mKvSPT6umfLDjBs5++L5 co2NCV2KT8q6COoHZSBlJvQFyQoWPEYWsGQqxIJJIhbdPCiHmRw4/s1CMPDV bNTOldTJHqibKump1zdVd19+IW1EzalXW1Eg40fudGrFfEFvcSSwHLxiMDnF aPwJTqfpwZ8pDGY9U6xbvi//uZ9zHk86cvc26SutxGbTIzy7OpuBYR3efif6 WMBEYgw8i7+j9gm41ppV0E5xSJuo7yDWesqPwUluzbRnuKWkRKJ1iB5kQRiY EmBvIREjokkwNrR5bjpQrKrmYBUsTO6zHUkpO1gZvqqEuhFFDU1sbM/rIZkD b+lOoMmApF3FlJ0TKKmsA66VDptqGuk5ldaobt8NmqK5EQcsOUGNBAFkX7DS iag6xbDHHfzisTq604pRnBeYy6OD/i+oyGGkZclFbRYSDbx21q1sb5fOdc/7 Rmu1Ygxia+2+fICAld1gLcXdx91krrnjyGKrIAa091WFFimrByCsgwkx/Mop oKOJPRa03DSaPKnYZm7DwF0tKnl8YCJmSek2gVVyZ5QqchyBaLcSl4SoScc0 4lvsA07pk+D1dHplPIlEk+XKeiUrBuDICKZMMHbA6KOIh1kOJ9ZNAjlnOTjh cSq9NtbJPf11MD6yzJle1djCidORLNfC76SDw7SJHPai7BDlXE7XmcyJlzLD 7LwgcgLkwmqa60+UlH7mLc0JZlzvtJCfpVwr0saftRV10IhGz2fGu6TqoN+f /RqK/+k7D9Ut8fckuoifCc1hHLc8ZqHqxXwIi3nE+zEBjfW556SZY3sq5Mca 2yFYca2rAie2f/RCMoO4YyfEuXlefV2LPrjOyxwk4xrxUPhMR0ilx4NeRGAy YpUGt87KKf2qg0BjUxES66g0L5k3tgv1UWTYylF56EaR4ePOYcVOvXNlGKzF RpA5g7YpkQDkULL5yVlG24E6MRtGYMK03J/64VjCF442JzzGuu6YXWUxCGPL ggbDYBsj1/M4B2gSCFLugelpenCdThwQ68Xe70pXAvb8pV1vP3Nu9xOhNzXU 0bT2QrTnZKOxJu+LejCaFWdbzOnVpNMUyXV2CWwQumpq5anWKwKsf0FejtN8 KU2YaDruJ2GG6j5Thx4q1DCKOcXk8eXk8qwsETkKc6k9ikfmq1OeipZE8tpU k0fzPKYTMikYdzyZh/iSZ0HgryQZADIYSMzytJkWm2VosNLHgpkLCNly2cXa Twt6sRCni4oyOZ6HYBAhEh2CgeEMaXEPm+MssLwARqvgGTrBcvlF86cbdGzQ Iw6YKyi7z0JzNh/HM0/GES/cKduyh8ywYMksjBsSiMvsRNTzbRZGrcLiCcWI RuwA2erioiGe2dZLnB3fB5YWZFKgqp7PIrZzvdaBpXls1uBMEnESyJGJtPFz pPusBTgpimxr1dl1zJGnDAaoVZdHUzWNcdZjJNoDjM8jEmK8BfBy0iXP6tU4 Ltigr93AwhbttQQk3xic3Wcjieahihm7UZsgwViXeRJF5bmN32fK1bA52NTs 7LRuS5KTBFoBVNmps/z/uIlKZlDkfQgqv2Yljlm7aY2yYbSW2ZPSoRXzqZji bJMO52WRaCkowhaum1voEjtO+TzYzL+ByyTESwCMBqilPkQUPGQdQFxFZ0JW eB97q9/p8wprKVsck6FRRf+HyqzCS5nOZBlqjW3liUHZ2Do8oglFfldZI5rT FkDmGUCJtCS8JgaxNSBF2Im1gUmRTdMzfGxClQu3egzvWlSxEGTQiv1DPELm l9r/rkhkFOLCWk1cJbRmUZNqCbcqFyFThJj+wMAR6BSK7FmJqp+E1bjF7O66 seYXuv1tKhgjVdEm4iHULscSHebwCl1V1gow31MgjtvJMozTHrsrGS7IOHXr FwZWmeI6Ygxh8rA4MgjUUiJhAj0mEl9DqxjovmKglSFOBUxEAc3SZVG8VSHu HJ+dXtlM9lkG3A58X/4WRIjsXhTRsjCToxMrPvMTtuOOFikJkyNykx0MnCTW lQmV8cXUJaZrAN9JNIagX+OhSiG2j037EAQ5qf1s4177VcDrIEeD2RQAQlyI hLrspC9DSwZFpMfDHNHo3wuGo8wtaNXbrQ7qVVUxjN1XhXlLM+EZL7EjNAju Os5gxbKhYYSRS6rCp2KHTbS8vMO7c8g+aXt893dwe2Tk6LdIZicxOD00tzSr gdM/c4+N1Eg8m7m9SXvEA6L1tDCaREwFWwiqxbNhKvu2YJYVlu6XFTWkfeEE LJQ5FGt1zTua2dFTX9ZxDrzvvEFllgNqhUC1lgvxCRpD9QYqEAtJ0RRQGOjG ldpdoeqltk4kwiC3OWM2r+I8hF0yTYjx9/MQilnjTugAQVrglvvExpuewGJR GnSNpgBe1oYjCQET9pUPEe5o2oKNOMJDiLIn/WdgsBAlAYbKvpLbSAZMBAHD rmzdRHE1IVs3epgL46/vGQ6d4z1qNGmj9Zd6bLGzhJujL4huYCvSwpJ6pRkT /l+43UQJ6yw8ylh6HFi23KlJQdzRGqpXmKiSwDMV+61IYYbArE+KbUXGHsJU kow+y2oXuyIbkTvGQcKMLD0kHJxmOHBcrLtAmsanlHsskcXGClicAxz4gR4a 4kcyjHWEXH9hywsQZa7b/dhchyQlCuP4AihZyxkFK2Pg6zG9eJLRAZ8mm5xt xTZ20zwmwA3Rb8AwD5EdtIYogCsIWvBR9dEm7joKcrSZ4N7nSL5L1bgl8yMj jvgQosOLFTwcIL8XMQjW1IIV8a6bDgicuCbQm1WoVYPP2ApmBkqwJ6J+ASs4 vSRuxHoz4O9Yq4mMlpFv1gyIXQfcY8FGSXLSzw1e1DsFSQNJOv5EfRLdro0F rGi0rGHlBiplj52jIlC6WL0g/B5noB6pu5ENxZOf01p+SwYwI8Rq7YwZR3JM rlN0re1Yydi1PCvi9bZFdRKvzNoHWI0P9Urru5/T1hiEsJOycUPfPUQ6LGMP dbk4k3HJTizR25KkzrhKitmF83o4sPNlhWdsvivOUGRManzBupCordrBgiNx /duRcrmTLbC8KpSbBhUQOhikJq5w60Yurc0YP0WSALyV3jYo1gOjn0YCmNc/ 8Tb32kRhrs6/NyDSSkuNUTKBMgmsU4oLFtKO4zI6kCTpJiIF5DAO3eVsYQWY 4Ih4iNCmQsRguhfrGlR+L5L9XPEli0hoU2FBwYarv1mbMWkegiwN83CUyOz7 hEG64h1FgYj9hrqczExDSaIHvFnWfQdfWIYeMY04Kuss+zOzPCYb8Da/p2Cb ZBHpgqIJUFsFMjHCGGaZTRi7tHzNKB4IdouJM295pN0fRD/wpZNMILQ0Sa/H irEYh6363UYszOnNavvVT+1lSlit6WjalrzYybBJ30K0RkxY9tdzcKHVxGQB m15mIwkCN0DXjlbQPIxRxaGv1bpfxyjvuJs3MSNKBhg/s0GDpi7kiT4sFRiT SS3X6ZL6ofsaOnH3wGAIrKVJMGrl0Z86r8uqIT+dTbGudnR8ENkUe3w8yzeM /PYt6XMVFTrh9hZZHhhRG3CpbLY0Aay+hZaNV63tAdjlkdeRwYYJa7IQW1CA 2neJb1xK5cChMvXMmRfgnqvDblRKZwvi0yLiRcBKv8cAkKi7CL/QWqEuumY9 IFmSd2wyH6hngQ7Ujcv+u0hcRK17DdxaW7eojXrDxMcRwOrf1j3L2qysecPj TGrje1jXU/wu9ABCqb3QTT3iQ2HvXThwW4FiwYKdAYIEjjQnRYd5015x+zZK Mau5DKuS52Y81nFosMxpHPZ7JbMy2Rh5EZlfTNYhJM0wezOvhSvC2Xbyugp6 jfa6N3OJFAQQ+kHi7TdNxjSznbN5qFBGa0AYFhDhhHND/Asc+Qz7lHJjTEfZ SJimM4SjOzBP8w07cfIKOogRTyJuiFjxCwmOI64ysgYcdWOmLyHDyqTYfkYg AKpsXOQwp2MEQ8OHAJgXLDCqLBMrlzfit58/StAS5uOCCiY6HoeHmA6kW0xg cnnASwrRTAg3uX+mcbo+r7Wivm/shDcGTQr538QodE9+zNlnqA6rEKpGNNm+ zfKrLNZZy0FzXC/oGH2zbO0aTJ5qH/EF/irX0WZTVbf7Tb2OB9VqnIGcXuTt cOaYkUs+flBOCk9HTkISEBJLbU7jzrgGM076lXsoTb2pMUwF+g1ZUlmXKzS1 xelp5BM9Rce5c69uJEKPNamOl8rkayMExp+xe7UfwGRqJ0umn9smLA5Ntjgf hASLqMqUkDAaY7/qHY++sYNB6N1lVpb38o0Q1UKaYmd8VJ3aUlmpmenUGjaO YvOcA4QOyq5iCCxnamhxJxvmMw+6pnC3KUv6YvjJEkKbtjXXGMpiXr0ADoib UyTBvSoto7tI/yZEOOSqctq+KZqf2OJlaT82FFeOOMXattuyJgSa7xBSV6DQ SfNeKrLlYscO6ZaPSyvLcypPkw4XoRS1Sgyhy8UsWajpdr8IJePxYExOUj6Y LHQ5k7lx5EPlrJozHEnJPHeyOez9ynOZNztHTUeVFDypikJZblw6eY9JU8z5 TVvDmIVFyTjNJUo7m47ozrzucWeXfrZiNVuy2KLvJrup+iLvDM4klLU3MDY6 vpogdY1RLsxX5R/KZ+azi5owtFSiFSVUE0p1eIzSa837/AYoX0RH4AM6UA4p +NoDQ7OBZqeTg7m1uObmWzrsoV940dPAmNMWFh/n5ejEQpmMAxxUpiLYlfSk qZXIV//AB0kl/V7lth/v7oaPn6bL5XyR/NeYNWi16JYX1tKbffyMly0zqON7 WRoneneu+BBi++imIOYZeCxAP+dIkHuYYiNqfCAtgQEcX5on9E5ncEm9S43h aY5hkNFs7xjdQ8o/Y747t7OZIWyaX4ZaEnAZl//VQ57YonBcIrbhuMltXfqe 7HP9EOUlE6NDG26G0FvrUtGIRcuYY+QksNk48L3YLfTD8Prrpzv6H/99d/t+ 94Dbm+3fN7cC6J9ePRtubu/KX8M8jYF1W487/mU+7Hnh7V6ifYve7FvtILOI r0ovY0OirBbMrhJwm6VnExg1lOLwENQyHs44ITnPLJhAzzvdYqpbp5ZSwIeP cEVALacCuwohx2lftSyDywRcybp1YcJDrAH9M6XA4TeZNamZGjNIfB3ZnPv0 JOX8bJBYV4Y9HgTSr1cZ83n43mKruP765pvhyfXr4eP2jY/vvt8ygq+Gn7f6 xMe798OHu0/Dh3e3w48//jD8sP33astbvrr58/Duwyd5EMaVe01JNOc9UDgK pmagh2d8PoOwTWQ38b201NwJG5buyWovjoBIgLLt4tzfa6nsMFzE1nKUVcap wnl/fPg7Hto4R/rHnadklcWo2F4/mZCXX7igvpP6HqP9WjCXLzjDTlkp8+Ut zVeMhNodje15anQd+TvO4GS52NMyGrAuXbwo82d5SRHO4/CaA2OIi+2y3t5c D9/+8L6g4Pvh5ZPr4ce7QaD606unO2bx/V++H7599nS4/ubV8PbXj7vz2tVF 0YdpnQx/n/J7my1iDpOyNhupFPy22i7mH6BGlQjcA7Jcy1rilIcOP5EVUF1k rxBwhl8wFCsqsO5JvmXyGMKa4gp63+91U3VDLa0sD+HdX6BfQdCr1loe0dIn YVPj+uIyoap/7K2ca9ayycRe70O/MXL4DAez+ibUt9Hevc/6O0N68VJm/TeW cXvzDFjGh+Hm6bPGMrZP/vTz8PVWYfjL9op33321NUI+VhrK0sTbg2OZhK6M 2IDWMBdObnHHJMBh/img0e62J2RZ48srCHmd45e8f7qY8ppCwvF0TOM0uVcL qCE96RI+WivBYF2r/kyG2eZ51LNmh4ACUgRVX5UOPJeH6jlyeCXNvJbQmNIT phNVpiUgboTXTvwzQqiMeUhH/fA5jAutZqATK6xfiyKnWyhEw+oC64Yyxs58 r/n6xO3N0+Hpze2E2Z9uh+snT4e3d4NYOx/fvd7pEy+/vh5u3n7I+ALyWQtm n8l5YrEm9TsIlpuEJjFKjG/8EVmR7c4TKN5UazBAjisaWSmgDlxZ2mB4GJsa 5JnAOJZMg6siz2Z7NpHXqRnN8/vYELsH+IHH5GOJ76swZnPoVA2QYS6rMtI5 xNyRGEmbzpCQObkjUznNZQnz7/YdD7FjuwkqMEfy/PD2ZktsL4dfPg7DL29e Dk+evtpK8EHu//P3X+1o8dXt3WyZvSoIwaSJ+AIJWgZsWY9W6qQyMWhKKgxj FRjwscWM8FhsuBZxEFkZ0r88buPbPxrPHJKysOA4lYuJ3RWDh1uluEWCcqg4 8Bza08LITRoAc4/sFYIwIowiADyNKZ9xsJmn2Twk9wiacMSt9fvBCptaJbiG UvlLmV4ygVTeFqnz205B5CGG2LQ9sNjB7OPw5uWzEil4Nvzl3V2F5DDcDa+f Pdlq5x8SSg8raRuvsvV6eVOi8veiDWO0WnYsB+U6O1sNc0TihkbNV2a94wYf WdNv3AZu2dpeV3WKzH6ltQK9uQ0/WeYX60oX71QvHX/3bITVLwchLd4bK54o o+PqxJ7JKv5Y4BVIxdvgfWKNuz/30zvZyLU4lB+6oRvZ6iy3hkpJKdcKnx4U xrQUWoyEX8B52Gwv5yC7fyQj7uN/P6Wc6bwZjgRVilgyF6aB89w2rDe85D2Y en072Gb0guc6d3lb81aKUbmQVUVQXlQBlx/rbxtX2U0DOiPAkmrtRAOI/o6S t1hRuITYA6Zve7SiDLEq/PhVyJo66hEqb78Ims+CGTmdVmsWd2abW9rI3Uj8 ek6HKyaYeBGabQEtHMqXQQX6F293r7Pl2Rj6U4V+ltsQXJorLVjHW1s4ZzLr EI+A/cbxA92ywBJEQM5UxrjVaLnOTIvICeW5vW+CGizN1sCUE1aBMKbd92v0 D9NQfZavj+/thNKO9ro0rB07gbCt5oadQYAMe+2L95EtZCwAmuJMJ3sp/sSl Ar3A8bE5rs6yGccB0LLM3PJR4kLkNShxAWJfH2NKrcEA+Zsy1ri39vyGQJM0 ubCsNFyP3NfHr7VeAmJnrhIhWUmGyCyEWT6eO8F4qKUVnMYjnGdeqvQ4wy+k 5hxJBWibifIZAtdROaGCIDkqSyi3CRlBNrbZIsVon2IfinqWBrIW72U+7Ab+ PiYPnpDkPFqse99UqFnKiKKcc/ndCVliFOlcB3q2tNw1hdRW4tUldHzQceI6 c3o62wPTMuDOMbOfrQ6tXXezqZVDHZCpyXx81eTJ+8SgNIfefvlxTH2x7bJi 6999CV0YwdTx2BG6b9Eic50FdHLAH8o0MtQ5MjhJg8Mogo8sRfI+MrJzmOPP dsLLxr3lWGMzwVlNc0tl9bSZyjcj1z7hG/X0TAosg/n4Yroehng21Zro9+cv 7U7mdOvzamfe0SaK8pO/MU8EVkVh3rhlNok6tPpshzUsB6QEHnPVlOgRRY7g mUj0snw0AFiGG4uAyqx7y0jIJNYFqyEi8Umls69yNsGow7rvJAF6HQRZs/Z7 srySwGATIEk6OlUb3IrzdmBAWbbhtjUWGofxaLgOymUy5xhW2rPvIpuB3S0n Nr92jri4G0is3xi8sX+zsI9dVpCTIoCelzz7e3qGEAtxK4WGevAsmuGvifdE Na/vSDZniW+e20rNPeXTiYsY5rZM8C5iDU5SJineWrMpy5imiyKq5Nr3llm0 7KDm0jSnkTbizgSSZQIGY7KsPXPgsUF9EOVA2aQO/CrLIbQd0lrunZY9sMk5 WaqNH9RO0CqzRV+n/cQWltqka5THGG/cOTRHQXt2c2p0orRiD97T8NkBD2Ot fSGtULC2cVmn9yn20GZb6LVVvaDFmCE4sshwaW7HPNuSDS2FHTFo0q0JvjrR UsceAJglkWmq7vcqMm+KsT9Ht+IpB7H/xlny7NIDg4qGqdeVIPeV2Zl4eyB6 q/Oi1PZejnsl2cSj4zhLYkh+JU2H+40erWsx6grRX17oeIr7u4SAiVNY7xf3 tMXMeNz6mqB+rnVdbkip+u2pbvmPuxqB/ayQH6J7wy/uimai7BQIN4LNlXQX O0JhwLA/oC0bo6lr9ZhmoxtY1myth01zy5nlw2gsXwfhSU+3ZhYeVizbJCmD EYRGGaPTUYsEtQnAF6b2leVRFYoFcbJWK0yt8FTTno8jGqb7Np0eteQIaSH0 kHZEbR3wqrxk/lqLaor4eFpM1LcbaaMnIK2Lzmg5gFRtDQjVZEbGnLqnnhvO 5ZfyGe3Cu9FBKwIM01UhVCIVG8ZGtiuck69iYX1V56PpnJIr1U9oD/nBVFzE NF/QjGJMP1fEhrySMbbGZl+I8c0injZRS6WVHtSvGIzI4qzTZw9DYGLUJIkr igUQKWbtUbNqDebmPdsWxGDXVicGZqwWRqL0E5ISiEXysgTIBPHt1WyqcdA8 oDWUKHfaM+tniiV6zvfJuuFUDsthJuRtD46dVNJdPGu97VUoclhsSDGGHhEK SovpV6r1qvQjvwlrKmMAW+6jp/604w/riWRJwAQXjVQ4VTX2vm+XGvX1u6od hk5U8gDyAZuI2UgkTwlamWfKtWtdbbZvP2zjTu/bHiauBQ5bLhJVLpLeKyM5 5bUGKwnoRgXTjYfFRRLQPunmdV1KP0efjrCubjfd4Q6UcV88sllgYCgShPhe j3gSPhBVRuJjJJ0xgIDFBRssKkA+ME8imVYLzOqzMSgsA00iNyy/wQjtqDYv q7Umtg7ycHPojZyO1duJFTmt+/fZQSiQ4Wdo29nFor/hhDA/+wz8m+THydmD 0TN9fFbJmYz6YncFwsvL22fwzXYrVvS1UkDCKRwInLS93Sx7NOZ3/UJ0psiA Lsk6SteTOTNI0FKTbBQK4RWP52LJLjjEPhsBPbujyWFhP8lpO0aUDZ/i6aX7 Vprcw70Q1zEdGj1PqxisSjGuXeikfZ8wx40ibBSV8bQIXnrF5J3l00wiMKw+ cffcaLCpzsf4TWaUVpc4Lx34zYVvedF232SuMgln0Zc8Hqfx422se+UKmkl6 BRVL0mgfgQC9bda8gQGZNSKvdTzB6wqaOmZ+UGzPZtV/Ij/twF5gEkUD0g3B 5VHgXBJhb2kE+brkCQQhU6hNdgrB5+UsIpamzkJPY7BqSBPhbWXi2jJZNVFL 2vYV7JCrB3usA7VbHDUGq6J4n5dMTi76ztbimNE2ISssncX58sZWwdx3VtUL hL4sWIx7tVg8Eaoe5mrCHgL6JGTSD63YHpIGCGrCyZRiJaOBcMVR1LGxlzmF Ik4eRi1z4ZIF669tbl//JnVc2K1gCBwkLCp0qhbD2CRS+ponbzLlx5YUAbUv 4koyL1BwGweNu+gFsCQLsT8wdmETzcEnkdWbA8xdiwl54aN7bQ0uq8/jUvk0 wcbDVNWwn7s6b79w7pexSAhnnfYF1GMt0QabJFpNvfUk4pWCwGURtGPS3aAs 40/75PSDR7bYz2c3qPr5kW2sg/QzdTRDaoqZ93EqKDlouZwRjh1jLNCbkCjC DS/0vNrkE59Qd7H5WSiSzs0zrA5kZU7n2KwIw15VllZxGawJupOMjCSdRzru gRmmM3ipn7uWLmt97+8i+rQM0RJXFrYu/FDzeyZc1loHjnu0ceMkNtuzKQUB 4d/Pf6DDUbDPLJshQNGZg2gNgwC9gpotE9N4ZHdFz0SAZCeNaoVhD69VZrrz rTEbmkdrbDpd00bDtHmPxfvWnhamYJG0dypOjfMjLXoKe6B12zjEVW1Nqs0u UR9CBDhXp8b8qRDPxZWxro5IiJ4pf64kJ0MO4+otTMM3qVYnGEt3xDW0GXqd j7UMDZlwnB/bCp3RGxDzo3sMklkpIAZWOBQFTnL3yOnJBj273ECbUo5CYzyA pS1wKplhdkWzPg/vwdxfcp81V+5ja0u3NBHjELagncgvClu4dNGYuGI5V1P2 gVYJbWaYzqRe4xTe0wA/adqvS35wse69ptDzJpFSu0clYViZwdIHWr7nJjMf rCZIGETaF8d8D8KeWkMVzYMwNUReTk0s/5thSuC80F9/XNaDK9eix1ZmaAAi kDc1d5iZByj9tW7Zb4E7ffd3uJJQOxj/TgSq0hYr7kKSHqvCZK7WfNzrWhSm k/LQltw0fhwMWVLdVR3GZ0N081qDLE5jo69WXiPsqtf8QEl/J751wyvLnhH/ Jlg2/Q8K3ypMA2ApmF9JT8TtfiBIWjEL/mZxVUCmLAYo2bvM12tn12uW3M5n LJNA41Z2YT0xa1GlNKIRdA9mF8bNAXLbhdkiiL8bPoVBkf6yinp/t6U6VEmR eDBvr9Nln9n2gg5TCaU4GlVRXGRFBTOS2nVuJQSVsLaxTZFXYlgjum+31Skx YG4hSDXLDtHghxXskCRkpIvuPB1pUmtx6+ZR6+YxacNlzK0kluVd4bzufw+Y iLyPYfjxtpju1Fd32nKn+hBNrprxOMcAUkWcLsMsxD1ckmqspQUEb8Rlk8wZ LsQWAA8n4rrjHGTNTAEh4kHiKkgIT4HG4AcG0NVDjQMixhd6xJmjrtx+StQ1 FLfhDa/M18tZnCoT0vOToGlL4BHjZS9f6mKtxlvG91bq4VbIFb6j1HGCp2gc wqLmGAM2eE/Crr3c03s4pyWhTDe09hCt8y/2qqnf2PfhYGUA+iGlGYxlgswC Bn++qCkiRrBenyW5zMknMIpXEHqI0iw3z39wTKQxBdaFMk6vaB4GvSO8fk7/ wi+luQSmfoI+tUJO8LjGHwPks2enSEBIZXv2UvMkCllw9BMQePAdRGHcmoUF EfR8VKuMbKSEN2iWwb18NT3rUAkxjOKtq116inwkhVS5vbgmTbpaHB/tD2Yy rKl2S2aogjJwLqil/yK2SnbsXDdU3AecSJbKVsrKxu0QNqJtJpJfe/4AmgcE JfH2ilXq0Fh4WT/cZ2cnoGYVh8v6Htqq6IkPHo2ItUzeKtR/RKkfHsGkSpP/ G6u+r5W3kvI/nepLTOO40W9WIpPXaG2eu8hJDXq3UK7v4izvtWr4fuKaYGus lWedM30X4nb/PI65Ah7n9Iu53cG4Ac66ea29fwSkhVKcEqIC1GYn+NeiAVTj IkiCFoSs19lnGve9RFcQoFyva/VTE9SOEWrlsbT7oKTCMuGiV2ZLxzmer8xn TN1A1TXVZBT9J1jFuA4uDjspZp3/WStO95jAAcd9Kcjg59aoyWAA8xi7adsL I5KSTKtY/2M3eCG3bH7qfcAsWQePqIU963nrTBz1dmF1FyUHMSvJ+i2bNuE0 KMndxnM1iVoG+nmJcS+AGhfpavEONCloSbzYNCvaeBmrH1W4CvJlNsgDHs1m nDX+WnM8RXW2jAWlxMY3x57nYDhz19ufxIVKwy0HnnNE3H3TOiaSvSd5dzyX I/OVdjIxUFODk8FgMIBYNnHfYdKR5x8kYmWT6HKVR5NEItZ4ayg+GhbEBcKV aBHRJCaNwGvqmG4EyGwHKYIltHBzoeR0pbJXNAhsG/A5ZyNxxu0x05VQL5Nb xyU5yfKDpmT2+IhiMacqqEVH+uOTAOgroFuGICytowDF+SIGEA2MAc5xnl5+ oceSSAQ9rPxQ9QgnlVEk4S2jQ7BMVybuAp//vTrMtCEuthu6r3guq8oS4vHJ rMR1UNnRfJAxoGnUhAZhFvctehQyaMv7Ufwb+Vkd5/iezD5hsh4HH17JFNi5 PYXODMwK34oZxEpdikxB1hHpEkxf1fvLM0GI5kh9fD4U06albtVFy6JpboE4 /PHZ0HzQYlohCXGfM8XCMh7gbbEysW9JohnRGwXHKX4z3QZwjNUsN6VgwhAU FxKR0FLccEpnNmA4H5Adc14EbzP8EH1LS9kXTXeJQ2m9jK95OgI/AWTjG19j j4LmEblNq12I93z/YUO2aoJFKBhtoFkhzyP616bG5T5zZGcLk1EXZ3COlm1T GSVEzgo/M1U8a65GtK/x4scECpW4ThSSWfK1O5KnB9LOulpbWPgotA9Q8yT0 W+5e1T5GXiKDA1eJbQxnNQ6R+nFnhCDMnrcjNISqEhOKvCvxmKjuOO64NeEG +sojdWtyBPuSabtyr1nwzlyd9nhsyVm7FkSuudOzHpgtZekgGgtZFO0hk7S7 v202MVOmqhg8GKwCXLDQOt3gABJPae7H8HxvztxSnocD12c+aMwJQACUJbI0 aWyFRb7iYDq+gJl0hflh2C2iYUlnwfev7M5SmuAeWdubWNvUCrv8Dr5yazEj ZWJ5YmNzqSJxDDACRqI3oVMOXNB/j4KsrX1DsTzuTJN7oLx0/0N9D1MK4fkU Q6xLjTFwpdj5klUrbZgBCkEscN5RiGSV7ewYZaU7DuQb3opTi0SMFxJqYARJ yOVBESSW91lJjj61qLW9P1M/VLzRgzUIXrCutbBqJtVdKxI8EAH+Par0MtcM vjdh50N3AKxGZYYKgYjf6S7FLAv5atbZHsM8Go3ySWwij/F5kZpR3qPFBXBP q4Fkorwtk6kTndK3fQXAgJbs8SIJezTwiZUBQ2JOHSsbRqs27eOjS7TlmMS6 mD/UnGVtJBNYJ1w5rx+i9EhEql77SVctwDBxVoOHaLRuTUls4tcVNDgA8ndb ZBqrGkg2xSeEpaNLKDhbizKCuFadgCa2uKKzBvNpBAKo/lmxDSsXfljIVUiT Zeeb41NwBr9/aEVhbxRgeHMTVW26vhDO5nlrxY/il6N0rnMj+4+6Mnimy08U 5TgD+cSezhSlEEtCvaf90/v2eIFjn0bqXRQr/evdch4q5mz9GJFe4Brp3EsY s/y88WX4lq2EFz/m+NPiiBcRm4qumLy78VW8azBOEX3I7MF24tXiyyucokQY 65lH9IZ1OYKH2ohJHzt1dkKH9wblo7F1/pDqKkaLc3QI91kCp7G1HYGvhkY6 suCthFqDpbK0OiJs2EzM2KRtgd3WxEvBEr+SVu3OKvGHNUNL1cM6FMtcAww7 a/ehV/nQUBzjgHbKn2UN+AyMqVsdtPmIs6YkDPxqLOFSyeByWSJkw+T1ftpc PtxGSrVMagfMInlYl2iOW8Ex0bGZd34tDkJuCNSkaa3Q23lB5mFRGqpRyLIp EPHoa/beSbZt++hquSLq2UpCMDfiiuusqIonwc1pZqfnNpmZy0Hj9nY8Dd+a m9vPEuaVwvgeS3iOxZyLjsTjs/joZDQp4Sz+QJ4Yx4RoN4G4ajhsR9ODje1p VxXTxv8jRPHIoHvEAy1kzbsgIrpgJaOEpOYYig28mZs4Fk2wQzogEh15uK3d xWfhArMidF7vMqHfCqUzlTYRW5F8e/tcOdpyrzg1xWFyr8+ZfnIuQ+PWIXFA 3KkHe8pVdp/eq5iGYgfHW/Fklp6k4ojyMH4kbvrx5U2gjgyeC5fH6aIt+n9Z yvhEUQP1EVdljbKdog+5JagbToLlnPiAtasLkddlBYU1xWY1LOTmDoa3ByFJ codlAxHUMKQgdH0/+cnyq1qn70R+OmqJs6xPKAbYExefQexj0M46BJ+Bckbw DdpRjzkWJOFpyTbgvBYF8PKLXltOli2N14BvSZVzAAaybvaRERhQreIJ+yjP x3fEY4EnLjdNiId1d7Xbl8YKuHYLispCeSUh3K7Xaty6FtvWH4erjFA/MKez rgRBC1ZsDi28imUoujNcuo/R1Q5YRxtdwXdZUhCq4ZfVkbJ2SdrMnAE4MYeS daeQY2lw2RfNW9AdOytF+aOwmLhk9tydpXXnBVhrh0v6Eps5gr1zuH7YOnnc 7n2f+NktczdIO52/cpPLS24OmZPMG0aIkU2+MxzCKbMqhLdvASiJ08CDEm2y b8xmLip0P6A2qhjS53UpWZ0ZYhbYKhYYTWIcWYzgCMjbeHWaXgv1BLiXPck5 ZXllIGuq0en2xYw+e4jNRaxbw4jlC7o/RQChDETouhPdelRWh3kGhvDihNy8 tYBhVFn2RAvZdUrVDRbI74qo9SyguDGCc4PYqhihhWLMYK373GjERmeomv4w NMtvbhCAUS08PvYY+OHG4y2+lA4gK7cJIirKyi8sL7EgtcBQu5oOtV8kG5n2 VkO266bClFGe81va7BBCFUmGUL9Xnq25z3JOFzw1J6NGm9SkD+1EARuxF1Lq U9Q7JtucCw7Wl5k9o/UBtE1hWSOBhPR9Y0XkPOJvM8Vi01cvHKUQ+o7of2HJ yULbUybzls1x1/h+puW6mGoa86s7luvFxc4MYpDt/wZ2n7GudWvohSkubJZm uXwRT22ck8nv+szZlaP1e2qAV9icpDYiUsd5sjq8jEQ3viojbtZAQdyJzE8V As22CnJm9luq9RnOMofMBQGE7fJ5JWMlqDu8UPeB0tbbkl4sAWEEAWIlWHP7 L/M2dhYZgAg7WY8bZpzOGXGM5xXwnURxmJn5e67YUuJCsX/H4XgStNjUWJ31 ZsAdWa9ffGiUqcDwJXNfI3GyTnO799TkSyKeVeaZAVPR2U/UyQmzyplQv6Qf Vho3DImnOqnDd+3jdXuDytYkjh0nwJ52FT4g04YTcQbs9o7iobfyDk0UqBG9 Hxp0JoUwHcQnCTTG0K0z8cfqRmNNPK4VPNt8NyLyQsuxYRSPm5BUaGE3Rgqq x8TAYe+xIVdNbLBYXJzK0vd2sMGTrH1WpguZPLQl0LiFOBuyNC2L1zDldB/V PfFZ0BLVQQSyDDXhNWxM5GDCqZ6KmlIgCkOTFn7sg0pNO6ipafK4K6nM3VSn F8Rz0Iaw5WjIMBjtwTkx163wRxRRBERx1DVTDzhIDa4JmWdVW7gaVokgLAIO vtZX9VWKM+WaC57lviuRGIN08QwkRhvcgczsSDtx0yeG+b7dvbgFK+6I8w3O mOAM/950NbImP6GDF73+AeIOZt1M7z0OF4RMw6r3JDd1WtfDTE47L27oGHS9 tJBrAcuwqfDlMugtxhku61VmcBT5d69IU4V9O1UeQnbGOQBcIR96AW1Lzsvl jAKJ+mRLKgpQJhiuIn8RQeYgrzMPVexIfh+MULgvc2dhza8VCHOyPxgtCi9B sW75xSVUWCD6B4wcs9znsAs4UhoOzLua0Yt9uRUejz1OovlZt+4VNNkBZCkg 1dIm2jcv+VdZrEgczbvYph4E/nBIB26dJj2Szs7xydrMGAYVd6w7rfgpEawo XRxZ1IKNwmXuznk1hYT8qmlpVcFxeMOD1qXfWW8spJSplzkZLp16ebXrX+73 y1y054YVsOwbx2rMe1BbkCc294o4r6Drf8DibYY3IF2tazOwisP8nZZkh26R HqMep76YTO4bIS74j8MZJbUqUwNF745beFPGoGG2p25l26S3rKsDJS7AIS51 gYnQL+h0ZtPalTiNqjjs/BnCa/Ag4u5qLLiR5ZTOSh5psZ4q8w+YVBp/Mu8W 06tZ//3aOqnvnLV0jSJ+7swX5oERCGyXskcoFZalM8LqEZ/CTdEeLjdm1XTM p7tJ1HjeEW78/0wt1pIVIhPCIeqs1GDk+dHEgyd+JBGDIq+VuD6iPnJYQWuN L/EpAI36AqaIsJR9OwFo/LkOXYwX5PDh97lV63h2SGGb52we/KZR1lHAKKsV GffZm1u9cKCKyEChe1BIItJw8FZCaAw5GECmY/dBdKZgyJQfC4XyPdZqXxrS MSwC0VjQnyldjJvE/NROpjAKvccf5Vd2I1ezDp4rsrUdR2wSTPaAlu4uxmyL aKcO6ZXfrCoPsESF+tA5Oc7Yg9o0hSNyjUWjvyX3Fvow95M2vYhxgDXyNzPS JIyCGMPGOWNzLHx6U9Ca1usFWbc/2kCYdCSY7OwVolng36zYCL3QKi1jbiGG NQI0ODQb2tRMgiUuQgusOT0DsqHrjFkwBZARIdA1s/WNRqXK2zVLpTkc9yst 0tc9JO91wjZCWgQg9RascOyE3NYpac0XY0QORH3K+bdm6AluVuLdHRWbBWMn BlUtS/u0GhAvXfXOPYe7xnai61En5jLziFjBKkg2mQ+uJzjeWXgHyxsvtxcv zeb5D+XeE/WpNLZwdCvgA+hRzNOQVVBk6qfWVYjo6MznRiQ3Z9zUkWz6bSHF 41CZpKl1XiIhL5fsFaEBpoQQjwlLIIffs8IL5eo1mt3nOcGekKfCpdIzj/HN omCPDz5WhnzCU8SUxdVg0CCCU+N8rI+v3/nEAWO+Hmz3ohCwCVy3Tiod9of9 Qk2EexHlWjSD59BSptpO3Fm5o0ryCi3BToG8Ftn5xBT4OyhfskM5Cyf8DIlu 6UYL5NvMhVU2wWjdbEDyVXerTlevrDGGvIfBP+YhYLV/AU7SRFKWCxBbkd5x CHTW6PhFpWPXyMf+LS0D7H4RgS1YdcZ7RVKrqJg+v7YPAn4bdoP9tVhuSWVY Zsgj7ssXXO5b5iRleRY0wdkx/Xf8vc2Z0nnrtoK0E/4KQ3uwpAeNFyoBPR63 TP1h3NgoKVS22ApvWYKhwUyNxffOkTussNsPcCw13snhN0HVukvkRXalWik9 dPfCvJ5Vzh58AVKsEfmACSuH6BSVEZMLkvtW0ZcJbTKjMhynN5nEzSuNDdMQ fCynjqU3HZPl4u8YfLHXsmPVx9/P4W8GxmKP6B06Zdg8xBK4U29FMJtEjiy7 NZFQzQN14IwJdWeu+mbN3zwCxAlsypJncptlLCoiP1VEzpipAXRcH7SsS2JK F5pV+ly5A9LaWyjPIwddwPMBN2dkWLE8HT68xvbDt6wP0usN5YfYH3OaVQKP SC9HdEEMOC6MI5DkLrrgiVnrM1bRZokbjL8hKhd36YK1sdw0Pxw0+nKFFzZv qMUW2+2UTNZpEyyp3XKZqzaIg3AFGg2b297dZq/B/WtkOfCms9sRKrekEmRS jD+zPvWeja9UNAKRFybUJGHeee0fCoOSKnMi1dhxWfNqoiM9ryeQyY4Vmtxd pUCK8OhZfLJE9LJ3kvCZ+ZLVPKGaD02zJJ3Yn2le+MWE0AVZEit/nd8WRJ/z 9t/01YcONQTVJNmQ+PJwCSeFAIDH0K+Yv9G/TJLmQMXgAdyMZZLHJWEqVuFE q5SguiuoOo7K/PDEYtVEWylEnjee6htH2QGN6CcBG2tuuIUNgGPxE8bHIijo 47j84nnAl7L5BMA1soa4PV1w5mQRfxvXooKVAeJmlbLqy3UzGLHNsAI8WwpX MIa1VyTcTDz66BCsubfxIV7VvgZHKkBKDpQVaDFtxXrU1qJtVn3iqGflxRpm P8SkKF9HrmDOHbMfDpVmNL7QBdHROzH5GISJYLk1OFmnlC0bsC0mGvs8pccX IQTUOqIIiR18ofGMhIEzH82TY3dEE99WsF5+4YcqWXVBI9UKQLlRfNGn7eUh VMB1ZxagycDqJ1j8bXzZrLfxMznTOP+YT1wEBSOb3uz59Sk+um4HyN1u8ZTs MO4c4L2flTNetjp1QUWr5irk56XGjLx7762Q5A+UDu8wmR+lteSCHO1Z8ubI QZuyCpKOYYmIIWSvNPe3SByDdHGaQZ5IfUr2ZfF+U3Mn9Gx4K6qvglZi4iqM GCBmEzGZTuRaVqDshcSBO5Vyyui+Njn4C2lo2JHhTv4gtPxpdKJpe/gxdeJ/ Rnaeudz0wV4yj40U1KJc27Q+PpjiAJ4QJsdX2Z1co/11YAdMbOXzLKOB8l+M pkPuulwXc6ZOz02dGz0nPRUz5kEE4GPiagNn2qwKw+vQxO4JYGd4y52V/HAl 3mei5YXQQBBBepwtSASS6idmLdzMxEieB3+Lw9pmlq4DU7fTi1XAicKQuQii NNs1cT00zSqv1pi0Gx8c1cLnBb63sCrqtKppi0wD2rQsVs8/8u6kGLKH7SoW sHQuuyuZ8GzULVYJoBn0PiLZ+P4BkVSMV+lOxc5RPMeSfsD3iuP2iMYRWLOS gY/nSuQDbsGuEXV9xUyxkFpz2cAFqS/9A7m02qm+4eEaFa8syrG0kCvP9roz y7BkHAIOMHOtMI0FvGChG8Uz624p/FEhV8awvQIkLYG8wYOxaISYN3d95dmX /8rnu7N5obJ8lx5YaHdf+eXWvpSy4RZhHmzGoDYJXQnnYmkgGKQr4CFR2Ra3 nPAl3JaRsmcChKQncSaN1q2Ek/ESW+QOlkyt+DE+eoEiq0mqQor7+f7Av2LV ZXzYxo/r8xGNE6Utyj4DEVO9TpvnaatQT+y6iDTzBdxv2PARY0i4Dla1Yju/ kIpD5woR6LAcOduJgrBWKtCyaQvxbNaqt3y8uxs+fsKPtg/5eDfcTW9Wf5uv Y24nEfuAG/miDyJQr+pQTUSMJPlLgRvwFXNpCGeRMfXRnZqfVec/ATrHNqej LcgACUftxs7vLpPOcgT/Hbkt4/2W6wXqQKz9dsYwa1UBOBzL5S7fTloGHKmD JUyVqQCrcugJqy6SYs41sVMDeWOUJwlynzKl/pwili6/2JHPh+H11093xDr+ ++72/e6S25vt3ze3u99/+v6bB+OH25tcf/uX4a7cRICGTnip840oxZx2PCdX z2Gw0pVobwzvPIhI8wjK7PLOoCx9FeaX9d2ton9hlz4RXNJzBBkJghA1njl9 0O83rYbXm3lgnKojlfVZFgz8AXPSLewCd5PN2mmWZZ5+vtFmVNYYlGgOXi70 K62ZlVLOlMKVqYEJl8ecw7j/OHvEYnE+/Prmm+HJ9evh4/aNj+++39LrV8PP n0aR/X74cPdp+PTL9N5P4wVbdnCzpeeb2w+iLAl5e1w5do63wLP+ELZLkuK1 UqkNJRtlq0zjyAHbCO3PkrsR1o/bk9RfxsWi1D6rhDUBP2dKCU//i8fdcD8o w2bDcS0wQQy5cEZgLzMv8PZjm49s3Nas+LajC5yQYwjuTvXcLAVSWggSLcge kWFTYcMEppNhFhI8/mEhzoPh7c318O0P78vd3g8vn1wPP94NApm721dbAnwp Mnd48/WT4eXbiTaXrTC6gdDEBZmD4HNgVlygeNoyIOGzjzfOO5rFIJhLFE8P 421B8lGj35lxoDzEhavV8ubQPdlnZjOn4edUKsr3kSOxRD5ixUOHkiXD2UQ+ sohhKDPT4SlHFgL8TFwTgyk36ajavfKiD3Fsxzb9tAENy+Rq8XPQ/FKK7JA7 bJodg975VSXX25tnQK5bWfn0mSLXn77bycvrb26GV98+24nVtx+GTJRa+XMF vYBEfWqI6NrDZRMPCa4yfoU7FUvXsj8kVkbUbJ4gk6xZ7wN4hvXme49wHiOf WFxrvGQfhZTK6tqkcZnFNRMusfeczu28LpfJYkvonVg1y8ES2sVHwO9xg2bv KoLFU0MxDg7v1Qb6jcV08qfYzvrdAbH7TlFUqOEmowIEwGoIzx4e2bQDJOqn w9Ni6w6fbofrJ0+HtyiDb4YnX/95+PXXn4cf394OP7/7ddiqzbgnGVAr4+wt 3qK0qX3l5la5+NGlBrrM12hHCmLqxGeFOiIK8mkfXAoDsQusAgeu1Gnas47g 1BRjhjMrttLd/Xw02qlefdbSHjkm7IsCYAPCnvvlLInVVCYeKdviE+Qz1bSY CdjTeb407fXlpZ4jAxqNSVcvxHRI2H+s0a2UTiR4pSlcgm1HNthqwRQ6w6BF RztrnOPVyP/D25udjv3L1v795c3L4cnTV1vJXsl/+PjTliM8GV7/dLf7/dn4 +7uPuMESpO6WgWK2B8LNUcqcaPKhEyVIPazOgbWpAPSPqyHvP8LYtrb0HU6W Dg2muzQZZHULpjUBs3daU2ODmjLNc0mRXT7By5nChPMewD7Ki6bM8IF23syE B0gNHNGDo9p2YeKRTlKeMD34RLEvkzMRKA3OdReV1PhzXSnYFgGv2EHEpsr9 1BLg/Ti17jgSU3aJZRrODqwfhzcvnxU3+bPhL+/uKh6/f/t6eFrc589u3ox+ NpXwMb6vwr+6EujqH2qXzhDd56h0cCr1GhbJZsnplfE8cuBIyiDV38h8rP1H DDuwhXcLYnUrIjLtDoPoduwC8mmdRfpajLd3txte/0knsMtKfQWfnfYZxc8q 95VcIAzrQ7CX1fCw8qyiYVYG0+k0I7fAYLwRuQvm71u3ihFP0tkAl1MqtWxN heMkQUNE3aUVGDvmxyEGI9/PnPbMdSgEyohR1aUcqjEcZj+ujsxqN3jbCZ6/ s7SaEiL+nfjNimavZx0nmpaYa5YYbTKDlaJXpP64XCeqtU3BRQHMemTLAcaZ Sv2ONCyQXHa8YHlloE9qk6IaPywXNpm+Gkhw1ig5Oemom1MDxYo9xiHarKh8 89lepuF2p39gM2OjUHS9DoWdLlod28bhIPzNciZ3GYjTUzB9xrrOqsPQ9Fmt mHqmjDU8CZtywlRVfI+wCzw9Lz7ydE4Wj7bqjxZdLYORueNZJCPWVPM0Xxac hWukVS96eaygZpDUS9BJvJENhSA8I9u2fpSGEH7utfcWRv1vIqurEAIa8zph Oe9JCXw3CxN6Ip8//N1rjXPsUtKUxfgq4gHX2kFpdJVyrhdOYIsGDbKhs0af Tzzt0eOS5e3NJXSk0J5wgvsI+rjJtatyN+ZR2oiZz2In7GLij7onWRDMpw2m sc5UIuRg1MTYyPvEIRZA9wwgjpXaAZ4Atk8Tf6w9bYMVjRnY3k66EyoAj+E1 m0rLrK2r0jZpkqCP1KoQMYQXwnjocjDaXxZJGdadb070hN2LNXV5TN7Dqg6X GX6qwEBI3C4FuQ5zlo4N7NDto3CL+ZKyLEXGPnsgUDTaUuFaYz09uFR/rTNw lFcDMU87fFWMNSNtpDKMsQMC9wfkcnNJ/XuHzVf/sLFRaTSnWA84vB8oPlQh nPSlOFaU/K08yRP16Crpy9icjZpXK9HtmxWXy0VjJd9EcSW5YAZmdj+sM9Km 6tCeGTEMfkzei4sdTt3xyLIC3GOxyjhTxBevQSuxJPOQEbTjN3Hs2dEqGqjG RRAn8fOOCluyZ44Hq8cEZbQ2gcowBRtAEpQKVApWJowj5oCnWCMS7kad6n9t MFao2aCm4L/cDs17eBTrPMI0RNHqre8WfEfU2wX0jm3hYf92vgPJl6DWrvXE o60SK3S5XdKGYieuNfuwuGA59JsxzSk4DKmg1SrMxDxJ978DJLOVy3lhNu5R h9/I+2hmV+/tAZ6Tj2cFPaH7+dBZ5UwsZxoTRneC4QCCCEiHyE8bD57bucPn v6G6RM7dZEnMCTej77RbsokZGloW/Nti2hOq6FaUgiK4ZWDJCFbGvRt2vWB5 JaxyxxYEkeo/OquFuY79FKUX1UKAbodGoDD5yGThLpnKb2ofiXQPq6wTb6nv d4mOPFR3kKthzlTdlyOJoCEEAxgTDnY2Vvk688zazBiUdqIrGtFruaRUqiWX KBCsIeGY8bKGwLqttKgl5t4rApQgSGMHHVgf8Oa5bgjoOYsXi8i556Qr9AGu s7NESzFQfFDAKFRtxE5fOTTTM3ydcObFvZixUatKY1kgpg8BwOMhQYwA3WCm yq/arOmFkr+6h4plZZfVgdp8jSjVO+E4p28HBbqz5kmhcLB0wGyUrF4XCQOr So1MjARIEUafRbSs6BXDa/YaxnYIW1xYfiL3sKFo9E9NTCDXmUhYLyJYvDWb 1ygEO2HcieLqlvUhGDYkFDEMrU/D5nnkh+WTyxfhCNN4PqgTC7aVOgk22PNM 9W8WnJcGJlbH0zMXNub+fRfpnEIXABwFPmERmvl06m/10yXx1mDv3BoRq0rC LWgWGzZNsT7BtXhd9EytrCtkJrMt75C6r364rxPvWtbbsPgWq4zxArWfPpwl zuEzhN5RRhUUr/Ruc0dRkTDuIOrBEwckAwuBBWuwbnWPXrc4+HvBEn3wWuKq WdjZBW25MimpXzlsk38Cy3buiGtgVvGQ9G6dJQpr0EVm1sqTHm36kOfLaY/U qQYBuGnH9rLUV5S+bL4YnCcMKuEDHJjrxog8KTaaKIrkTLptt8RGH0LviYHf GsdBeDow9+t3IFdPm3A1x2KFvgCrCqQY8PmMLU3n8JkiCsuaEj7A1uWK6O19 I1DGGRG22mSd9qXAZxZ3jKx3ryjnwEkdeADNg4ZhTGU4jak4RrfuLDL/ldAk Z5eiMAgu/QPZS9BIkBn/tm25UT3l53S0OtnNssUeautcqUn84DkiSiIKayNk Wqo1yBwzz9qLWGtdC/+YPx/Wx4J5Kfeu7p7M7ti0cZIB8WWpIAn9UleirGwy H3RqKDyy136+GJ+VlAXmQzVSWRZuy3q5NI1FtDrBgnS6VxvSdmUcxUC3eNMR 7oTB465n8AAvhoL584ep8SRfNYGnpoxaqZMnAklwBSmb9fKWsaHyHkRdXXak xTIgSWpDZcmnXq/xynX7rO2/sgpV5h2L9hVCTgEdvQvxiOB+ypit67z84jl6 ZmLDqlMKOi8rKsDleJ5Fbj5jCNSsKmtGzuQ7YoJF7iLD/dQXHyOYJNex3eDu vjZPfqNL4LOUbYzUPAQi39H4XAFcNbrm0mdntuYxRRAxGDwIyomoPtjq+Bht x9YWa158gGwcn8w8ROCX9alT/cBhm6FN8+eYK3cLln1YJ4FzK9TQQXSs9bDT XBOFmApQLamWSn3IbBHGYKRSlylanJnt22exQC3Dk2wKFHOVoEoSuR7m5o6x KG1ceun1lSvo9oBCf05mtRodrsX3tKzP6uXosGL1NwEDJqDvdNl6GH3MJFPd ESBxLKyyisesO3qtrtsrMI0kfdukczfsVZwQw41BCdYVTc7yy/QZXQ0nuOzH ZqjweFa1kvlW44AZL6ELyOUioT7ZoY9jvBA9ZxP4g8NenBPW+1YCyd9FNwxz JjPCRkjE+b3e9d5if6cqjBY51qDuQdG1nm4G38AagSZpeHuSjYTcOEKxeLKk AHI8dyMmtTjN281irkjcbVHbGV/KtIKVY4nstrHn69Qhoz0Vcz8cCpaxSgBq EaDnyHzUdzE5pUkCmqYmj62ZEyyPI6O+sHVzwKiZSh+3MIyKXqaPHVHCTS2m NO06CPyd0SOIDaANHAUfQBzn0LDtOwX/2ODp5RdQSD2nCYStMNRkIv9aZZJi CUS2PijkZlhBWkGr1xBlKHrOGBR324pbNZkgtUQ9v86btWVFlLFWPsdhPk9p jUqd2/Gu2PcK0jb/W5Zula31LMO+7jwSvFPQozDOFJgzyoTX9SCvNe29neOj BevQ5jGUpEE+EcChE1g+LS/Low0pBRnvodkRoooWA8zjlzJlAiBC/0Qws+cJ 68YTYoUsmTvLn/i9/LnHsGWXhaWtvg3vQhOEEg7IWuD3fsYGY7aStHvhQt3W gdP3XDEO5OAwp1UK0iLBNEBengCH26xG1krh0ERofshAJ/Jjs1fHn5VkpkYr JFnPbtCPW9loAwHSWRfYTQDuMbe0y9YYym3QaWarUUlIk4b15sQWLr/ABKAm tBSN71sZP9dGQcMzwqZMdDaat/lg7NlH7B54XeZsRKQEFghxsx5zY2Nxr6TY rZ9KZUMA3JX6omDj+I3HjucJZmDdumEGcK+KYXO5HIhs3A1P5PQAiv3zgQSa gIHF+CzzhpXZwO9sKoKRF9SRztJHpkddOHjjWVkbgD6L5ctknsO+ZZVn+uCm 4btxCq6uO5/HDTzl36sLfj7aY2Of5hNqTnpfpTTo3wuUA+10gtvFvNdVWsdI lXspgDRSk0ccK1Y5bc/J5w15YCyVodmS6jx5zykoiz3m5L1JtP4u4lruvSjC wAw2TKZkXIE8LyzALb/rdncm1n3k7AYj8cXbIHqdUmG7g5tZqRDzCGxBYDuZ j2xVksucZ1ORPKzBNixC0MYFIRn/CkO0li3gtEAgRhlYZ0NSgQgNOef8AYo+ jxISZjxCpLMHMv4et9tzNghiaHN3VF1oTmJUkZ7MH8M8VKx3APxunVXFxxjz Xh5Hx5QE1m++fCepiz22G3T6UKXDaBn/X2tfzyPZcWxZO9Pd093TPZ/UIyHs rrX2/gOin9AAt/7A+wtj0BhznkVPnixZhGq4zji06NCQs44MOs+gQWcMGTJk CJBBg8AYYxCoreqbkXnixInI22+3AInT9XFv3sz4jhMRTyqauPs7ybFyQSlp IimrdubMCFMd6Qr2HOOVwAWCkYO/5y3svE+jsvHOnEoszIKbXk2l8P9+CRPY hmqk2iQh0VP9HaWOuUAMWTFPEKwvhc4x9PdqWM7expGzDj6tst4qoyOecWpI V6jT2aWXjXja6ZL61ziHDVPCKK051/YllX3i4fqAez2ZWHk/JqPRyFTbyFtm vkoLyrMV6ITrSdcXbcUihc7EvPsTNlLxfb8V2yqoW0/ejIS+oLuNpZowy2op JABd4XZusCjKPoMtnISD10QLfPwCsalJ0ykM49wv1bEtE/oP8SykA5lP4KlF 61YU0CwqL7/HTJFOTFdONTAsIkbUpy301AESUmvzkMhQcefyhHXrsEnK99N0 Q2pnRT0pfI6hi0QNw0cJcw8oVzDUq5bRlSUiRDaS0bLpn8x+GvyVzLBuv1lM r/NM1XryOHN+HFzt2b3oebx3C62acL8q5bwWs5ePrNRY3rxiel6NxZCWW+sr 8lAkDKbTqPK4XvRdEJS1d/AiVSJ0qs54k6ST2NfO/HSM/CpwKVMoi4o1UyeU TlEOmbKF4Hd5/Fe1d1gHgrzQEmL7hY9LOWaKlGkSgheu5Ocumpa1knzqVsAJ Gu6Wqi2K82wDnCRRzPxcrGHFxuLfJQLjOe3F6K75EGNOnfkxV2hCiAcoKngR sgwGuo2TaWpe+D06Sip7qoXYrrLMcrl3qr6+YVTUzeeQ749lDMbZmMrTXZx3 f+LmPtf3I+hJQMLDbZOGBNp2Sm6YFyqoXpRFk5tTJDwyt2L6AreIxYMDweQZ //BVD7L2PpSK9Y5YZwvG2VcRB748wP0gkpM6rbzwyeueG43pVIb5POB+GpzX TLFXGc2qaRbf27iFTFvwMV37Ad5MsB1QCnGFGAJ87eeRljVSEW85JN5bvnV7 bXCQHW1yxdJcYLVIiqXGwFak5C0HqYGKWqTw1N2+PdUGW/4IGRmPbvU8CBIZ E+1v28YNQnjbhA4M0S/26LZfjG6KqGMZQYy6TW2AAn5tdeP73eh1VMlyTX9T 8YuLOhN3v9F5OiU2tr7nLci3wEBefKhGFutsvxPgDCaYYQ6EIhuFj3gSTj7g osMGtc8Xsn3ZeZaLM4R4kH8Pwddg5yrdrUyIW2tje+H6gCVHH4TpEGXTkgiT DcKrDTaivW57q40oq+lA18xEsBorZE24xDUKhJBzZ79GwL/aVnzqtiBx99zn uPX0XI4sjgooH7+p/LB1PZPJLtvA5L84+gDVmDJyk0NJKh9CwDiXravMLaWC 7HiUm5Vj272OB4a3hqiJrcQMyiuKSOWQsIRpMypKfj+AdttULmkbDkcCuFe9 ZUZFE8hn2l8dXXRAKixvol2Uh5Q7S2EgclWliUL7vLEHws1UjYaxZFSQajnn 4USI/ZVGdHX4IfFvvSgEn0rKC0rONpueoj3DsBltZ7h008vzHb4nI4AR9dJx s86559PBHc769bS/eRe3iW2Vh+NqcL0CVCDYBu3BaFT81iEmMlZVZ4gZ9uML U412PyDM/yoeb1nmUxcqYXWEZCRCfZt5E6Mgscq8mw/moDxEhY4mCn52eHju 0K3EXtLcW5EAV3cP/lWx7DR04eyFR91e4Ijy7k91v4Uou0cVLRVJhNAzSqmg d3X8l9nSy91PusCz/UVhT+wv7RoCnlg2iZeS2Oas0pe/crWNG7q2Nt23GiMS FiD0RBl5ijp8b4IpGEXEZLJ8AgzBls8sHaospACFU+moh6iZwntDksSBA0m/ 4Mqvg+0ZeRDM3MMx5E6/KisZ7epAXODlZtMa7xx/pTvUOlR7fBX+L+RUjvvM DxS206x6hZJPLOxOZ3dPyeFyuEgBUVE6Zj0WUeXMY1XwsAgMwKlEDEg8JdpV vVPV3CVS1BxmkBjtyo7h2DjhFpX9fasrfS3+myhY/OqaGZIhyqY9pmWO9QVe PjOcZNR62dLngdoyrGjhCPuhiedhsISpygYEUjnh07YapRbH9uepzxV2UJ6K 9j3A4Raq0VjSU4gB36JRt6TYtdVDa9qrxFTJ2m4wPjZKTqQEe/mxclYC1oWB ykqMuW1DJUzSTeqpqx5TMzly0ZbAxlkjrapQR20kLoHbMthmslVFSD1VxAcE nRSOL89x4VRQM9RZ2y0/frlw6DN4mGYUB6cQjf7Ecpi1doHLrApDqeSgZlRU rvCQgNBIE2UcgqadRlHi65IiNcSAcgyJaWKMelZYq3RPJbgUMp+eW4qbOA6d A+GqwfjbRRjuOrIQbrfygDEZoHKOqpGY2shF1Tx2iyRswN0SMGyydvMtt4kA Ub85OglSFZiBTMz7eZ6H5dNZYqs0oSKfIHcvxGmhKrtYk+mFDkoKKDRiioUF 8ttOT3JKogDMtSQvrVwZ4zXK6GyfW68rPEKyhuQekyDgMMQxup97IhP85+NU 3KANwdJPqbfcyqEOjEOaI/qAc/eghIuKk9DuR7U+LvZW9QXO4cCetKgAbFGY N3fRXIDPAJH3fbhqcoKvlh1+15STEyb1nbBOrsK0e+cY+BLVc6CZIFvXT+3K XJ6d923gXAszchUAj3Pcqv5UR7tO8BSOr1HqFICyDnkQ2ubXylqZctx2XAgQ iaU0OWuJmbxCRqWOUCkPcTC6S+6YajrdWnLnaP/jOv1z5r6HwtDh+vIhPxNj K04sQMN764PQ3pD0J5LPHPX8xDQkh11X1Q1BPT0hYi/ym0l3OKKK+4waQKNp 0uRR9WzZDksdSGtjKhXldyFl1pY1JXFOFKCYfGnPldojmBsjvi6GkM6XqST2 4d+fEQ9CAkbK0mwEG4jsDQ6Jg83lCEJDlDAiGA86lDB69njR9rjUE4p7LuRP KPkkt3G55UvHLiMOEIebMOZKySgVNcymu8UaTZftSW5dpKsjmiK6EE8d1WCd nrJ/rEDM1AGrmgEvX5oH42tGxTlsU4tpdcwATIw6W7UGNdHhg47I71GzzrGu UfOOMt8OS4gVbdzdFAijo4l4mVszITN+0OUdhufByHUZ9D1zXgywRNXWxEaA 410SpVR1puNSJfzOb+j2aGhELMz47L+3a7NBhPopYUKRJw+3UvZYPJtrtwto z2d22mCwqOy8dO2MvjZ2k+dN5mEGdQ9r1oWu2S4mLoa48jhmqyrinch2Zven 0SY0XvuEyfZxOzBx/hvDouF8HGbrBAFr+TkE2RfSQXVX3sWRlcP+83LKU0Z0 uBV3E98lQwur1hn4bLwtn4rfKYL5rLh+gUT3LHmW6UVl3SxWrwenY0UOanio Zxl9W3a4sKryH/fjvgWKaq+Ur1IlRRGLiXmPkYL3Sh6+s1FgPPZUFikebdyF 6l6k2hHFOH5O8S77zbLz106/Qx2m+ymhA9qW6RhkACycrCEfPvAuWlhrOgaa 1CnlM58qMLmJLnX2eQ+XOZ2tGUuyTUJ3Ll162rqQvBUh5XVl2tVSh9HmrSET S4d7noGXApeqHlqBnjFHmm9s2l6VAgP+43ljsh6W1MW4eTsIP9bYc3aa1Fh+ +jQ9Cc75URUZnMqVOxW83mAzBzxMBo+r07psgqagF/t7FVoUPfA1naHKusix 76D1N0OBOE8Sk0Nmqijo2VqECydsFHjuS2s6ULdkWNvVRnQeCgb9pCVF3b4H q6vJ83SLHjbbRdcQjKRGj5md8hvovqEUb6bQCb0RKmphjRsGxKNkQzOt7Nd1 Jh9/p/Nauei+gl1RwevO0fY7Zhs4rB4RsvfaxmC4MoQKr5EkWYfdXUUA4ntg QcSl+gNyKOmmVx2f8G/Q6TAtP9HaaxzSaqgLwRtoyyA8MLYULp00/Fvb3DQP evqJayC8ToBo7dK51arhdW6C70m3DArA5JqeDuzpMWuyXRRrdjkfoRqZXXKN rpPwcP2c/+rZghy9jwO21NZEsE+73kxgEUm7aigV+ruF8QLoH9Fp2N9dFuD3 gNOwiCxLSOHScVcHM3uTKCok/v72zlhifst0ZCY5B+vnzm9uXwaLAUES7IHC JTNUdMIWyWza5W3v+vJeCEGcY/a8oZoEXU+R8U9DwcIu8YAXT+I+LVVyCLFl Oyygg9fCbdwaIE2K0ZD/UUH9CzhQvgWwlg2EoESJM0si2a0Ca+eYKl39cipW bBsMh2T9HewhuLWfOpdVPcRqTOIIVnsvL1zm3KXgBBmr9C9nzJrNMytFrK2O idnAMJDQPjwHEXsFDZjYhyQf+FDQUNnFuGLCpkgp2y9qyGrc1bQ97Qyz5rMj Kjfpy74FD63pubXT+V9fp9N5XVEPdmnD80zkaOYyLBfOBOe0ubs6ladaNCwP UU8YJ2I0Gu/GKGkmhZfNq9+SwSveOLKV2eUWgO/QBGihMAeuqbM0LvVsSC0D zulUQzPvB7Qq3rtodYrIqQnVIX8Wg5kHO0SOk4zqZVU4/jyzc02bsUsfKYpE XboS0bfzILl6r6qkjN/zslUcPmokwbLMhtvu2A5L016DKYYg/VJ0zovCRaN0 /qWRbkZQLJzAaMnLSEcWBcS/tJG88NYw6hzxvPCBKtKLmY7pFMB41muaxWpj 6kocOCzzPpdnmTKI40oRR3ApQF9js3swn5n7XJbL9xKzK2BWNdU5PrSkWkrv YhLk+N9txD5uwUbGPO3akQ/qkHMP41E41JjhilA8OgHLbeJeHczXE/AG7EVU G6LldKdlAS9UmCqYJ9v/9b/lgwBZ/Fbsg5VOCj7eqKTtrY0iyq3BoW3A2tW9 Eq87mY0ekDxaq8ee/A53HanxjrBmWfB8WcihK5A599W9O3DScN8E8wj2s9Ux JrFtZdbpGPFWOZYi7TFM8UWcwgtb1ohzpBfa1V+KHchLtLXiyrnbj5wHOsG8 Lb6EcelsnyHdcjNugfzffI4zcKLwWA8fn2HBweq540coLT91mq9BRYqQ/oVS /mG/FedYhRsw2dIZL5rVSshaO4sMVnGQTzJXdiUe5X+0T8jA5HPgx2qm6zPY 2SNTtf95pfjWIZyFSkMjJC95unCCk21qBcQDulR4pArnhhVc+JkZzqKjhZys EnhdC2cFdMUdx9tUOW8UAiedq3as7ML3b8fAxG4L2SJkD4lqKDdyE41XkHpu G7GCQ5WcOSICIEVZ6Ze3D/VwaQ/YPKhB6xaHqr0XPjW1n4CF0iTr3W5C945H mKAK8gIRqZR5TmVMUmbF7ZHH4UTAK0N28LAdsy881IbSyMaNW4/or4JAF2NX NMuqkbwMWc6GsW4Tp/OcFnesOByNrDipfN8B6JgWVNEYdLvzvHyUSgiSQbwV HFTE1fTBxgscApRFUffD9fJhVANsiNQzCTna1VHDmWzoRRaXwcpAwgcDhTNj N5YaQmuC5aw5CsU9NhgOQjPdNhy1p1knUTO9lYrfsvV4bSRtZU1tB/ICKTw4 l3VAm0PRIxEYstKB3d9ajjcLqXIPWjAgehDF5Fi0O0+64+RsnqedDO0j7GqK t1LRAgx+4E4Pxq6jU4stMoSC1yVe4HUTeQDMthBSQn9nTZI0h5MNP8cIkjDQ lUvuuTaq+XOge7XL8eA8QSYJmsayGyuJRR8DoT3CSiJHefOYLst63MioT9U6 U/s7ooOXjqKQptHP3hpqIjCKau+fp/dUzwLZOGz8JLbLxLEllgRmG0zl8aQY Hi3+QSldeu4/XuzI/Udpl1Wz7AAoYItwKkMPa+biOTRQlx2/CIKateJg9ZeZ QlbXdzRh7yO0lZNEQxyc9+vhMQZA1DQLu0b3o9n/FIgoNTuepZuAgqNIEiWq +yI5+W0PIZ66Kzfa2mRN21E82rWOd6i6r0a9+0RtlNx3/Pv2d0u8EOcfoUni mzi8LbNlVRmAL+vPYHHt9xucwoVyz3YNZQzDxWNgP3Ww8DLXntPRrH9WcLpF gzAFUT0dGrw2bqSKsh5fA7N9Lq+bHAQremNF2gwmC+UkYDkGUscI/6Rl5WZq 4V4rbq+6auF7ecLaBwyUsh5ew6mqFsnyi8stX4RzAUy9ax6mVBCce94YMNqM XZkwkg6MhW6rZDkTkEUbaLtUZ4eUH+mzB8MsgT3eWN8bZWscFmB1nmp9ifbP fbMk1+O/Ghh7GPBV30JYtxS6WW+Q43WXWz5PQ5KCcd3nCtnJ90HxRvqJgQCk B9a0PVcDIXglGOVSyEwbeKqeUti6Tr0BB4KfHy26rW5ict4OoNpwNL1JMrvH yMqRhs/41KXacCvHPXQpPT+yf++ET9Ae9Ujt9qg86vXmc4zfcLFw0hXjwj09 JsVs1bfQvzfGXyejf/O5CYx5wU14how7OuzkWb+0uK0q6Y18HrXnsA9Uedfa sgRtHlmpZ6I+q0kuuS2YhOly8CQq9UH0SjKq8v0RPCEkRtU6m/nR235pIdey 57lpj5DA5BbH/3LzT7GyTu8YXl32fDbpJmCnUdP4EHD6oIy4FXn146VOO1OO WK09XKZfxoP49oxwDYU0FORp/I3aCb9C3qDjisbf2H5ALRjittsvWhNd9UQV Oo8UpOpceKm/qqYCcNgKjWlvBvmMyq1u2GUobNrDayEYAnn4LlNUzSHx41y2 YTuJv1se8IkTIoUKu/sbhJBvvOjLBbkl366HNzwOOtDYuqok3MOtuUPpHnIu 76YnCh+5/sIss9W+qo6Sg4Q7PVUdy6N56RtokAjLRJtnrGT0kioh88iLQnjk +OJ12JW1ulRNtrVhJkIhHr+zAAcu0ThNl7TThU356XozB/5tzMgMgye64A0u HVck8Y9BKB4BcasrUXJ8aXT26Tiw3aUSZYKCS3SaoLOZygNaU4F4nA+FuU5S g7bleUcl/V4kwWgTRGjeCDVkmOIhlKbSB3/iqgnVlFXdP9g75pqPhfuUA44r VKiqIZpPx4blODCDvYJ40UEsLp/C4hh9Vutr8LwA8Ki/Wxvt5zEWXaWfKid/ o7LjcPek7X2SJrikZTUBk/cBqFvNPKhuHuMNx2nSeYXLxT6zuyP8bV7yCf++ RzutqkpXicgECFeN0q1A5HlYb+IdK1ysHKOeoewRfWlXH+2P62YI91HbVfmt sBZkfRt8Lx9/edpdKFyqstqtzqZQ8RKxZSkcRl+MQ446kZY/VTFZNGGIHY8t ga3meDsYOEWmyHskJGs2jIvA0Mu49i4ETwzCg/Ey3OIYDfIaFF3AmyTbrnjO PG47Kgz1znnOJxyYb5Gq8yqeCd+mYj1HqYZpDsMo8kqbFwrtV0dL8F3YK/Us 1rIsRolyB6Yw62Jp184EjpT/2y9073Ds0gvSN689HtwQO3Qu8ot7o6BKGUEq zzlKpvpr10gig7kipQClIkM5Iw37rsH1ldMPl16FtltjwPIDvwX295SYmRAd 5pOacVXzB2t0hFaDFxpvSQDkIBKxT+z30yUdqmOxs8DSXh7rWVdbQrVluqb/ favbJE+QQqq/le0CxqfgifPOBInNFJMiQijOnrNzNOaHJs1lstT0sGyU3PI5 kE50tVGTA7/qmKiSU+bzACWEUkjAdRed19MZiShPFj2hHXJbblaUAUywLJHB TXQhfAzS2JsHwxzrWhqNrQQbtjkV9KgQhqduS6j1hJ5stMiBfrgfP3zYf/wV Kf7h/tePH/YfPvza/hp3gBAYN7GKpsP9kZt4AG3FnW4sPoW4ahQJNmOFTA3M PfjlhQZJqsBx55sh2OnkPfB95xd7OI9cUjabl2UQjFs7a3Ntu90q/NGU/+ae bfJVQ4rFLHmWqj0WkmrX+qUrX/RU6b4AfBJ6pWuETNuDmVIA0qsmgb7FBVwP tY0Xhmduc0WMKfuJvezzwzmu8Vvz3GdqFHBaAhVQky13zPDL/vs/vO4FXN+9 //nu5u/fHf5+9/7u8//z9ZsHxw8Pd3z9x+/3PzcpZBEVGqZYlTqxYwJnHbRM FJ8P8VkW8B6J3vPk+re/i+GBfA3n1VHkdLH9Ip2D90geUvMlpJjCpiRM7YLL cg+nHi4LnylUWUJa3aGKTmdaP6JW+EK8h5lq9H4w9sTHHIEfp05S+TPycl3F EmzDjdPKygfPlGbQZFJKvF8Ui8zrq6tO9fNg1WUPb9jrHrrDhMiT/T9/+OP+ 1Zvv9x8Pb3z8+58PEuH3+78dpMTHDz/vfznYJx/++u3hvW/2i2j5sP/+zav9 Nz/9YgIMKrJRFSP8x4xuc8cF82Z/hy1ChWH4ZWs2hcpBqWqskyCDjbfPwfjx aOLRT8pGT5jIq3CwIoRl1zwsSR30yNzviNcu09/SbrPcYnlFhvTygNeo6PsV FZACQXhVM+uZeaV66FgLFJQEeE/c0XxU7/pq9SQjcSeenor1qSaZGCzwWcdH QQHj8N3rgifWTHz5tPH+2f6nd2/2X//Hz+07P++/efVm/+OHvRH2h/fv9q9e f3uwIo6vX/bfAeufNqMCQnubJFCU53yfqGfIqBM/U9tZWefR91cMeBXIp7A3 BgdUleFKzSrK9bCkBMEUThIBBmIN3KqoLQXrJ45v2x0wJrk1QynUTvkkt08H CBmkDp8BbbZszNxzNS7PhcDrqe4aOVS17mczgwEqEZ0r2DrNUZWiXGkBo8I+ Lzs/v3/3FfDzL/t3r79Cfr5T318dfYXX+9dHn+H1d0feNlNDqPIUPn8LvZEn TGEfjZzZiSOaXQWl97QNxpriWFZAPG1jZ2bfVXq8nDlql08cBAU9V89iPI6W B/JzkcPo4xuVFkU3UWstH/OwTQIDDeDgPfaHIudwu4fNsVKwuhCpTmudq25z +LyqaIYRQiiSQNZk6fBREeALT/AYoiapM7WYosxcD4XZU37AJ2JrkKkP3Hrn zR9ev77fvzlw70/A1B+Xt/7jnwej/ZcfD/9+c/zYIi7I1PwM5vVxzBUZGWuh l+1+2wKnFzPtCDI3ToVt91ReXYIL12DAmwTlc4ZMiasys5weGm8KjgQi4YSG ZdLJsRt5kRrsxt33jeExrGdMvbDiE7fLiC7Dpdk1ISzLZXVJaQumOJobX8bB +k8m2b5kBrj3CO0rosUZyLXlUoBi59S/GuDs6R4n974Np7Do9HyC0sQ0c38n yCfl76Dah6ee4O+vurD45ad3d976Pw7u/D9++MbMdy8sXu3/cvj813/+cPgq CIvLICx4g9xqHuIRAewdoxOmA9BQJM1chQ7VTARQK/ern/FDYqGBwNq2icl8 tgTPHZvn1Z2gqoRD3BMzjEtsrvRc8yfLRWuTExso78y3ayRihsRgpd3tAZ0k XtOVHA8WbwH/5spLch6xDG1RaVcupJbZiLCCRY57N5YPvIDdWvFCskVSqARt U0+0Q9O06ueoIshKBAwTbXN3j4/7H775qmUgvtr/5e8fejDrr3/+umcm/vjn 9/tfu8jLrZIR63+IJnhv6IK6kEMl6loWIswtkzrEdw1EChSkEoYK8ueT6d3G X6jG11+IfX4mrrjWCOKqzCarTqrn0XWjC2f4Fq3HV4yxfxLkdNb3RxCgonM1 Opn0+2YeggmbYHHgbLXYqkVJYIUt9fHA0NYHv7pqtv28ANTQXElWl2vi0W2s AtcJGshBfatQwYnbwi7LY1+gbTeyoiEGfXrbd+61XaPZsOvIqb5aDXC0xi2J dL4i+aFkDHqS3gbiSFdSBpsQb4rGvXtGaJygosuR8nnpX1rTuY3voYVpfLLF 7D4bbGGLi8ysqovGjcY5sAXJdlbFkKFLT2TSeGIKborvXYr3eNyHUtdwbxW3 U8WUh0u7WX4+wRZ0fwKcSzTOCa+2HPeYEr7Sfqq/9+GrL0kKIfMrO/JcLz+P E9UVM3maIFYRKHcbS87YxCCsO+1EGrd8IDZqOwpHUUISZzZN/NythLg21aqM fVMyfq1XMgFP5sOP5s5N2lkHW7XY84Npqzqh5BVAE9xnEnRPeu1IRoVrriv/ GcqZawjM7hqn9iilgOzEcpeNu2XulFLpISmlJdU2MzKUBEjQ94P1140anD3b 6N5LJBMEqE/QYJJ7nFOimnMgAarRfH588EutExxLNN515Y+GeRrTio+oGHWS zhbZELwrWSyJYKn2zuMWUC7TGHw0cgGST7DPieTIjk+juxWFOT73MwjY6Rul G6doOJFCedSJDGO37Xvd8MInViqXx2DfusanQ6As6145w+qJ+wiHyShehpjW J7SaIYrqohQGRx6xxxADunY/ZGpHgok3TrzfZ+7tLNWuxFATD3l0KmbiFoLo SbRp4wgvjb00qnos4nt37IERk6moFHasgOANnZc9p3/EnbeSXlaH4k3E1iJt 85vIeZ6TFDzcD4NDNYN1X9uj69jdpNgIesgPBbrW/tftqLBW2ovHrmSSN4cP xvqHbCteNm5W6ZCZftn54CyIR87DYkZYqJiYC9UxL/hbTYHYWRbyseMe2l73 N8phy38hhApNWIav9VO8QPnmboUPxrM5bj7XSV5GqDFRtmbq4KeLjvsuVhLa FUmrntUESo14QLqTgeDDtgwJy/Wzb/syeYiCUIKy5K89rSyuU2gBhPAA8d5t RyLii8K9vBEZiZhNCfjUxnMepNEzNxV6AZan5rLktn/iZutGWqAPSie9qEjC 6JOSQ0DZS+usA8ExwyP1H/+NfcwS0bIQJ9bwwu4t5z4KDblHB0oAph8SQE1d XGXrcPsFW2vj8RIDawYcp5iZ4tV2U0lZy6Kvw5mvx77nHRPtuyjinJGSl5fm czKLsHXPHklJZHc5iJuF/j2G0a5mdwRshHGw4L4kIRNloolXxh6inYFQUZVk YC/g1jW67IBfBwsjG6jRwEu3gSLUUNrBdrZGVydNOwOJuu8iEscLUm8PiL3J Xb371REsv3nqljL5DW/FvVrUrdMj2kk/rM28Bd7R9hWreAW6NcAYN2M50kjV ouNU+CVBo1yH52MrRlUfKMXXwB8bNeI9zw7o4kTDypCtgKNaZmJYqGmUp5a3 QO8sawdc9dthnGZmAmj9TP2OVLRBFTHHIeeoOLvC1k2PE/EQKq7saUxnojjD Jzpv/FeIhCn/GRkzD3cDo4kTJuOgVtJmC0ra4NkjdAkrm/IKh2SepB+WJPjS LvNJxtU29deX3yO95yVLwQefKXK2gjLpZgpwtEZ6G5ZgKSF7aOyQogqn9f20 n/KgsX6mwJL3S8BpBZdZLAi0Gb0c70IGsSpJxEnmQ1TcT4UoeTIaJ3snKaHN SBtvxlgX7Nu/yNrP+o9F4FLosZ2knkLeDBYPDZwai7+Qmqog0EysWD90MJxK CcQwrm2HJflCzOLWefum2oBwQuAM+7/g1xTSGqSKZZuJyBU1cf8RO2hM5T+H y8FdLIqMP8Uo8vGV1FgMJZxCv6MFpfRm3mZgkNFpOM9Fhy/GEApioOgHyxJv egkLcIhvfu774ailqt4ry/KfBr2tqFgJHTRD2KYfTfYeRs4vC2yftkMbaHJ2 mSpxvWq26gmf1oO2E+xxDRLKOjj2cs+NYeXRJMi4DOVje191NcmHpKuD1Pae ilhdIIM/xKYMEncPt1eoQ87WgpyQIQBjZTIkuA/86Arj41DClVJpfEMzxr3T sX8u3bz53I/XwFdBTAmebTJtKXLUHLuQD9kMJXKnYkWqM5L6nnm/GSmzZh6Q 2tTJy5tlJrlT38odGa+n79p3EkzKrJxEobDWpr/UGao5nMCUCdZOFbXAHiVc i6mwREoq4Y9wQorrB1mD7ykFjoAVUM55D/m0Md5irev6J6FdcZSAvXoM86wr RYqA+uVKd9cbtYvFhW3v7Yo3ED6yGxsCVdx5c0b3GEyrORFQ0EEIjDKpK0f7 s5Dqrm4jPWnwybgZMtSa1B9PZKvP4O8+d3Dj0m6Zolc7ijT6n4jmqkEL9jGM bY2SMaJTM017x7Kqz5nq+c9RejqJCobO0R+MkeHEIFwz28xtV9RjPxerzUE+ gcuUP23BYrU5L+jSyDGgFfp7wKUbqA9T8PILvIA7OhgQ2xZ1scr6ZF0wlOEz R1l4DQpnuc8BQXCPDl64ui0Eq4x1+KDb9yskKfVrNVOOCzyZcQsw1qpuNtck KrRjD1Z4e15/OyQtFEnKKDs86BXwLAzfUfEta70SFSt7ZgipiR1md92IP0fa 6Z+DUsUu/0pvWwxsyFMN7YpSam7qXID0yLRz8Kr8Ja7brpqpcNwdCMm5UgBQ 3/1MEaCEUHzYTQ46tp8gTo7FYpbi4U1VgXRvMHlZM7jvcXfylQxgOcJKbRFm ZoqUh25r4VoXNEG9TtRCQ8nik4Ld7WAOhzaAF/loPzXfnAP7ZvCAoSXzjw4w edKD1s2g+YweEuEfvAEqyA7UVRg2HqQk8j0L3z4JriwLtwQTjcIZZJV9/N+A rZSo3HUfyJ9oHiKsIwxYs8b1rQPd8zRIKSSDYfntaAcwdXwRtB2Je2AYX2WR KFaHbcPXNrFcEzg+A4/b8hdYwJljd1gV5qHR8kbMws4M9EtFtO6KTsF6GNvW xtH7mNI9mmUDrH1tlzTJhFsdN+Jqmc5gaEV5ztOhGECtIG0zvAhpCCKpC2M+ DyEGL9w0aAMvq3TCTU9OpR6v2ssXje68meBu3ykVPcT1AGitF7wBdelEYtHg ItCJrSfvupdPVYmc6vvngoozTySewAhrCFmZhSvOGiEoemGTkw7+7jOElCvt ydkCknfBA1Y7pGIKeQWvb0EBsmMAToNdw2GNUPGMh+mY/pw1L58rK5tRr7Km obEesa4ibZALWTP2IcIcJr3GFKLteae4492L7nGB2CNzeso8nMMkKF+BulEp cypg7L+PoO18/3t8jZ/oQUTKaDpZ1OJxVZek8N9mzLVc54WDyavNw7+LeFfS SmVtOJdzCUOsn6pVSbln7coSrl4gVlfyQQHIdKe4gL5NpmC6zMsWC0BcOGJL OFRGzrhLMpyHc7Xb55KkDks+gbfhlk6E+LF+a7pb3fauG7FMUfFDfS2LpEds YaEIikxB7NcGvy1wm7knqsgtmaGRYcczCy7lhrsVMlaJhQf8ajLccRSN6Up/ E3zWleH4X6WIYBtkeCBD90SyiAN08Tv1HETX8sFPbuoO8TBepUrI8/XP0sUL eEgwTJIALtoGaF0eX13ZnJZgBsUFlnkXqNqxkstQQ4fgBY4dqYkpYgigfzCV OT2DfROtxc6QbiIlz6s8e3z2PnatB+Ul30WrA/EwuoXWToEbFDzby4GgGHkg 3u5PwZ0OKPIh+rX7jBT65XF6pRfaQLTAnfFyKt9jANTKEnARwIXY0TYyvxV9 hsMlntDi29fV7Adx86dtAyrhrejGttQUvi2ymgWoPA6DtWibYzpn2Z0BvqcC 7DNJY88BYuFxzspJzY+a/Hy4mNln4KtKqc3pCvOK6NiUEWTtC9AgxSgsRpMt j4+3AZk9aa6YV83WzUfG8MPQh3Nj0OsVwklaMLTfdm8XjW0yIkAt6Ait60CW iMJ8MsNIITZq5reoIVnRtqev5hokh4/MOthZNZo+3mWO5+HpY6aV2rUtzo4i F0SnHW81KAC3t2/XpSIcJbj8EJNyG57kTIyxTlSwtICkl09eaukLDhVmmXlo EZ6Fsaprs4TxhaYc2hQ9ybQYb2xPsLRFLWftPTLTDh92TRNBFdPPWtBCPWOH 4RZa1KWSs+/1XboIBk50U9/2c8HHhktYKIXFTxRVeg6uCoQo3WDVPSjg+8At n2+qBodEiVwHvbfghBy/h/1iozMzVH80C8Q1zfMXKiHsIeK14cZZSBl/ukIE eIslADjzVnlqp+6nx3CABGrjpC4ib+Tmq9JsnzDUh0K3fRcwKIu7/8hRsV7s sAY5RIZxnTENgMs481EXt67h6SDpqvYEN1BsmHuG7j+esGIfWPeRvQMitlIa PCVbYIFZgdTDmD9p3+kPm7azwV+SpSa5PO0XRhdXKdGTccOg63yE28/f4yw4 Rr1xZ2BNqq7MDFg2SoVClo8uUDH4Qk2bzOV5RrTNzBpj8ui271Aqla2xDV2J wJEE8T/pWuWbC+yc95PGDHLHI44f4vPDS4LaV6bmWeNKXGFh1T1o2ocUNRsc PCgAvupqaBubbgygb1IwSZJmz89iRImVO0N3mG722lppjE+B+oaUfUE8ao+l taJBVrmwTbKcRql2PrkBYYlCZ5gRvshS4XlnZkbuwg7uuPnctb4aDinxhArq OCz6NY/1RG8447CiQCOIx5Ns5RRvyGtjaj4J9k6JWmU6yacJrSosY8vxlgoo hLjMu2lOWk36UlU7MfbNgiY5d9tBmnuQyGVGoizr1hRpYT2Uqb2k6zVHGBvV KB7g/svRzpkjI3Pz30fmHJqiKkD58ljOd6Oc0+XUnjAZ8Snx1fzphcaPCoLt dbcnLcfsQ/UPguU2G9WIgPU8pDokmJzUkdC36fkopKPX5yqamSJPlEHJbjwa VyQD++VBpEbrQyUmHwWLAyIKEhOkIMpZJwYlHPxp+DEr/Bv4fga8QIZ7Qrs4 xHoaPcS4MJCuMngV5Cy6OSNqaw6wlCJJ4+s614TKe1cFdq/kT6bwCHX3BONw ym/vb5Nmp47ZT4Nmr40L7+gLssABJlx8wcJMYJ3yLP6aljgXTE19CYgOU50D Ux18Hk6HIscqFw6ry+YdbnvmJSQ7lEpa9mBA17KkjjIlibR6yMbIz/amRZK9 0tXW8RNaItIaBOxd+sATlw4awyMrDshLE3VDnwugCkWv0RkIpocJDUqOrvIu Ewzuaa+HgFRId2MpOpDrzaQTzBmGfSJnzrqLK1/jlO7Xlq36o+UicB7ywlJf uw27b4MXHvFJORofuet6kGYeDPT9nnCXOGm1RVNOXUr3LU/G7PUaDCWe4NbZ bMpx21UqjWmp3UEhl/JSgtQpUWMihGjFkwSNzRUuQk8WhYm1rRkVwloEfODq h/Q0Ca1ctK3CA4NIeQK1srWBhb/hXmdDl/hWHFnJ4A7QBGBtStfgNJcaQd6t 6bWvBbWqtCU1v1ElELdW1+tp/UYPlTNixaQsfM4uhHJfoh5VGmoyXEjX14kK EG0rU8zCV2sJbV09l26KsQtZZ3ToBbBEtRyFf1tffj76uBK9ymVXtUQuUro5 bFq33lRDP7g/eVzyo7Dn+B3cOLSFGwOtH8AxAlzoQgg7EIPz8CQmDIQwhXj+ Wzw+5T04efBCWhFVjEgpwi7l5ti6sdhTfI8k/ydhKbxNWcJJdf+F5gC4Eeu9 Ei8hLMhSiUq+NovE7RexkK0rgZG9GIwBF7f63MLN70GxmbTzKJLeei8vohgs jAFkPumgWDQGB1enbBNjdYFXXREuesTvO7a25ipMSLMdW1UUPxkxo7OT4KBI Cb6w2HWVa00t7gbJfQbHbYM4D//LkucZI+MeLVf21ZKCJBj/AYtfVWCkUApo BTalhG0nmM/5iVSiXlEpvqdqfEFR+yDG21BkFAlppDHa5VxDDBRXuV+3vnbK u6oKlqaYMpZutd8tO/RYavGEluRtzmHbEp1IlKzcBTVRfpe5Qirm5oWnB/Zz 9UFiRuGyWAYPyywFlnIZHdDOsn4lOfOBpBvL5x8/sso/ZE6EL62tN6kaE2Um CgYG2FCKAnchKBgY2idN2Y5jbbvBRikhqTqH7CwaNB1Bjb/q2e00GaDassDJ umQZCLmwXRigU8EI1SEfnLAksY6Cw+gwLwVWcpLBjblMTDVi8PpWbek8G+Rz zcNmklFp7QQokgDdoIx3ppziTrAbBQC/DjoZC9x93kquWMOr/ErlN16ghDjv FkGJDlEyZt59g7swtM/uSDDtpIiTYXAtyCIX8HgMyargWnbgiUmjYm9QIYby EzLf+QhUHQEHkLgLvM9Fr/fhwQyv0DAcTh0SWfeSxIyGaQrU/rhUnrtq9wYu 2ah+k2AL5gjxa3icWAmfWRk5Mj2NdKqUu+k1DrLcwhSdyLiKCX002OgHbEQu AY6FFaOyrErFi9+rZrJelp7whqyyU2qQDIqDSGHaqUrcl/wnvgBDrDRv1eq7 T219oaHQrvnULK9xwQsBQVpsRQXFqHGsR1NeFWByyBkR6GtpRnU6LY4EO2og 3kHVvGF/SrHRsF2PuuVnL1VWEh8pKbRORb4yq7PpsxHk66va1Bibwe8Ek4jR J4h1bDgQ2JlznRnB+gC6jHiRcILz2zJ1rzqLCcKZ5JOSSqIqOo/vcdMlurpx m30/n18d7Tk8J9ipPGd2kVHTVET0fdCsl0OXTpA8hswa4AQ0c+72Shn6Cp6Q T1U6C2tsj6FygCjFHKxZNaUsJwK3p5HdHjDyqWQnZyt4hZl9ZQkudc01qUxV +6aQj1s9ZMHwW/jVWDARSv2UIkVhEzKYjusnalZZL6Q3j+9xebfiy9uqB9gc v6nc2AdNVSWHnO9QAgcJk6OWm/rhFULOuP0GqsFWIVaJhK00xU5KrQYukQra 6dE5p/Sk5CWIo5Jxwbwc7kJplrutQR3JdSLH/wYR/Sjs5iJwzLnvRpWPEhNV blofo/gQa9quXQsS2FnEqE73zEAzKsWJsTeez4CgxzwxEhvRkvJx7J4Chh4D kZLUC5vc/raihG2olqOnLUVq3tznFMpt2O251xh7NbPgoDqVlfil9Yx4pJxc k2DSoGVLhV0fz16Pw+4WGfAuHmO84JTdpHaPm2njEmBP5uTjf3k4p3cjT3Ap Q3Si55oOd5KxwiCw9aA+8xBQ+TvFFYms29AqAzAJB6C718SbjNPMtHD6lKpW 5iI9NrylCSrylm11R9PQ8SlcFliN3S4rH1wigou8MwOBj3H5qi/YFcdtf2O9 aXDKajAoGrTsJAzM6mm/bPz+JNavq0ejDIlLGvOTYhM+dH1j7ZsaDT6619tL bKR7XD6UZe1+yLX93tspQ6Ryb0ZSzr5a09cmR4KvMDZerd6hvgaZZWpVhVyy LAV+x5wrTtr1Hcx9kjkoQTX+PmmuEDrqQhwq+FowhXRTmt3oSyxYAxdo+TA6 UmtbilSjrNkIEm8SYVmXBQpgy6tkcjy5p/LuxWkKGlcxgdhayqRNC7Bm8ziY po1VE8e9mv0Un3aYf3iYzCK2M/xd3GiFk0bpnTWKH1pgVN+j6WmAxiT0yqcx bRy432chp1P6DEV1knP5lH6CxJnBoPAQ8lGGis998QljKdrBOJ+TUxLdhgyV 9cvGvJR34G1WmDe1AzxPFqMoWJkC11F8+Qy5/CHq/VAwR6JGqMk5Y6wCUGkX FKyXwg7XXYitTjN7FCUDYeMUJXFVRX8CL0yGWxOw4Y/FXsACuYQdDR6l987d 8/u5JlVpp+K+w+8+pZ9gjFKV7uVdjfwTwugeRY9Y84OnIyTU4lHlPSjrcB2b IEMt72j9CsQz762nOGKp9Zz24rJLC6B7js3UtktUlVeKCBzxE/G4SHJU8+v6 zvQcp0fnLeZKHDTNfMqFZliwBr6z3HQV8ObeRRh8UMRizi85Gar1S9X4k3ZW CUjFWnm7mLn/on2aw78s6sQnNkIMo7t62w7lAV8C3RaRjDjzTNf1jx0behbZ wSVQ/FMVzMWtUG+hfVDkkCpelY5T5gRZYp9bfwMMQLPHmtyBo71gKTVf6XnK foqv8HNsM7e2VkahLLiPZVIkh/feVKPyKliGC4uj9Gd/FB5+s6YVuWLLOWXo jB0uPBEYeLsWfOsJcIvm2Cvq+1CcxzMa7WdVmNHsmxnYL7eDUp9ASV/HqWlk OktVLIs7Uv1J1wlOO54rMkNP3Exn5NXtKMlUZ7wWH8s9GnkVX1oLjxyWHPCn GRZhpg5GRwhZL6f3W5VP6XEDQtIV25RGmZIO12Ze41DXrc+cNm26qoJA8ajO Kd6kxaBAD/fvJSJEVN4RutZKKM+Wi1/dbRN7lCzs4e81VRE5Vj9l9jxbda+f uBbyZzhyAhdjWWelceFxHwy5jx+ZmFz6eOattjFaojpeZp2fMy0mFVLVKBg1 yGExKiF73RhdEKoLkDgpmcL7VPMn+Pc82qs26Fl2ObXR7j1XlKaHNitILzyU 0grirlhOg/Q0e8C52vDh2J0uB2BoQsuvVVe3IX4Ep6qq2uDB82KghWWveNXp EbX3OCJ1i70ITroKciJUmZkrK6KVZHIyw64A27Fs8ouwmz5aPIwkFReF35yD ywiberelOWJ0zfy3/9TIXmW4VkFQpSCVCRhg47nxorG2yFJbDcyrxt5W28NS v9Gk6lyjbLNBq2Z4bwOqgU9I9W/Zeu/YmLoKi0YZEutR8XfXIAmkL7ThWR/b Ch6VWxrnTgaJSl+MvPjzS2DVy9vgZOY5k5WNUwqD4UIaDAwxXvT/Z0omsqGh VuG+j5ltCqpxUAlXnUuItX6GP72X6abqkJAy9iAukSdLlYgSIi01fEnMzMdE jmCHFYEj+B21qAKUEQlsuEDczgU7WXIBYaG485kSSf/jSpkn3Wly0GTTv1KP 505h5Uyc9o2wqooteDEKqjzTI6rFofqta3F1JeMCCusWM19+/gHSUAN35bul I5lABsnoDeXlwgLyZocq/KuxNYJq8hTb8E1R8rEIMkuPiG5228Q34eatq8n7 pO+kQ5f7EXQqmQT6MgnqrEGMqG7wFl2T+NlpmLeSkKFcdG6cnSeXw3wCAawH 30ZKV82x76eMkgafC+s+HF0l8t8GHXnmYhj2315+reupULVMYhOqJHyrK1Zg m5WYsp5CgsFktCP4H3HA1fEF6rjSE3kXOOVLTUu48CdJKO4xPS/sXheaE0K3 5x5ifHUPvkTeVtW1cIZ59I3osGPMr4KIqBAZnYL8YXnv+lGlT+RBAS2ozvhK RGOgCoPulaPvB5NSdVpMDe46mii0+p/2mvIJOVUXY/CZB0Mv+HJMWEZlVldt Eomyy/IsnebAK0B2q+76SEXaIhuLDAIatQmGbkpV7c8qW0CwZKBDNaRReDVX QO5W1WJ0h3IL59IPvXYhd4homuiyhAyrGAHHSLHKHuhWZiaA8/JgX+3Qd+eb eaXru0VYgb0Dt+9nreBB8O8qK4DdIb2kTkrRKn/gTEa/upiQk6ERlYnsS/E0 HBJIgd3NpJdWrvIS22SagUBUNrSnWGnEpSrfDFCGI0fxpLub5uGibFhEmuct TaCqJuzCnQJeNeI4kiq6e7o0ddYSnlvllyeW4CqcxdxbVfB4NQlY5QrR3UHj jjvub0XfHzpsFYzjUJrgr+Nn2BwTV7ZNLGznn5/0GHvhUxtEDPlePUdb5KRc Z33ZYl5c4vvcTVi7S0Jr2YuxXbZpUYnBYajkFPybkZlgU3TLMEFn5wr/Sdhk sTAlMTi3D3vU4snn7rLi0sPk9dO3EAyuOsvBduc2u69vsYdR1DTYoPb98x6f ut8RvlfVEMV7jMgSNgYMKm2SeNUeOkYu1oaQFY+oKRGF8o2XO3MPBfZfPkrA GRDDflp8MXQU8ehUHHAXvdobAdgd8iH1+lWTV/z3qBp55FZGKUQJXV/fMjgZ dRKDT8TUdyu7An5RtM9VSEy7Pq6s8+5VjIdsjEvYcGGh5NZ5bCyFK1Cz6/vl eDpQp5gnNaOpdgZ4wk5W1m1SEv7JN4774vgaXA4fHVeD9bp0+ZmsepzcEmRU QGfiNa1dWKRHb+LC1iueb0rXFSqxAlZg79xNH+99CeMuE1kRJf+ZQ52BtH7a yA03DAR3Yk0ojCqWa6LRAb0t776Igv1Fe+ocO1wD9aLoDZGfx4J+RfgLQSkU oSnDL2QGYhdIschrvdvWkiEzccYiKkzOSHIn1kPFo14kvS3VL+sKlPvKSFAG DUidaoxg9wYGfhHFfHBKx1XM6nT9UIrk3AS0u2quYjKO4yTllnkkppoEAiEz GQzKIQlrun884sdAQSDvp3DTEHx6li5HM3Rud+rGIv8C36+2JS9nqXRCjQ3o Q6g1NiASiRpwoQsG1heIr0p9TOxEj1KQ4BEXywSEAcYoRHbgfs1idZ8ZhH5u E5c+MdfcMGkfukcBZM8Drfmj0okYIQrtKP14v/KmKyfM0ehCXQlKQMFnVP8u a246FwCX4TsJB1gXfmLiETkaaRwFGsCqj4C9rNk/Gs7PKspNwWhsCNj5xUmw KpB14uhy14x1FfTBdn/sfgijJPdx42Ai/E6+dXn2OsCGtTSRunuuBXc1Qpiu OuXVEJFlTLHC9Hgk4S540DxCsDPoSbPilVmGsTDhBZrqh26usnpzzeyW5eQ/ qzhXEjg3MxO6EwlYEc/C4ddu19H+Aml5dwvE4eXoxnxAB28D7ritzwy8G0tu 3MMiS3GAPGf05vMx3MySl/v9vsssUq5rmtxmunmroRmfNQJLIqbqoVewD6lu rmWN6AweEdLNtKWo/jIlBZMtxSQebrIBpy4RkdXEhjxMPnOvlvvA+4YWHTsG IhuDf7y5RBTYDA9dy4U5bnpQcGGcNKWGy8378+kIZqL3OCFJdzPCh5LNRlvl TAZ/81PeOTDczu6owl7w27V8pPJe8F/sgI2B+3ZJtYvaidh2BD2BrvtKCp7L SiSUnEpMKHumEW29QMrrW0z9OFfFk8Z7YWShMmGWLff9DVj5JSZquPVt73sS QlmLmfr0/0XZyVIlE/4tGMq0BwSk7BWeKohxvTvIzPEnzzulz8xQlpVIUKoq roKCD0uiFpi0mY2cnuD3w0bT2vAz5EAQbHYJtYmT9GFmCsWNuFhjP5TFbCjN HN0vPImWkRHaCiWbFVDiqh61J9DGmEtk9GgvGCAonnFvEyxrPswjWNJrrKKx rS/kEShYIUXh+ZhekGgYEn+C95wCl+eNgqoeCIlMPMvIzvA/wAP9iqpwTbU5 a/+GRFWArJUrVynvRjOd3SHtf/eqDA/4LIaC34YgzDYJzORhdA37YUqC941I UdqbTEBllIByRUR7NOBCM597D95gDC1w2RMUCc+6SEgs97DN9LeazEtxBpW7 84bLzec4k4pode0hoXWQ3NHbMbpbQiId0AAI8fxwU5MTKIqeFrzAanRsi57X ig/gE8aX7qBsO43KIMuV1wFFq4lsjn45jGvrePWNS7nnmt1P29j5Ukc7dQM1 obLj3YHLqAqDIJh101lhVmxwlhLuqSOQs7D1TW3a86DdyzaErX3Ua+puMHlb qvRh22RCK5n79eOH/YePvzbi3TvboB9cPvNxjmdJ0pyTYq1PxB2v0lXE3qOk BlRgWYV21+QuVHyI6yfH8BgNkFcDgs7rHZlUyaTTGc6A3Pj2cbkqIafbCeSp jBesZ4LwqXpSwTPl5DTil2ieGXM9WI58MKm9Bnu9zY3RbEi6b7wAy1zTSVlZ pI0TjYQ//vW7/avX3+4/tOW8f/dq/+rd++Xf3//hwZEtD1f4/XfvacGnSnNL 4y1Jsb1wLEpRbWX++QaGwtzj57d4nXC0m7a6cj9FuwEvBfXrBk0gFWBQZ+Qi 9rvhM2bc29/paYCjA2OS/Zn0OldNq7EwP/jxZ857giud6Oeuomml2osFMxb9 bMGZ06a68cmY2LJOhmhu44wubogMzyi3ZTfGgAAPB+PJTGp2DoRJIMNKjiOv 9h/ef3tgrcGRHz/8vP/lw0FX/vMvh/d/v//rx8Obv/5t//sD+/357x9NXMX4 tRJhejSmNRCY6b0kraQaTgglESyzB+1GyqWJdlWAB9FT6ODqYtxJwVCX2iYh TBOpSIeqFEkdgUppLUt52lkgkfZhb9CmUJakVWsJomzZgsu1CpHH1ADrbGzu iIDuqaWrsInPDQbD3srHMuGMOUwljp4gdz3cf/hr564uqT789G7/+uthNv/4 9Zv9Nz/9cvfxKdY04wbzyArE5KiGHLleSwaipX26MA1FWrAo9vR3RkAjKF+j UKTufEriPLOiNuK3d+/FSoWCAqP+UHt7KWnEzDVwfJT/kvdQie3F2spU3N+I eaKQ4130XuKeEyH/+jdByO/f7d98/WMn5J+++aoT8moV4d/7d/Hev4r3lGL7 jXjvf4o9hX+rniqfiPfaZhxv+/H9/g9v/rj//tvfmyHr9mOo0o/7716/2r/T +3H3//82rnp4/ePHb+++8urNd+6q+19+3L959Xr/wz8+7j/+44f961dv9j99 2M+uOiTQ93cL/QVcnb//8M1yq8P/vvnh7+wS86VUOP3/5+eb//J/AY4bb6M= \ \>"]] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"isInQ", "[", "coor_", "]"}], ":=", RowBox[{"(", RowBox[{ RowBox[{"coor", ".", "coor"}], "<", "1"}], ")"}]}]], "Input", CellChangeTimes->{{3.603475748141437*^9, 3.603475785448593*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"isInQ", "[", "coor_", "]"}], ":=", RowBox[{"(", RowBox[{ RowBox[{ RowBox[{"coor", "[", RowBox[{"[", "1", "]"}], "]"}], "+", RowBox[{"coor", "[", RowBox[{"[", "2", "]"}], "]"}]}], "<", "1"}], ")"}]}]], "Input", CellChangeTimes->{{3.60347732010063*^9, 3.6034773841982927`*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"isInQ", "[", "coor_", "]"}], ":=", RowBox[{"(", RowBox[{ RowBox[{"coor", "[", RowBox[{"[", "1", "]"}], "]"}], ">", RowBox[{"coor", "[", RowBox[{"[", "2", "]"}], "]"}]}], ")"}]}]], "Input", CellChangeTimes->{{3.603478683057185*^9, 3.603478686904162*^9}, { 3.6034795715497627`*^9, 3.603479572189986*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"isInQ", "[", "coor_", "]"}], ":=", RowBox[{"(", RowBox[{ RowBox[{"4", RowBox[{"coor", "[", RowBox[{"[", "1", "]"}], "]"}], RowBox[{"(", RowBox[{"1", "-", RowBox[{"coor", "[", RowBox[{"[", "1", "]"}], "]"}]}], ")"}]}], ">", RowBox[{"coor", "[", RowBox[{"[", "2", "]"}], "]"}]}], ")"}]}]], "Input", CellChangeTimes->{{3.603479582168766*^9, 3.603479622580336*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"count", "=", "0"}], ";"}], "\[IndentingNewLine]", RowBox[{"Do", "[", RowBox[{ RowBox[{"count", "=", RowBox[{"count", "+", RowBox[{"If", "[", RowBox[{ RowBox[{"isInQ", "[", "coor", "]"}], ",", "1", ",", "0"}], "]"}]}]}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "10000000"}], "}"}]}], "]"}]}], "Input", CellChangeTimes->{{3.6034763843015327`*^9, 3.603476490115048*^9}, 3.603476782319067*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"count", "/", "10000000."}]], "Input", CellChangeTimes->{{3.6034764428309393`*^9, 3.603476461099885*^9}, { 3.603476510724865*^9, 3.603476519095252*^9}, {3.603476688187043*^9, 3.603476699876112*^9}, 3.603476784062065*^9, 3.6034774257679996`*^9}], Cell[BoxData["0.6667565999999999`"], "Output", CellChangeTimes->{{3.603476444774867*^9, 3.603476519515517*^9}, { 3.6034766912143393`*^9, 3.603476701261087*^9}, {3.6034767773704863`*^9, 3.603476784437347*^9}, 3.603476829743384*^9, {3.603477421151417*^9, 3.603477426445013*^9}, 3.603478719984489*^9, 3.603479681017988*^9}] }, Open ]], Cell["Random Walks", "Text", CellChangeTimes->{{3.60348058857473*^9, 3.603480592882922*^9}}], Cell[BoxData[""], "Input", CellChangeTimes->{{3.603658749419216*^9, 3.603658796045457*^9}, { 3.603664389655871*^9, 3.603664418625353*^9}, 3.656233773099387*^9}], Cell[BoxData[{ RowBox[{ RowBox[{"direction", ":=", RowBox[{"RandomInteger", "[", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Step", "[", "posn_", "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"dir", ",", "new"}], "}"}], ",", RowBox[{ RowBox[{"dir", "=", "direction"}], ";", RowBox[{"If", "[", RowBox[{ RowBox[{"dir", "==", "1"}], ",", RowBox[{"new", "=", RowBox[{"posn", "+", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}]}], ",", RowBox[{"If", "[", RowBox[{ RowBox[{"dir", "\[Equal]", "2"}], ",", RowBox[{"new", "=", RowBox[{"posn", "+", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}]}], ",", RowBox[{"If", "[", RowBox[{ RowBox[{"dir", "\[Equal]", "3"}], ",", RowBox[{"new", "=", RowBox[{"posn", "+", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}]}]}], ",", RowBox[{"If", "[", RowBox[{ RowBox[{"dir", "\[Equal]", "4"}], ",", RowBox[{"new", "=", RowBox[{"posn", "+", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}]}]}]}], "]"}]}], "]"}]}], "]"}]}], "]"}], ";", "new"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.603480600861731*^9, 3.6034808450846663`*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"direccion", "[", "1", "]"}], "=", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"direccion", "[", "2", "]"}], "=", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"direccion", "[", "3", "]"}], "=", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"direccion", "[", "4", "]"}], "=", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}]}], ";"}]}], "Input"], Cell[BoxData[{ RowBox[{ RowBox[{"direction", ":=", RowBox[{"RandomInteger", "[", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Step", "[", "posn_", "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"dir", ",", "new"}], "}"}], ",", RowBox[{ RowBox[{"dir", "=", "direction"}], ";", RowBox[{"new", "=", RowBox[{"posn", "+", RowBox[{"direccion", "[", "dir", "]"}]}]}], ";", "new"}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.6036644440376177`*^9, 3.60366445714745*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"randomWalk", ":=", RowBox[{"NestList", "[", RowBox[{"Step", ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", "1000"}], "]"}]}], ";"}]], "Input",\ CellChangeTimes->{{3.6034808493980494`*^9, 3.6034808888682127`*^9}, { 3.603480941665831*^9, 3.603480984428376*^9}, 3.603481144115097*^9, 3.6034812826183023`*^9, 3.603665602167494*^9, {3.603665747802544*^9, 3.603665748252099*^9}, {3.603665849420023*^9, 3.6036658605974493`*^9}}], Cell[CellGroupData[{ Cell[BoxData["randomWalk"], "Input", CellChangeTimes->{{3.603665760191921*^9, 3.603665765374778*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "2"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{ 3.6036657661545753`*^9, {3.603665844019865*^9, 3.6036658510060863`*^9}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLinePlot", "[", "randomWalk", "]"}]], "Input", CellChangeTimes->{{3.603480898766201*^9, 3.603480904550786*^9}, { 3.6034809537599983`*^9, 3.603480956291003*^9}, {3.603481002484757*^9, 3.603481003710877*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJy1mr2OpEYURtE6ISQgICDAJVRCCLWge3ZS+xn8CJYc+xE9r+NsH8Gydi7S Hu23X9XQO0nrzKl7q6g/qht+/fPvP/761DTNv780zf+f3//78hv+8fv3+cs/ Xz9bwc3b148OTC/jG8S///XgQXDkG8GT4GhPAtMHt+AO3CNf8Cx4QHnyCJ5Q 3yT8LDgJn008/QJeBUd9G5h+ETyjfPBW6YMzygcv4Cx4Qfng1fjgFfnIKp5e tW8GJ7AaPzf+nD/Mz/Hj+HJ82P+u/0r7N/Kxf+ZKH7yAV/AGvr1zErwJXxs/ gVX+FeXXQj8aHxz9k8Cl/UefwZzPwW5/oHfrw+2Pyke+BHY+OIOjP9i/E8or z/GJ+TCC3fyhrx3/2vnh4t385fxS++sGjvW1CN6EL43fwQf4Dn6AX955FfwZ 5YOz4FfhZ3AyPvgFHO1Pgu/gw/iIZ/5ZlA+ejGf+CVxbfwa79tEHH+C90Cfw BB6Nf3Z88A3lyWr/4f3VrV/neX9V9+/a/aPUl54f1P6WUF7tz+r8oK5fza8E ngRzvcX6GMGD4BeUfxG+F/wA38EHeDf+anz4DtyCG+ODY7w6wRvKb8L3glfw As6VPs43g+AMjnyj4AyOfBOYXsWr88VVf/X87OJrz2+1+6c7/zCe+V39V78f qfsH70fhR8G8n9HzvMz+L50fbv46z/Xj4mvXlzufB6v7j5tf7vyszsel3s3f VXDk28D0rD8LZntK4935Td2fr37/KO2f4AN8Bz+E38A3wQ9w3N938GF88OdC fxPllWf7NsG8nuAdfAjm9Za2r9a7/r0br9of43sH07t41z+u/a7/gl+FZ/9t YH7/5vdzzg/nmZ++dP4x/lV41361vp3n/sD9Q+2/wbEf3QTvF/0GXsGL8RG/ gel38AG+C476HoJd/O2D3uVn+4NX4WuvX+W/Cc/8O8oH78K7+cHxDV6FX0V5 5YNXMJ93ZOTLhd49H+Pv4+75CX1p/er5jXr+U/v7Pdurfn/n84UE5u/rtd8/ gxOYz2tH4yM+gelHwdNFX3p9jK/1SbB6/kjv4oP5/Fw9X+f4OO+ev7vxHwUP H/SD4CjfC+7B8T5DB26NZ3xwvC8xgOlVPNsX7ef1sX8m49l/V8ffxc/GB6v5 w/U7gHtwJ3hEeTV/1PxT9dfOP3pXf+36C+b+4J6/0qv9y41P7fwKVvP3Z/tn 728JzPlf+/6Ti3frq/b+Wzu/au9vteeDq+vPrS8Vr/Jz/+D+ovafJHwryqv9 rbZ+5m+MD1b5Xf303P86wVGe9bv+qe1fXn9wxMf7oGQXP6I8WcXTq/pn4dn+ 4Bmc37kVvBg/G6/iO8ELOL4PtoLj+2MjOMpH/5DP8s237Hz83YSP92rJKziu N/4W4YPzxfgV5ck/q/3N27fcvtX54BV8jgfYtT/KM5/Kr3xp+zvBWfjSeNf+ Z9XP66sd39r8avwzypPP/QjcCU4on4Q/32t//+zB9K1glZ/etb8XnMGL8AN4 FLyA1w/6Aazatwrv5q+bH2r/nI1X++ezPee/a3/8keX6vOrffuxr91fuXxxf Nz/c/sf6eX8Ijvt3C+7APXgQvKM8mfmiPYPg0vz0Kv583wncGe/ir/ra+oO5 35DP94PACTwLvoF38CF8Ak/gsdIHHyhPZr7zfR4w5we9qp9e9W+td/Pfrb/S 9h/geD47CD7Aan2p9c31egjP/Gx/7f7C/evZ64u+9P6ewef7XYITWJ2/gkfj mS8Jz/a581fp+Uzlv+pd/42CJ7D6v8ozic+rnuVUO2ZwBp/v94HV+TWjPPl8 H9DkZ7xqH9vPflH9VDt+zqv+px/wf7Jbd6Xr9vwdEeU74Rk/gJ0/f3cEt8b3 5pPlO+GD27f/AHiEo9c= "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->{{-10., 19.}, {-22., 0.}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{{3.603480905233841*^9, 3.603480910783341*^9}, { 3.603480957040945*^9, 3.603481007712531*^9}, 3.603481146700707*^9, { 3.603481286047394*^9, 3.6034812903214197`*^9}, {3.603664465545765*^9, 3.603664472998527*^9}, {3.60366560819311*^9, 3.6036656390298157`*^9}, 3.6036656756442327`*^9, 3.603665750152421*^9, 3.603665846005012*^9, 3.603665893838629*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"norm", "[", "x_", "]"}], ":=", RowBox[{"x", ".", "x"}]}], ";"}]], "Input", CellChangeTimes->{{3.6034810761301537`*^9, 3.603481117372707*^9}, { 3.603481178090827*^9, 3.6034811792717323`*^9}, {3.603481296016358*^9, 3.603481298840214*^9}, {3.6034813712925262`*^9, 3.6034813725409203`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Map", "[", RowBox[{"F", ",", RowBox[{"{", RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.60366449516857*^9, 3.603664501776301*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"F", "[", "a", "]"}], ",", RowBox[{"F", "[", "b", "]"}], ",", RowBox[{"F", "[", "c", "]"}]}], "}"}]], "Output", CellChangeTimes->{3.6036645021594763`*^9, 3.603665954279826*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"average", "=", RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{"Map", "[", RowBox[{"norm", ",", "randomWalk"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "1000"}], "}"}]}], "]"}], "/", "1000"}]}], ";"}]], "Input", CellChangeTimes->{{3.603665999145205*^9, 3.603666007886228*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{"average", ",", RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]], "Input", CellChangeTimes->{{3.603481092525796*^9, 3.60348113506946*^9}, { 3.603481311778105*^9, 3.603481410015967*^9}, {3.60348145365629*^9, 3.6034814885991907`*^9}, {3.603665977388441*^9, 3.603665982764673*^9}, { 3.603666017167843*^9, 3.603666018180258*^9}}], Cell[BoxData[ GraphicsBox[ {Hue[0.67, 0.6, 0.6], PointBox[CompressedData[" 1:eJxd23l8XGW9x/G5tUJAKRFBwuqwCIEKTIFCCi19CgVSKGW6UNLSZZp0SffJ PtnP7DNJZhpEJMgFpgUhIEgQrBGQOxTBIKIBWdILyLC2oMjIGnbnzPdz7n1p /5nXO2fO8my/5/c8Z3pM9dYFaya4XK63v+Fy2Z/6l5/p+vd/5t//XmJOe/n4 fYLXfo1LzQu3+Gfs/8K+fO9gc77vzdFjXzwQl5ngtRf0btrzXXykGT46+rf5 w4ditxmqr7363Y4j8LFm6epzX7k8dTQ+nuu58Qlm6ooH5nw7dCwuN7+/9Ozk LN/x+GTTdE3ZxMXpE/APza32491Sjk81f/5k4es/u+Fk7DEffvls4O0TTsFT zOT493b/6ZNT8enmqOIDefAZ5qb3bn/80pYp+Ewz6ZRf3vjeiafjqeYM/cNn mcHH7Qc8E5+t5805rjCFh/mde2gqnmYOCmf/sP2xs/A5Zq5dvDfPxueaE6eU 3HXkTyvwdDPTrpC+aXiG+UeH/Zdz8HnmvwtXr689F89UeddOx8YcNnFxoQgz ZMvo+4PncXwWzzOT47NMsTmuNxw/3xxaqK2Fx83i+Pnms64NDzVeg10XqD4+ cI5fYGYXesPnyfM5Ptsc9+KnXRu+wNZsyncBxy/U9b47m+MXmvefuay6tAq7 LjIL7A71nQs5fpGxT1+6GrsuNns+v+OfzzzlHL9Y7X/uRRyvNJ12dT2BrUpz jN0hN1/M8Tmm/eBfXPzqZ9iaYwqtffvjGys5fomps7tXHluXmJ9eX/jXOofj l6q+foOtS828wtNPO/MSjs9Ve9yGrbkaXx85xy8zW+0GOOZSjl9mXm0rPNAj 2DXP2K1349a5HJ9npt0/0vzwK9h1ubFH18ymyzh+ucr3FHZ5jd28F541TzZe UxzeNdjymsfs7nM1zno1Hk67nPPn6/xmbOabtfa/fbycP9+0vn3ClJJNODvf 3GZ39x3YtUDj/W5sFphidy9cV+cv0Hg/H2cXqD5bsWuhsZun7X5sFprM4XYN LuD8hebRj8qXbZuAswtVnvnYtcjsuHDnB182YrPIFDpv2cSfOOcvMk/9sfDv 7875ixRfzlvI+VeYBruCu7G5wtiP9+nD2LrC2OHh9rdw9gpTuNuzgWmLOH+x 2jeIzWLz9/mFDv1zbC1W//4nzi4237fD56QrOP9K9e/N2Fyp+hvF1pWmOLyP Wsz5V1Kf2FWl+LQdG/wqtqrMx4Xq2zX1Ss6vor9h1xLiBzZLuD+2lqi/vOec v8R8ZYfbWVWcv1TluxqbpWaRHRCz2Fqq9tuFs0vVf991zr9K8dO7hPOv0vj6 HbauUrz+BGc5fvBSzl+m+t6IzTJTfPwfYWuZ+vNbOLtM/WHuVZy/3JxUeLqP arFZrnh8F7aWG7u6J3xrGecvV30di10rzJPbCx1wBjYr1J9/jK0Vxj598h7n /BWKP5OXc/5K9Z/t2Kw0XxS6w2WvYWul+veZKzh/pep/O3b5zMAW+wLY7TOb 7Q71PjY+xZtjVso+n+JdP7Z8ut69OONT/HoTZ33GHi6TTvHJOT4r+HStUvxY jN2rjB0u7lqGzSqdvxn7Vqm/d2JrlamyA14aZ1aZI+wH2I6zqzRfjDj3X2Xu LFRP9Zhz/2pjN1/5S879q3W/A1Zx/2pjzybnnoZ91eoPK7BVrfmtAWeqdf0E zlYbu7r8d+NctfKl97CrxtjT30Ozq7l/zf/dR/evUX7Uh301Kk8GWzUmX+je Z+/GmRrNb9/lOtkaxbOLcK5G7bMcu1abcTsdasTu1aaYfnVjs1rjK+s812rF n7ewtdqU2g3gOLNa8eH7q7n/ao1ng3OrzV/s6XsJdq1RPF2B3WsUr6LYrFH+ 14t9axRfd2JrDfknzqxRfb3h3H+N6bbTkXHn/muUf5as4f5rzT52gnokdq9V /lOJzVrNz83Yt5bxia21iv/34Mxa80ihO+98HWfXan77EufWmpaHbz78tKPW cv91Kt9k7F5nJtgJ6EXYrDMX2RNGLfatU7y6D1vrNL8+hDPrjN2dl72Hs+uU P/5gHfdfZ75t32AWdtUSv7C71tjddUYIm1o9793YV6v+MIytWsXXX+NMrfrH 8zhbq/72nHP/WlNMrz937r9e8+MJtdx/va5fic165YvrsW+95qNrsbVe8eNx nFmv/v4Wzq5Xex28nvuvV35zBnZtMHbxXl6N3RvM04Xu1fUjbDaovp7APvwp tjaYH9gdaPIG7r9B7XcWzm5QPn4Jzm3QeuQq7Nqo/LkBuzfq/LXYbDSVdgC+ Dvs2Kn94Alsbdf8nnftv1P0+c+6/UePplI3cf6PGgw+7Nml+iGD3JsXzJDab 1D63Yd8m5VfPY2uT5rMJm7j/JrWfB2c3qT7PwblNzLfYtVnt2YTdmzV+f4zN Zj3/U9i32djd4Y7d2Nqs8r7j3H+z2vdbm7n/ZsWjmTjH/ZZj1xb6E3ZvUXnu xGaL8tVnsG+L5osPsbXFeFPXbTnoA5zh+Le3cP8tih9n4dwW9bdl2LVV8T+C 3Vs1Ph7FZiv5J/ZtVX/4Gltbdb2Dt3L/rRoP5+HsVq1H5uDcVuU39djl1/x1 Cy71U9/Y7Vc8eAd7/MZOn+6f6Of5/JqPj8Jev+rjUOzzq3/9EPv96j8LsOVX f6zC/X7l52twhvMjeIjj1+OsX+vDW/CoX/WfxTk/8z3O87y7sauO+sWldYqH eeyuU366Xx3lr1P+WIZNneaP47G3TuvXU7GvTvPpxdhfp+dfjq061ue4n+eJ 4Eyd4vnNeKhO+eWtOFtniuFtJx7l8yU+c3Xq/3twnud7H7vqVT8l9ZS/3hSX z4did72edxr21Gv9MA+beuVfK7C3XvlRPfbVa7wmsb9e/e0abNUr//0t7q9X PvBXnKk3dnh8/U08VK/4kMfZeuUD32ug/PUaH2fjXL3yoYU4j2uwq8HY3TVc i0sbNH5C2N2g/nIj9jRovA1j06D6eQJ7GxQ/XsO+Bq1/9mB/g+L3P7HVoHi/ TyPl5/sH4kyD6u8wPNSg+DAZZxtYn+FRymNwrsH8xN5+24jzDWrfduxq1PWv x6WNxt4umJrG7kbFix3Y06jyPYwL9ynmn09jb6PG/yvY16j9iPewv1H59AvY atR65nWn/I3GHi7XfeyUv1Hrn6+d8jcSb5oof6PKcwYebdT4n41zjRqv03G+ UfnB+djVpPljKS5tUr7Rit1N6p8p7OH7N2HTpPLfgb1Nyvd/hX3/YX+T4vFz 2GpS/v0G7m/SevdjnGlSfMjjoSblMxObKX+T6vNAPNqkfNGNc02KH6fhwnWK 4306djWTD+LSZo2/ebhwneL6bw72NGs+X4xNs/Y/12Fvs+qrCfua2d/F/mbV 79XYama/Evc3a7/qMZxpNnY6efSbeKhZ69P9Wyg/998XjzZrf2A/nGvWftEx ON+s+roYu1rUHxbj0hatH+uwu0X5bxR7WtS/7sKmRfnRw9jbovZ6CPtayB+w v0X7v29gq4X5Bve3qL4mBih/i7Gnx7KD8VCL5udpONui8XYuHuX6s3GuhXiI C/dRPMSugPbnV+LSgOq/E7sDigc/wZ6A+sMd2ATMJXYH+hP2BrQe/F/sC6g/ HNJK+QOaT3+ArYDi6XTcH9B+8CKcCWi/oRYPBTTe6nA2oP4YwqMB7dd24VxA +9dRnA+wfsMuPgf4LG1VfnMrdrcq3v0Be1q1n/N7bFo1v76Ava1qrzz2tbL+ c8rfqvXakW2Uv1X54am4v1XjcRrOtKq/Xo6HWhXPa3C2Vfs9G/Boq9aT3TjX qvVBGBeeq9hfbsCuNtX//bi0Td//M3a3qf5z2NOm9fbn2LSpPxzWTvnbFD9O xr42zY+zsL9N+ctsbHH9KtzPcceZNvWHZXioTfmRhbNt6s8/x6Nt5onmQomu w4XnLq4HbsD5NmNPL1v+gF3tqt/f49J2jd/fYXe72udh7GnXfPg4Nu2KD485 5W83zxWWT1OGnfK3K78ddcrfrnj8ilP+dsWHd5zyt6s/O860k+875W9XfYw7 5W/X/PGhU/525UP7d1D+dq3/D8H5duUbJ2BXh9bvM3Fph9q/Brs7NJ63YE+H 8o0UNh28r8PeDo2P+7CvQ/fbif0d6q9/xVaH1pu7cX+H8q+vcKZD+cCkTsrf ofF4Ms52qD/OxKMdat8FOMfxlTjfof2nNdjVqXgbwaWdiscJ7O5UfxjCnk7t t16LTSfvw7C3U+P3V9jXqXz3Qezv1HrGuZ7VqfdVd+H+TtXPTpzp1H7Bk075 OzVfveaUv1P9Le+Uv1Pjea9T/k6Nv0+d8neqvr90yt+l91/HdFH+Lu2/Guzu 0venYU+X5u8luPC9Yn23YW+X5qfN2NeleBjB/i71/zC2ulQfd+H+LsWne3Cm i/kGD3WpP/wSZ7sUT53zR3m+p3GuS+vrZ3G+S+PjLezq1v7kuFP+buUbJ3VT /m7tFxrs6db+1jxc+Hvx+eqwt1v3D2Jft/qThf3dyu9vwIW/F+vjHtzfrfnk 1zjD9R7BQ91qn1Gc7VZ9v4sLfy/m03twrlvjcz+L8nerviZhl6V8+jBcYim+ HItLLa0PpuIyi/wRuy3ls87xckvXPxV7LMUnD66wFG+mYGPpec/AlZbqfwb2 WsqfL8NVluLpAuyztD68Atdaij9LsN/SemkdDljKD1uxZWk/IoQTlsbfAO7n eW/Ghb8X63M7zlia727CgxbvD/EQz+98f9hSe/0MZy31p514xFJ+8wgetZSP Po3HLOVPr+CcpfXPi3ivpf21D5z2/g+PW1qvf+G0f1D9s/BZZElQ/e1rp/2D ii/O8bKg5rsDsDuo+jwMlwcVH0/CnqDy8+NwRVD54GRsguofP8SVQbX/VOwN Kj5X4Cp8DvYFFd8vxbVBxT8v9gcV367AgaD2a6qwFdR8W40TQbV3De4Pqn+t xwNBvX8J4ExQ8T2OB6mvNB4K6n3AzXg4qP3eO3A2qP1xxyNB7Z/+Ao8G1R8f wGNBxb8RnAsq392F9wbVH5/Heeorh8epn5ewK6R85h2n/UPKlz7CpSG17zdD cllI15+E3SGNh6NweUj5zNHYE1J7T8EVIc0H52ATUvyYhStDGg+zsTfEeg1X hdi/xb6Q6mMDrg2pPdZjP8+3GQdCWg9sxVZI+X4jTlDe63E/978ZD4QUT+7B mZDa5xd4MMTvEfAQ5bsXD4eUvz+IsyH1h0fxSEjt9QweDWk87MZjIcWTF3Eu ZOztlZv/gfdy/ms4H9L6+is8zvX+Kyy7wuo/E3BJWPuDE3FpWOvDfXFZWONt P+wOK/8+EJeHla8egT1hle8MXBHWeK/AJqz+Ph1XhjUfO8e9Yc0ns3FVWPuP l2BfWPPTElwb5v0G9ocVf7biQFj7YxFshbUfF8WJsPK5G3B/WP3nRjwQ1vo6 gzNc71Y8GFZ/uBMPUb+/xMNhxd9hnA0rvv8Gj4SVHzyCR8Mab4/jsbDyy904 FyYfxHvDijd7cD6s+fUTPB5mPzsiuyLsH+GSiPLdg3BpRPsbx+KyiK53EnZH dP/TcXlE8dWDPXz/DFwR0XxjcOGzmP85roxov+Ec7I2Qf+GqiNpnDvZF1P4z cG1E67XZ2B8h/uNARP1zIbYiin9LcSKieOx8v5/yLcADEc3P83Emov64Ag9G 9PuBGjwU0XhvwMMR7c914GxE/SWGRyIaf314lOfdhsciav/bcS6ifPlRvBc/ gvM83y48HtH+4uNO+0e1P/pHp/2j2l8bc9o/yvsDp/2jmv/yTvtHVd8fO+0f 1X7tgVHZE9XzHoArolqPfgObqH5vdAiujOp9xpHYG1W+5Byvimq+dmNfVPVz Gq6NKn89B/ujygcvx4Go4sk8bEX1e0/neCKqfNA53h9VvHeOD1CeC3Emqv2L SjzI51w+h6IaXzV4mOs14Sz10YlHolpP9eBR6udGPBZVPL8T56LKT57Ae6Nq 3z/iPM/7HB6P6v3M+9gVk7/CJTHFt4kxuZTjk3BZTNffH7tj6s/O98tjGm+H YE9Mvy86HVfE9D7xLGximm+n4sqY5vO52BtTfVTjqpj2B5ZiX0z7XStxbUz5 6XLs5/7O+YGY5vsN2IppvvbjREz5yircH1O8bMIDMcXrbpyJaf6N4UHufyMe iile3I2HY9p/+C3OxvR+8D48EtN8sguPxtQfn8FjMe1/PYtzMc2/L+C9MY3P l3A+xvtOPB7T+BrDrrjmx7/gkrjWo0857R/X+xvn+mVxtd8bTvvHNT7fdto/ rv7zvtP+cc13XzntH1c+8YHT/nGN1w+d9o8rf/nYaf+41rsT43JVXPPhBOyL qz2+iWvjip/O/fxxtf8kjgfi2m8pw1Zcv985Aifiyo9PwP3c/0w8ENd+1myc iWu/7HI8yGcXn0Nx7Tek8XBc8fRanI1rPO3AI3HF3zvxaFzzx314LK759QGc o/6fwHvjys924zztuwePxzVe3sWuhOrjQ1ySUP5+UEIuTej7h+KyhObLMuxO KJ87E5cn2E/EnoTWQ7NxRUL5+8XYJNRfKnHhszjeq7A3oXzoKlz4e7G+m7Av wf4krk0onrZif0L7wWEcSGh89mKLzz4+EwnF56txf0L5yE14IKF8cTvOJDQ+ d+LBhNYvI3goofnxGTzM8edxNqF47rhwXnH8juHRhPbf3sRj3P9vOEd9fIL3 JtQ/vsD5hNZD+ybl8YT21ydgV1L7V4fgkqTKMwmXJtV+5bgsqXz9aOxOqn8c gQvfK8aPE7EnqfF5Ia5IKp4uwSap8b4aVya1vnGOe5PKX6pxVVLjybGP59uE a5P6/XEz9ie1/5fAgaT6q4ULn8X8tBsXvlfMF4K4P6n+GMIDSeULN+BMUv3t DjyYVHy7Dw8lNT8/hoeTyo9ewNmk5tfn8UhS+71v4tGk5u938VhS+99/xbmk 8vUP8d6k1ltf4jzl+0aPPJ7UfPGp0/49/B7Paf8ejU/HpT26v3O9sh7V70Su 5+7RfHUkLu9Rfz4We3oY37iC683Apkf9eTkufK84ny7D3h6Nn2pc1aP3k+uw r0f12Y5re7T/5Njfo/iQxoEexdd+bPUov9+BEz3KL7K48L3i+81deIDzd+JM j/YznO8P9mi99Dwe6lE+8TIe7lF+9DdcOK+Y/3+GR3oUb1y98miP5otPOD5G eb/J8VyP+rMb7+3R+Dgc53sUj4/D4z0aL+fhwn2K/Xc+LulV/16IS3s1P9bg sl7Npxtw4b7F8q/G5b2KV+uxp5f3SbiC62/Ehk8/n5W9au8O7O1VfadxVa/q I459vVq//BjX9qr/Xv3/1y2Oh2twoFf98afY6lV8uQ0nejX/78D9vRo//4MH evl9Hs5w/QfxYK/ypfvwUK/Gy/14uFf1vwtne5X/vIRHeP5XnfanPt7HY73a Txh32r9X+UlJn7y3V/ndQThP/Z+IC+cVx98U7OrT/Stx4TrF/f25uLRP16/C ZX1aP63G7j6Nn2pc3qf1UCP29Km+WnBFn+anEDZ9mn+SuPAcxXzHsbdP7f8j XMXz7MC+PtXHA7i2T/Pdr7G/j/+fgAN9+r3gHdjq0/rjNzjRp3zKOb+/T+Pj t3igT/vpzvUyfer/w3iwj/d1eKiP9094mOfbjbN9imcv45E+rafewqN9Wu9+ jMeof8e5Ps1P+6fkvX2KL8fhPPU7A4/3qb86dqU0352LS1La73KOl6Y0fzsu Syk+VWB3Suun6bg8pfqbiT0p7e8swoXzivnoVdiktB+7Hlem9LxrsDfF7xtw VUrxwznuS2m/phXXppQ/pbE/pf5/Cw6k1J4/w1aK9RlOpBQv78X9KfXfB/FA Suvx53CG8ryOB1P6fdBreCil9nkLD6c0f+dxNqX56lM8klL7T0jLoyl+b87x MdprD86l2N9z2j+l+fgrp/25/ne43jj1cQB2pVW+Q3FJWuvjw3FpWv3lNFyW Vv42B7vT7J/h8rTWsxuxh89GPivSircxbNLqzwO4Mq331ddgL74RV6U1v+7A vrT2i+/HtWnFv4ewP633WffiQFrz5+3YovxP4kRa/ctxf1rxdxcuPGexv7yA M2nF8714kOd7Aw+ltf7Yg4fT2p/+B86m1V9c2+SRtOLd6Xg0rf49BY9RX9Nx Lk0+hQvPofGM82ntB5+Nx9Pqryfhwn2L+4WTcck2vR+4AJdu0/ibh8u2KZ9a ht3bVH4vLt+m/bh12LON/4+LK3A1NtuUv/pw5TblW5u2mX8BBu3yMw== "]]}, AspectRatio->1, Axes->True, AxesOrigin->{0, Automatic}, PlotRange->Automatic, PlotRangeClipping->True]], "Output", CellChangeTimes->{ 3.603481411004096*^9, {3.603481456086038*^9, 3.6034814780885563`*^9}, 3.603481633717719*^9, {3.6036659659547367`*^9, 3.6036660201020927`*^9}}] }, Open ]], Cell["Non reversal Random Walks", "Text", CellChangeTimes->{{3.60348058857473*^9, 3.603480592882922*^9}, { 3.6036648723382063`*^9, 3.603664874541851*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"direccion", "[", "1", "]"}], "=", RowBox[{"{", RowBox[{"1", ",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"direccion", "[", "2", "]"}], "=", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"direccion", "[", "3", "]"}], "=", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"direccion", "[", "4", "]"}], "=", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}]}], ";"}]}], "Input", CellChangeTimes->{{3.603658749419216*^9, 3.603658796045457*^9}, { 3.603664389655871*^9, 3.603664418625353*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"posibleDirections", "[", "1", "]"}], "=", RowBox[{"{", RowBox[{"1", ",", "2", ",", "4"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"posibleDirections", "[", "2", "]"}], "=", RowBox[{"{", RowBox[{"1", ",", "3", ",", "2"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"posibleDirections", "[", "3", "]"}], "=", RowBox[{"{", RowBox[{"3", ",", "2", ",", "4"}], "}"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{ RowBox[{"posibleDirections", "[", "4", "]"}], "=", RowBox[{"{", RowBox[{"4", ",", "3", ",", "1"}], "}"}]}], ";"}]}], "Input", CellChangeTimes->{{3.603665075367985*^9, 3.60366511764042*^9}, { 3.60366699492036*^9, 3.603667023247992*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{"direction", ":=", RowBox[{"RandomInteger", "[", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"Step", "[", RowBox[{"{", RowBox[{"posn_", ",", "olddir_"}], "}"}], "]"}], ":=", RowBox[{"Module", "[", RowBox[{ RowBox[{"{", RowBox[{"dir", ",", "new"}], "}"}], ",", RowBox[{ RowBox[{"dir", "=", RowBox[{ RowBox[{"posibleDirections", "[", "olddir", "]"}], "[", RowBox[{"[", "direction", "]"}], "]"}]}], ";", RowBox[{"new", "=", RowBox[{"posn", "+", RowBox[{"direccion", "[", "dir", "]"}]}]}], ";", RowBox[{"{", RowBox[{"new", ",", "dir"}], "}"}]}]}], "]"}]}]}], "Input", CellChangeTimes->{{3.6036644440376177`*^9, 3.60366445714745*^9}, { 3.603665227569076*^9, 3.603665421477314*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"randomWalk", ":=", RowBox[{"Map", "[", RowBox[{"First", ",", RowBox[{"NestList", "[", RowBox[{"Step", ",", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", "1"}], "}"}], ",", "1000"}], "]"}]}], "]"}]}], ";"}]], "Input", CellChangeTimes->{{3.6034808493980494`*^9, 3.6034808888682127`*^9}, { 3.603480941665831*^9, 3.603480984428376*^9}, 3.603481144115097*^9, 3.6034812826183023`*^9, {3.6036654515257483`*^9, 3.603665475342656*^9}, { 3.603665539335123*^9, 3.60366557119534*^9}, 3.603666473841473*^9, 3.6036670503048887`*^9}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{" ", "randomWalk"}]], "Input", CellChangeTimes->{{3.6036654629436417`*^9, 3.603665466578163*^9}, 3.6036655130420103`*^9}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", RowBox[{"-", "1"}]}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{"4", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"3", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{"2", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "6"}], ",", "15"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "6"}], ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "7"}], ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "7"}], ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "8"}], ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "9"}], ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "9"}], ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", "14"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", "13"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", "12"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "10"}], ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "9"}], ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "8"}], ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "7"}], ",", "11"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "7"}], ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "6"}], ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "10"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "9"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "8"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "6"}], ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "6"}], ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "6"}], ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "1"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "2"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "3"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "4"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "5"}], ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "4"}], ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "3"}], ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "5"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "6"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "2"}], ",", "7"}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "7"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{{3.603665467374601*^9, 3.603665476518338*^9}, { 3.603665548332801*^9, 3.6036655596362247`*^9}, 3.603666046401918*^9, 3.603666476203046*^9, 3.60366702659261*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListLinePlot", "[", "randomWalk", "]"}]], "Input", CellChangeTimes->{{3.603480898766201*^9, 3.603480904550786*^9}, { 3.6034809537599983`*^9, 3.603480956291003*^9}, {3.603481002484757*^9, 3.603481003710877*^9}}], Cell[BoxData[ GraphicsBox[{{}, {}, {Hue[0.67, 0.6, 0.6], LineBox[CompressedData[" 1:eJy92jtuI0cUheGCnXTYQQcMGNAEQQgEQbCbT0kjiRprxrmXYMCxt8CdzWzH 2SzBMKBTBv+5B1WUBmYifKxbj65ns9W//PHX73/+lFL6++eU/v0bf749xf72 Bd/DrhzFuXLeWz//pq+Xboz1aY1VbwMn43S6dHO6zE+3iJfVzpyeYneIp135 rN+1L8Hsj/wxdv2TxwlW/ew/179ufK5tX3F+uvxu/iVTjr5381vfn2LX5nf5 aPUv+5/jc23/c/1wfXF87Pos/C2tazcPSuvWzUs3T0vrrINHxi3cwSOUJ7fG HeJpxbP8sfEYniC/3MGtscprjEdwB6u/WmO3z3bwyFjjndMT8sPch0vzw+3b 1+bnudAY5/UId/DIWOsiz1+4hbvCX8bneWGc55Wxypkau/wsP89/U35t/hbx 8hSewXPjDlZ7ZvDUOK9b4xG+p0v9/9bxmxrX9j/rl/O+AnP+dsaa7y3cGOfz UOkJ6YX7HN6H5XPT2N231ebvYO637nzh+ZHnPeJr9/fa8nl+8byUx8bKPzGu ze/O51L+2vOf13ft+Xbt+fLe+xP2z3vvH/K+hfbRpfsLxTfGM3iO/PQN6qcX aD+9RDy9gtfIL4+NV4inFc/y5R7x9IB4WvEt3BgP8Abeojy5g0fGO3gPH+Aj fPvqMTwxvnv1FJ4Z38MfkJ9+QH204sfwyPgBfoSfUB7NeJrlu/bJ94iXO+O3 Xl8Ht8YPiKdL9Zfar/nQGmt+NcaKT8aK132JrE9O/xL7CB9grSedIzTj6SPi 6dr26ZPb+xT7gHh6D+/gLbyBB1j7ndpLa//V9coN3Br3iJeTsfKzfte+Ac7X +zX2ANfWrw/dw7k9T7F7eA3rPNSHZjyd23O6NM83nn88H3l+8nx15y/vB9R+ nv8TY3f/4MqvPf9bmOd7MuZ4cbyr10+K/db1x/nL9cX1Kau/W+Ml4uVkrPxq r5u/nN+cv+rv3F64NV4hni7l53rgfNH+0RnXzq/S/WMy3iGe3iOePiCePsL5 /IV5PsvufOf5L9/Duh9p4ffeP/H+z90fnl49gaexz4in0zPywzl+Bs/hG3gR OyGeLuZ/voynbfv0fK9Qf+7vhbHGZ2ms8V3Ba7iHB3gDb+GdsdqzN9b1HOCj 8SPiaZZ3uvQZzuOldDh9RP1wjr+NnePvYp/l+9jV+ZX+K+qXj7HP8iF2Yrrq 28dOTFd/7OBt7IR4muWxvu/q/3gZT+fr28bO8Rt4iJ3z97FzvNKZH/XRbE8u n/Wzfa7+2vysn/2j/nPt5/WV2reOnVz/Kb/mxxA7MV37wSZ2orW/bOGd8SPi acWz/MH4dOkznK+vh9exc/5V7FzfMvaZ6c9Ilxex8/gt4RVcO/5ufq9j//D5 5fKzfNa/im3bX9pfSuuX65Pr161v1Vfaf1z7mP6CdHkNr2Inpqv8ZezcnkXs M9NfkA6nT6++iX1m+mfkhxmfPY+d889i5/hp7MT0F6TLs9g5fh7b5mf5k9i5 vDE8grvY+fqUDuf+Ujqcfnt1GzvHN7Gr87v6P1/GZzdwgvX7Es7X/xpP2/z6 wDl/qfwmtr0+Nz4cP3kU+8z0z0hn+a5+tk/j9wnprn2cn5y/ah/TtR+NYzP+ u/xMr+2f0vpg/43hCTyNnZiu9kxic7+y+xf3p1kcn1z549hX7z9M1/iVxncS OzFd5/M4dmL6M9JlPn9xz2dqn+/w+cwM8bLub6fG15b/jHR5Dt/AvD/l/Svv b1exc3t4f837b96f93H8m/OXft9sY+fyNrGL+eWdsfv9xN8//P1V+v1T23+0 6lsZP8J6vsXnawtjPW+9Mb5HvLw0voP1PHllfIT1/HoN9/BgrOfjG3hrvEM8 Xcp/QDzN9qj8wXgP/1/lyxqPHl4bl8b3DvH0PeJpzie6lF/zeW2s+B4ejJV/ Y8zn0Vqfg7HbX7j/uOcz7vl3qf4eXhu75/PsX/Y/+5fj3xuX+v8O1nzrjWvL 3xizPtd+N79vYa4ft7/Je8TTO1j/X+zhwdjtf9wf5S3iabd/cv/h9fH62T+l 618Z7+EDzPOH4+XGr3R+LeGF8RG+he/g0vn7AX7r+T83foAfYe1XtffPyj+B 3f93+f/g2vfj3vv+W2d8hDW+Lez+P7+H8/texorX8w96B/N9MZrxtHv/wLX/ gPj8vt1TbNd+tk8fvh9XKp/v39W+33D1+xEpNt935PuMNN8vLJWv+az20KXr 4/sacmvM9zlq15/L7+pn+0rjI/N9l9r3X/4r/x+Fh7Lc "]]}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->True, AxesOrigin->{0, 0}, PlotRange->{{-4., 27.}, {-46., 7.}}, PlotRangeClipping->True, PlotRangePadding->{ Scaled[0.02], Scaled[0.02]}]], "Output", CellChangeTimes->{{3.603480905233841*^9, 3.603480910783341*^9}, { 3.603480957040945*^9, 3.603481007712531*^9}, 3.603481146700707*^9, { 3.603481286047394*^9, 3.6034812903214197`*^9}, {3.603664465545765*^9, 3.603664472998527*^9}, {3.603665564150989*^9, 3.6036655750727043`*^9}, 3.603666050706605*^9, 3.603666477630251*^9, {3.603667029774218*^9, 3.603667054155764*^9}}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{ RowBox[{"norm", "[", "x_", "]"}], ":=", RowBox[{"x", ".", "x"}]}], ";"}]], "Input", CellChangeTimes->{{3.6034810761301537`*^9, 3.603481117372707*^9}, { 3.603481178090827*^9, 3.6034811792717323`*^9}, {3.603481296016358*^9, 3.603481298840214*^9}, {3.6034813712925262`*^9, 3.6034813725409203`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Map", "[", RowBox[{"F", ",", RowBox[{"{", RowBox[{"a", ",", "b", ",", "c"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.60366449516857*^9, 3.603664501776301*^9}}], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"F", "[", "a", "]"}], ",", RowBox[{"F", "[", "b", "]"}], ",", RowBox[{"F", "[", "c", "]"}]}], "}"}]], "Output", CellChangeTimes->{3.6036645021594763`*^9, 3.603666053610859*^9, 3.60366703454524*^9}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ListPlot", "[", RowBox[{ RowBox[{ RowBox[{"Sum", "[", RowBox[{ RowBox[{"Map", "[", RowBox[{"norm", ",", "randomWalk"}], "]"}], ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "1000"}], "}"}]}], "]"}], "/", "1000"}], ",", RowBox[{"AspectRatio", "\[Rule]", "1"}]}], "]"}]], "Input", CellChangeTimes->{{3.603481092525796*^9, 3.60348113506946*^9}, { 3.603481311778105*^9, 3.603481410015967*^9}, {3.60348145365629*^9, 3.6034814885991907`*^9}, {3.603666073532016*^9, 3.603666078932129*^9}}], Cell[BoxData[ GraphicsBox[ {Hue[0.67, 0.6, 0.6], PointBox[CompressedData[" 1:eJxd23d8W+W9x/HDdoFydZmGMpQUqCnLjAQzAk+AJA4QIrJwBqBsxxmWt7yP JGvLAxrAjIKYMaPUQAEDKVelhBrKECWAU6BRobSmUGpmDDe0V/L3c/7o9T+8 3jk+OudZv9/veWQmraiet3pPy7I+3suyCv/Vz9hF1n/+mP/89yJzXPiTq4aO 3Yd/d5nK6//RdtGUg/Gh5tBHZv255dCjcLG59pnZB+558iR8tDlmyarzd849 AbtN1db6nxXvfRKebMa2vHj5OT84FR+v+x8qxSeak6OH73jtqTNxifnd5efE p+fOxj81F03J3/HKVHyKiU/3fpS9uwyfZr76frv/4/vPw6Xmo+zkd7/tuACf YV7fNf/D+267EJ9pvilZ1vt8g8FnmbtnPPnl95un47PNnhMvdDGeYt7yf3zi GaOX4Knmjn/mG7TrUnyOefjofAccNxOXmd7nvy5ZNncWPteU53vvkbXl+Dzd 3zQbn28Ga/M9vuwyfIH645zL8TQzqfALp16BLzSP/Tz/AQfMwReZn5xR9PDR R12Jjdk5t/vmTQfPlW1jpkx0uIfr083E8F6L7ekmueFv//vAG871i42ncPvK q7h+sWnON7/oFWxdYn5/V77Dps3j+iXmyL0XHXTq89i61OR7c7v/pPlcv9T8 Kz88Jz6KrRkmPzhVWw9dwPUZ5jcv5z8whK2Zpr0w4D9YyPWZZrwwfPXYmqX5 84lzfZbmR2oR18vN7S+4B2uLruZ6ueZLLbZmq793O9dnc38F1y8zt96S/zly Mdcv0/zYjq3LTb63Pv/DnCVcv9y8+kr+Zyu2rjD5yb/ooDlLuX6F5ufb2Jpj Ct31WPsyrs8xPy50yNHXcP1K4y1M4KexfaV55x7ftP1/ci3X52r+3ojtuebB /NusyDnXPWbo2PyC9l8nG4/Gax8vv+/R86fhjMfsX3hAFbauYjywucpMLP8n nfuvMoXbf/66c/9VWm/fOPfPM7sL3TN5OffP0/0zsT1P478ZZ+ZpvIaxNd8U Pv6f+63g/vlafwbb8zVfAzgz37zU+NydR/0SWwsUP8ac+xdovp+2kvsXmCvy l70NOLPAFKJX983YWmhmFoZ7BJuFpjD9Hz5wFfcvNBPhrwlnFppzfzXc+Nzr 2FpkKgr/cOxq7l9k9g3ceElyFbYXmUsLDXgaZxaZzwrLcc813H+1aShMoAux uVr9lcL21Xrf3+HM1Zof+63l/grzaT6ah9djU2FchRd6DtsVJn3U6e8f/1ec qVB8PreS+xcrPj2FzWJz0yX5Fz5kHfcv1vxcjDOLFR+2YmuJ+S7/uvWHVHH/ ErOi8AIebC8xbxTCcwvOLFG8ehBbS82C/HJ/Ycy5f6k5q/Bz/nruX2p+lH/9 fWtwZqn6/2ZsLVM8+gCbZaZmWn6Gl2zg/mUanw6cWab++QZb16h/Z23k/ms0 Xndh+xpzb7673/kSZ65RPDl+E/dfa96ck2/xbGyuNZ2FhBjDNh7BGdZtUTX3 X6f5PR2b6/Q+Tdi+zlyWn37Rm3DmOnNloYM/de73Kl4e7ZPdXnNxYcBmYeNV f67HXq/iWxu2vVofN+K01xTSQWgAZ7yqD7bhnFfx6y/YWq72FdXw/OWKjxdg s1zxZSn2Llf/1WN7udmWDweVcZxerv68HmeWKz9uwbnlyldPYWuF/Kbz/BXK z3vV8vwVWm8XY+8K1Qcrsb3CFMLPlghOr1A83YozKxSvcji3QvFwF7ZWaj4e UcfzVyrezsZmpfLjOuxdqfnehe2Vil99OL3S/DZfTvQ+gjMrTVGhQe/i3Eqt v73ref4qxc/jsHuV4t88bFZpPfqxd5XqiXuwvUr13gs4vcrcf1u+wd/gzCq1 393A81eZI3a8tmv+5dharXzkw+7Vmk+3YLNa8e1F7F1t8tH79Pffw/Zqvf+/ cXq11u+hjTx/tZ5vcG616oXF2Fqj/q3B7jWKb7dgs0bz6QHsXaP5ux3ba5Sv 9m3i+VwvxZk1ZmOhAKjFuTWqv+7G1lrNr2ewe63670/YrNV47Ovn+WtNoXs+ KsX2WuU7D06vNYXm+5bjzFrF3wDOrdV8ewpblbq+RzPPr1R/nItNpeqxGuyt NIXp505ju9JUHxzKvLwDpytVz+7VwvMr1f6Dca5S+WQqttaZgRcLExi716n+ XYrNOs13G3vXqZ66HtvrmP84vc7MKyzAu5znr1O98ozz/HVmTeHnRef5Verv D5znV2k+73aeX2UmtjsntPL8KlNo7l0LsV2l8QvidJXm1304U6V650mcq1J7 P8LWeuqFNp6/Xvujk7FZr/h1NfauVzxsxTa/34vT600h3B9+H86sVzzdjnPr TVNhAe3RzvM3KD4cgt0b1P4LsNmg/L4WezeoPr0b2xsUj7fj9AaN9xc4s0Hx +cgOnr9B+fZCbG1UfXoNdm80hfDwYRybjaa18ELPYO9GzZ+Xsb1R/f0GTm/U +76DMxu1Hnc7z99oCtNr1g87ef4mve952L1J638hNpv0+4uxd5Pi0SZs40dw epP6I4szm5Sfv8W5TRqfvWyeX6169DjsrlZ/nI5NteLLxdhbrfm8DNvV2o+0 4XS19qNdOFOtfN6Lc9VaL3c7z/ep/nsWu3z6/IzzPj7tz4dxqU/13fvO+/mU 37/FHp/mz/4B3tdnJsrlydjnU3yagm2f5scM3OfTfqACp32mP19OZDbhQZ/q sTac8SkepXDWp/G4Hed8ytdb8JhP6/khbNWYZYWA9SvsqlH82YbdNVpfb+LS Gu0Pv8GmRuu3OEj7a1T/nYW9NSZffQZunIt9Naq3FmG7RvVCJe6rMRPHIUGc 5vfvxYM1iidDOFNjCuH8zrdxtsZMHK/swrkajXdRiPbXKL4fg61areep2FVr 6goDOhe7a9X/S3BprTmhsEFZjU2t1k8j9tQq/96EvbWmEL52bcG+WtU/T2O7 VvH4NdxXq3z9F5yuVb7ahfOZfGJ9/C/O1Cr/fI2ztarfvsf5umsivh/eRftr tT86DVt15qTCBDgbu+oUH+djd53WXxUurVP87sSmTu29HXvqFK9/ib11qp+f xb46zde3sV2n/JbD+TpuYn6N4HSdxv89PFin+f8nnKlTPe/8frZO9dXfcK5O 9ca+Ydpfp/3lsdiq13neZOyq13w+DbvrdX5yFi6t1/xaiE294mUN9tSbwsdv iGJvvZ5/K/bVq78c2/Xaz92B++q1Xh/H6Xr1x3N4sF7nE2/hDO87irP1yo+f 4xzP/85pf73qh30itL9Bv/8j7GrQejge5+vWif3UWbi0QfH9Smwa1J9e7GnQ eq/D3gbVy004X+dO7Afj2G7QedtNuK9B+5FbcJr3uxMPNmj/dT/ONCj+Po2z +CWca9D8exePNWg9ObaoY0ed9jfq/o+d9jdq/f/daX+jzru+dNrfqPpzt9P+ Rq3f/aO0v1H1+vHY16j8dxG2G8n/uK9R8aEVpxu1P+jHg42Kr7/EmUbV/8/i bKPOE3bgXKPOQz/HY42qD46M0f4m1bczsKtJ9f5y7G5Sfm7F+bp+YvzasWlS vRvFnibNjzuwt0n1wxPY16T18g62mxSPRnFfk/LlNzjdpP604rS/Sfl9Ms40 qX6fgbNNGo81ONek/WkQjzWp/e3Y8is+92KXX/HrAez2a784hPP7jon6ehs2 fj3vBZzfh0zs33Zir1/5eM8E7fer/47Dtl/xdgru86ue9uC0X/V2DR70K19v xhm/6sUncJbPewnn/IpvL+Mx3vcDbDWr3vgTdjUrnlhJ2t+s8Tkalzbrfc7H plnrYTb2NCv+zcXeZsV3D/Y1q36txHaz6pF1uK9Z8aoK5/dZE/WrHw82K39H cYbPux9nm6lfcK5Z8/sNPNas9fQBtlrUvvewq0XnD5877W/R/t9K0f4Wraf/ xqZF9cXZ2NOi+mEa9rYofl2NfS1q3wac39dNrLd23Mf7BHG6ReunGQ/iEM60 6HwwgbMtip/34FyL6oNf47EW1U8vYqtV6/EN7GrVfmMEu1u1v/jaaX8r583d tL9V9feB2NNqvsh3r+tfTvtb1d4vnPa3qt75q9P+VsWrnU77W9Vff3ba36r2 fOK0v1Xt2YvnZVoVb5znZ1tVrx6Hc62qB36Mx1p1fjAVW22K745dbTo/Mtjd pvU0B5e2qT0rnPa36Xx7vdP+NuWPOuxtU36sx742rbfbsd2m+iuN+9p03vEr nG5TvHsQD7Zpv3qf0/42reeHnfa3qX5+xml/m+LXiNP+Nq3Xz532t2s/clgP 7W9XvXcUdrcrfk7Gpe3KB2dh0672XIY97arXlmFvu+bntdjH523Adrverx73 cb0Np9tN4fg60I4H21Xf9uJMu+bHbTjbrvPUx3CuXfHqUTzWrvHNYKtD8S7n tL9Dn/+50/4O9c8evbS/Q+fJxdh06Dz8p9jTofhyAfZ26PkzsK9D9dUCbOMq 3NeheHkDTneofVvwYIfyx69xhvfbhrMd2p+8hHMdqpdG8FiH1t/fsdWp/rL6 aH+n6ssfYnen4vlhuLRT8eAEbDrVX6diT6fisWNvp74fOgX7OlUPnoHtTtU/ 03Ffp+rtCpzu1P59NR7s1HnCBpzp1H7Aj7Odij9hnOtU/RzDY52qv/qwZSvf 34aLbM2HB53+sLUeHsPFtuqd/3H6x1Z/v4pLbOWft5z+shVPt+MyW/F+h9N/ tuq9d3C5rfXyhtOftuabc3+FrfOsnU7/2opfo7jSVv39ndPftsbngOtlv618 ewi2bZ1//AjHbMW7k3CfrfhSivtt9e9ZOG2rnpqGB2yt30vxoK167go8ZCt+ LcAZW/FyJR62Nf834ayt+dSBRxivBM7Zqq968KitfLAZj9k6H0jjcVvxawu2 Atrf/AIXBXT+49gVUH34KC4O6PzuKewOaD/4a1wSUH5+AZcGVM9lcVlA62c7 NgHlu524PKD98cfYE1D8+ARXBLR/+wp7A6r/vsWVAfXXbuwLaD7sc4PsDyj/ HYTtgOqpQ3AsoO9HD8N9AZ1PHYP7Axr/43A6oHh/PB4IqP9L8GBA+9tT8FBA 9dWpOEP7HA8750w4G9D4TcUjjMd5OBfQ3w9cgkcD+v5tJh4L6HxpHh6nf+Zj K6j5sBgXBdW/q7ErqPGowsVB5ata7A5qPxDAJUHVJylcGlR+vBWXcf0ebIKK 34/j8qD2w89jT1Dr8VVcEVR9+UfsDWp9v4srgzoP+Rj7glrf3zrjH9R/9/+Z /msHVQ8chmNBjfdPcF9Q8ec03M/9Z+I07T8DDwS1352KB4M67zB4KKjzstk4 E9R6X4SHgxrPNTgb1Hxcj0eCivcbcC6o/FSNR4OK9xvxWFD1bi0eD2p/1omt kNqbxEUhxYPrsSuk+XMTLg6pP+7E7pDOe+/FJSHlrwdwaUjnZb/AZZzLPYFN SO/zNC4PaX78FntCqmffwhUhjVcOe0PKT5/hypDq0X9hX0jxfr/Nsj+keHkQ tkOa3wfjWEjnI4fgvpDq1wNxP/cfgNMhxZ//wgP0x+F4MKR8dwweCilfnogz IdWrpXg4pPxZgrMh5ZfT8UhI8+sMnAspvlyAR0Ma/2l4LKT1fh4eD6l+vxRb XaqHynFRl+L/Iuzq0nxcj4u7NJ+qsbtL+zUfLulSPnOul3apvmnFZV3aL/qx 6eI8FZd3afy7sKdL8SiKK7oUv2PY26V824Mru1Rf9WNfl85HHnDGn/d9yhn/ LsWTbc74d2k/95Yz/l1aDzuc8e8yhe5bstMZ/y7Fnw+d8e/S+HzqjH+X5ucX zvh3Kd+MO+NPe/e5UR7u0vw6GGe5/yg80qV8Nhnn6J8T8GiX8u/peIxz4Kl4 vEvnCdOwFdb8uAwXhVWfVGBXWOcH63BxWOfp1dgdVv7z45Kw6r1mXBrWfG/A ZWHV487nmbCZ2B604fKw1lsP9oQ13+7AFWHthwawN6z2PIIrw6pPnsW+sPaX L2B/WOfLr2E7rPrjdRwLq17ZgfvCik8f4/6w5rN1k5wOqx4/Ag+EtV4m4cGw 6r8SPBTW92dTcCas+XYhHg5rfczEWcbnSjwS1npZhHNhredleDSsenodHgur 3qjG42GdnzZhK6LndeGiiOZ7Arsi2g+kcHFE+8cbsTuifJTGJRHF20dxaUT1 85O4LKJ8vxUbfv9VXB7R+76HPRHVG6O4IqLzki+xN6L8sAtXRtS+f2FfROP7 PfZHtF/9DtsR1a//xrGI6rd9b5b7IqpHDsT9tP8wnOb+SXggonhTggdp/9l4 KKL1ei7O8H7T8XBE8WEmzkYUbzx4JKL1uBTnOHffhEcj2m824LGI4ksSj0eU n3qwFVV9EsFFUcX/MHZFVZ9GcXFU+e567I5q/O7EJVGtl4dxaVTrcysui+o8 8Vls+LxtuDyq87XfY09U8egNXBHVfvh17I1qP/sSrowqvryCfXzem9gf1Xz6 O7aj+vvAXTgW1X7yO2f8ozof2Ltf7o8qvx2E01GNrwsPRLX+j8aDUdWfk/BQ VPXFSTgTVb1aiofp/2k4G1U+MXgkqvk1G+eiir9L8GhU8W4VHotqPtXhccaj BVsxxbNOXBRT/rGxK6Z8E8bFMdUXKeyOKR/cjkti2t/9ApfGtN6fxWUxzeet 2MRUH23D5TH+3gB7Yqo//4ArYoqfb2JvTOv1NVwZ0/x+Hftiaq9zvz+m/cR2 bMfU32/jWEz56n3cF9P4fuWMf0z7v2+d8Y+p/trtjH9M83+XM/4xvr92xv// 3Z+JaX3+2xl/2rP3LXI2pu/vjsEjMeW3M3EupvP4aXiU/puJxxi/OXic8ViE rbjedzEuims8VmBXXPHBi4vjytcbsDuuz9+IS+Ia3024NK7zomZcFle+TGIT 13nvDbg8rvEYwJ64zuO24Iq44uXD2BtXvfw4royrXnoW++Lq399hP+15Fdtx 1St/wDF+/3XcF9d8eAv3x3X+9A+cjmt9fY0H+Pzv8SD9sRsPxRXvfnCrnOH+ SXg4rvV4Ms7GlX/OwyNxnYdPx7m49p+z8Ghc+XgGHosrP07D43HN/4uxldD+ wvn9ooTypwe7EoqX1+LihD6vCru5fyMuSaieqMalCe0vfLgsoXqlDpsE51u4 PKH9YwR7Etofb8YVCcWXx7A3ofz7G1yZUHzchn0J1TOvYn9C/f9HbCe0H/gA xxLaP36M+xKq7/+J+xOqv6zb5HRC+XgfPJDQej8ADyZU3+2NhxI6z9kPZxKK 787nDScUv/bE2QT/vxUeSWj9noxzCeXnaXg0ofV1FR5LKF8txuM8byW2kprf 63BRUt8XrcaupOqtalyc1Hprxe6kPq8FlyQ1nhFcmuT8AJclVZ/2YZPk70Nw eVL7sbuxJ6nzrAdxRVL1zT3Ym1R8fABXJhUvnsS+pOLlc9if1Pnp77Gd1Hi+ g2NJjd+HuC+p+uEj3J/U/uMTZ/yTyg+fOuPP5+95uzyYVH5w4aGk6pMTcSap +TMFD/O8C3E2qfpkOh5Jar3PxLmk4sOVeDSpeDIfjyUVX1fgccavBlspzTc/ LkppvbZiV0rndzYuTml8gtid0vyO4JKUvp+P4tKU6rW7cFlK+eVxbFKK98/h 8pTOY17FnpTi6Su4IqV4+j72ptSff8SVKe3v/op9KZ2vOPanNN6fYDul9fUZ jqX0ffBXuC+l865PcX9K+WUMp1P8vQYeSCn+OB5Maf+02xn/lOLj3j+XMynN 1yPwcErx/VicTem8YzIeSSmfluEc7zsbj9K/8/BYSvXAIjye0nq6Alvd6k/H Rd3Kb/Oxq1vxYCku7lY95djdre/v1uASrq/Hpd36vm4jLutW/mnAplvxyXF5 t+JjI/Z0Kx9044pu1U8p7O3W/OjDld3q/83Yx/v/DPu7dV56A7a7NX/uxbFu 9f9DuI/3fwr387yXcLpb63cHHuhWfNiJB7s1fz7DQ906nxpzxp/+/s4Z/26t rz3ukLPdiqf74xH65zCc61Y9fgoe7dbfC52Dx7q1H7gAj+NzsdWj8XKuF/Vo f1uOXT2qBy7HxT1q7yLs7tH+rBqX9Gg/U49Le5RfmnBZj+JrNzY9ijf9uLxH 8XQAe3q0Pp/HFT2Kd7/F3h6t72Fcyfu/iX18j/0e9vdoPHZgu0f1q/P7MZ7n /H5fj+Lxt7i/R/Nn3zvldI++73bhgR7l32I82MP5Lx7q0XyfhJ3v4X+Kh+nP E3G2R/HhDDzSo/hqcK5H+W8WHmW85uCxHp1nXYHHeb+F2OpVfbQcF/Wq3qvB rl71TxQX96r+3ozdvYpn9+KSXtVPD+HSXp3PPozLejXeT2DTq/g4jMt7NT+2 32n+D7kbORI= "]]}, AspectRatio->1, Axes->True, AxesOrigin->{0, Automatic}, PlotRange->Automatic, PlotRangeClipping->True]], "Output", CellChangeTimes->{ 3.603481411004096*^9, {3.603481456086038*^9, 3.6034814780885563`*^9}, 3.603481633717719*^9, {3.603666067693935*^9, 3.6036660919141197`*^9}, 3.603666498705871*^9, 3.603667036616983*^9, 3.603667097686411*^9}] }, Open ]], Cell["Cambio de Variables", "Text", CellChangeTimes->{{3.603664031423908*^9, 3.6036640351578093`*^9}}], Cell[BoxData[ RowBox[{"Expdev", ":=", RowBox[{"-", RowBox[{"Log", "[", RowBox[{"RandomReal", "[", "]"}], "]"}]}]}]], "Input", CellChangeTimes->{{3.603663639490926*^9, 3.6036636606864977`*^9}}], Cell[CellGroupData[{ Cell[BoxData["Expdev"], "Input", CellChangeTimes->{{3.603663683190988*^9, 3.603663684566033*^9}}], Cell[BoxData["0.7667069851104122`"], "Output", CellChangeTimes->{3.6036636863480577`*^9}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"data", "=", RowBox[{"Table", "[", RowBox[{"Expdev", ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "1000"}], "}"}]}], "]"}]}], ";"}]], "Input",\ CellChangeTimes->{{3.603663667175972*^9, 3.603663726530081*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Histogram", "[", "data", "]"}]], "Input", CellChangeTimes->{{3.603663715746311*^9, 3.6036637213211*^9}}], Cell[BoxData[ GraphicsBox[ {RGBColor[0.798413061722744, 0.824719615472648, 0.968322270542458], EdgeForm[Opacity[0.7]], {}, {RGBColor[0.798413061722744, 0.824719615472648, 0.968322270542458], EdgeForm[Opacity[0.7]], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0., 0.}, {0.5, 397.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{19.5, 41.22448979591837}, {-94.65260151103676, 94.20450519183943}}], StatusArea[#, 397.]& , TagBoxNote->"397."], StyleBox["397.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[397., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.5, 0.}, {1., 229.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{40.22448979591837, 61.948979591836746`}, {-15.156395148106796`, 94.20450519183943}}], StatusArea[#, 229.]& , TagBoxNote->"229."], StyleBox["229.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[229., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1., 0.}, {1.5, 149.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{60.948979591836746`, 82.67346938775512}, { 22.6989412151932, 94.20450519183943}}], StatusArea[#, 149.]& , TagBoxNote->"149."], StyleBox["149.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[149., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.5, 0.}, {2., 88.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{81.67346938775512, 103.39795918367349`}, { 51.56363519220944, 94.20450519183943}}], StatusArea[#, 88.]& , TagBoxNote->"88."], StyleBox["88.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[88., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2., 0.}, {2.5, 55.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{102.39795918367349`, 124.12244897959187`}, { 67.17896144207069, 94.20450519183943}}], StatusArea[#, 55.]& , TagBoxNote->"55."], StyleBox["55.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[55., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2.5, 0.}, {3., 37.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{123.12244897959187`, 144.84693877551024`}, { 75.69641212381319, 94.20450519183943}}], StatusArea[#, 37.]& , TagBoxNote->"37."], StyleBox["37.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[37., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3., 0.}, {3.5, 13.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{143.84693877551024`, 165.5714285714286}, { 87.05301303280318, 94.20450519183943}}], StatusArea[#, 13.]& , TagBoxNote->"13."], StyleBox["13.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[13., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3.5, 0.}, {4., 12.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{164.5714285714286, 186.29591836734699`}, { 87.52620473734443, 94.20450519183943}}], StatusArea[#, 12.]& , TagBoxNote->"12."], StyleBox["12.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[12., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{4., 0.}, {4.5, 9.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{185.29591836734699`, 207.02040816326536`}, { 88.94577985096818, 94.20450519183943}}], StatusArea[#, 9.]& , TagBoxNote->"9."], StyleBox["9.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[9., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{4.5, 0.}, {5., 4.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{206.02040816326536`, 227.74489795918373`}, { 91.31173837367443, 94.20450519183943}}], StatusArea[#, 4.]& , TagBoxNote->"4."], StyleBox["4.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[4., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{5., 0.}, {5.5, 2.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{226.74489795918373`, 248.4693877551021}, { 92.25812178275693, 94.20450519183943}}], StatusArea[#, 2.]& , TagBoxNote->"2."], StyleBox["2.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[2., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{5.5, 0.}, {6., 2.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{247.4693877551021, 269.1938775510205}, { 92.25812178275693, 94.20450519183943}}], StatusArea[#, 2.]& , TagBoxNote->"2."], StyleBox["2.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[2., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{6., 0.}, {6.5, 1.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{268.1938775510205, 289.91836734693885`}, { 92.73131348729818, 94.20450519183943}}], StatusArea[#, 1.]& , TagBoxNote->"1."], StyleBox["1.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[1., { GrayLevel[0]}], "Tooltip"]& ], {}, {}, TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{7.5, 0.}, {8., 2.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{330.3673469387756, 352.09183673469397`}, { 92.25812178275693, 94.20450519183943}}], StatusArea[#, 2.]& , TagBoxNote->"2."], StyleBox["2.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[2., { GrayLevel[0]}], "Tooltip"]& ]}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesOrigin->{0., 0}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, PlotRange->{{0, 8}, {All, All}}, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.1]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.603663723168139*^9, 3.6036637282834673`*^9}}] }, Open ]], Cell["Generador Gausssiano", "Text", CellChangeTimes->{{3.603664051853376*^9, 3.60366405861488*^9}}], Cell[BoxData[{ RowBox[{ RowBox[{ RowBox[{"x1", "[", RowBox[{"y1_", ",", "y2_"}], "]"}], ":=", RowBox[{"Exp", "[", RowBox[{ RowBox[{ RowBox[{"-", "1"}], "/", "2"}], RowBox[{"(", RowBox[{ RowBox[{"y1", "^", "2"}], "+", RowBox[{"y2", "^", "2"}]}], ")"}]}], "]"}]}], ";"}], "\[IndentingNewLine]", RowBox[{ RowBox[{"x2", "[", RowBox[{"y1_", ",", "y2_"}], "]"}], ":=", RowBox[{ RowBox[{"1", "/", RowBox[{"(", RowBox[{"2", "\[Pi]"}], ")"}]}], RowBox[{"ArcTan", "[", RowBox[{"y2", "/", "y1"}], "]"}]}]}]}], "Input", CellChangeTimes->{{3.603664063040139*^9, 3.603664135445079*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Det", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"x1", "[", RowBox[{"y1", ",", "y2"}], "]"}], ",", "y1"}], "]"}], ",", RowBox[{"D", "[", RowBox[{ RowBox[{"x2", "[", RowBox[{"y1", ",", "y2"}], "]"}], ",", "y1"}], "]"}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"D", "[", RowBox[{ RowBox[{"x1", "[", RowBox[{"y1", ",", "y2"}], "]"}], ",", "y2"}], "]"}], ",", RowBox[{"D", "[", RowBox[{ RowBox[{"x2", "[", RowBox[{"y1", ",", "y2"}], "]"}], ",", "y2"}], "]"}]}], "}"}]}], "}"}], "]"}]], "Input", CellChangeTimes->{{3.6036641385231333`*^9, 3.60366420399335*^9}}], Cell[BoxData[ RowBox[{ RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox["y1", "2"]}], "-", SuperscriptBox["y2", "2"]}], ")"}]}]], RowBox[{"2", " ", "\[Pi]", " ", RowBox[{"(", RowBox[{"1", "+", FractionBox[ SuperscriptBox["y2", "2"], SuperscriptBox["y1", "2"]]}], ")"}]}]]}], "-", FractionBox[ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{ FractionBox["1", "2"], " ", RowBox[{"(", RowBox[{ RowBox[{"-", SuperscriptBox["y1", "2"]}], "-", SuperscriptBox["y2", "2"]}], ")"}]}]], " ", SuperscriptBox["y2", "2"]}], RowBox[{"2", " ", "\[Pi]", " ", SuperscriptBox["y1", "2"], " ", RowBox[{"(", RowBox[{"1", "+", FractionBox[ SuperscriptBox["y2", "2"], SuperscriptBox["y1", "2"]]}], ")"}]}]]}]], "Output", CellChangeTimes->{ 3.603664153401531*^9, {3.603664196500948*^9, 3.603664205138216*^9}}] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FullSimplify", "[", "%", "]"}]], "Input", CellChangeTimes->{{3.60366421499859*^9, 3.603664224254067*^9}}], Cell[BoxData[ RowBox[{"-", FractionBox[ SuperscriptBox["\[ExponentialE]", RowBox[{ RowBox[{"-", FractionBox[ SuperscriptBox["y1", "2"], "2"]}], "-", FractionBox[ SuperscriptBox["y2", "2"], "2"]}]], RowBox[{"2", " ", "\[Pi]"}]]}]], "Output", CellChangeTimes->{3.6036642259105463`*^9}] }, Open ]], Cell[BoxData[ RowBox[{"Gaussdev", ":=", RowBox[{ RowBox[{"Sqrt", "[", RowBox[{ RowBox[{"-", "2"}], RowBox[{"Log", "[", RowBox[{"RandomReal", "[", "]"}], "]"}]}], "]"}], RowBox[{"Cos", "[", RowBox[{"2", "\[Pi]", " ", RowBox[{"RandomReal", "[", "]"}]}], "]"}]}]}]], "Input", CellChangeTimes->{{3.6036642710956907`*^9, 3.603664320129106*^9}}], Cell[CellGroupData[{ Cell[BoxData["Gaussdev"], "Input", CellChangeTimes->{{3.6036643219843903`*^9, 3.603664324257454*^9}}], Cell[BoxData["0.6517746626944959`"], "Output", CellChangeTimes->{{3.6036643248736477`*^9, 3.603664328025337*^9}}] }, Open ]], Cell[BoxData[ RowBox[{ RowBox[{"data", "=", RowBox[{"Table", "[", RowBox[{"Gaussdev", ",", RowBox[{"{", RowBox[{"i", ",", "1", ",", "10000"}], "}"}]}], "]"}]}], ";"}]], "Input",\ CellChangeTimes->{{3.603663667175972*^9, 3.603663726530081*^9}, { 3.603664345545472*^9, 3.6036643574077597`*^9}}], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Histogram", "[", "data", "]"}]], "Input", CellChangeTimes->{{3.603663715746311*^9, 3.6036637213211*^9}}], Cell[BoxData[ GraphicsBox[ {RGBColor[0.798413061722744, 0.824719615472648, 0.968322270542458], EdgeForm[Opacity[0.7]], {}, {RGBColor[0.798413061722744, 0.824719615472648, 0.968322270542458], EdgeForm[Opacity[0.7]], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-3.8, 0.}, {-3.6, 1.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{19.5, 28.789795918367332`}, {92.96671138588638, 94.20450519183939}}], StatusArea[#, 1.]& , TagBoxNote->"1."], StyleBox["1.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[1., { GrayLevel[0]}], "Tooltip"]& ], {}, TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-3.4, 0.}, {-3.2, 7.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{36.07959183673469, 45.369387755102025`}, { 91.53994855016833, 94.20450519183939}}], StatusArea[#, 7.]& , TagBoxNote->"7."], StyleBox["7.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[7., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-3.2, 0.}, {-3., 11.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{44.369387755102025`, 53.659183673469386`}, { 90.5887733263563, 94.20450519183939}}], StatusArea[#, 11.]& , TagBoxNote->"11."], StyleBox["11.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[11., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-3., 0.}, {-2.8, 18.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{52.659183673469386`, 61.94897959183673}, { 88.92421668468525, 94.20450519183939}}], StatusArea[#, 18.]& , TagBoxNote->"18."], StyleBox["18.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[18., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2.8, 0.}, {-2.6, 25.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{60.94897959183673, 70.23877551020406}, { 87.2596600430142, 94.20450519183939}}], StatusArea[#, 25.]& , TagBoxNote->"25."], StyleBox["25.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[25., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2.6, 0.}, {-2.4, 29.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{69.23877551020406, 78.52857142857142}, { 86.30848481920216, 94.20450519183939}}], StatusArea[#, 29.]& , TagBoxNote->"29."], StyleBox["29.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[29., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2.4, 0.}, {-2.2, 54.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{77.52857142857142, 86.81836734693876}, { 80.36363967037697, 94.20450519183939}}], StatusArea[#, 54.]& , TagBoxNote->"54."], StyleBox["54.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[54., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2.2, 0.}, {-2., 85.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{85.81836734693876, 95.10816326530612}, { 72.99203168583372, 94.20450519183939}}], StatusArea[#, 85.]& , TagBoxNote->"85."], StyleBox["85.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[85., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-2., 0.}, {-1.8, 126.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{94.10816326530612, 103.39795918367346`}, { 63.2424856417604, 94.20450519183939}}], StatusArea[#, 126.]& , TagBoxNote->"126."], StyleBox["126.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[126., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1.8, 0.}, {-1.6, 167.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{102.39795918367346`, 111.68775510204081`}, { 53.492939597687084`, 94.20450519183939}}], StatusArea[#, 167.]& , TagBoxNote->"167."], StyleBox["167.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[167., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1.6, 0.}, {-1.4, 263.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{110.68775510204081`, 119.97755102040816`}, { 30.664734226198334`, 94.20450519183939}}], StatusArea[#, 263.]& , TagBoxNote->"263."], StyleBox["263.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[263., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1.4, 0.}, {-1.2, 351.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{118.97755102040816`, 128.26734693877552`}, { 9.738879302333643, 94.20450519183939}}], StatusArea[#, 351.]& , TagBoxNote->"351."], StyleBox["351.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[351., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1.2, 0.}, {-1., 429.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{127.26734693877552`, 136.55714285714285`}, {-8.809037562000967, 94.20450519183939}}], StatusArea[#, 429.]& , TagBoxNote->"429."], StyleBox["429.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[429., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-1., 0.}, {-0.8, 555.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{135.55714285714285`, 144.8469387755102}, {-38.771057112079944`, 94.20450519183939}}], StatusArea[#, 555.]& , TagBoxNote->"555."], StyleBox["555.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[555., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.8, 0.}, {-0.6, 624.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{143.8469387755102, 153.13673469387754`}, {-55.17882972283749, 94.20450519183939}}], StatusArea[#, 624.]& , TagBoxNote->"624."], StyleBox["624.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[624., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.6, 0.}, {-0.4, 684.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{152.13673469387754`, 161.4265306122449}, {-69.44645808001795, 94.20450519183939}}], StatusArea[#, 684.]& , TagBoxNote->"684."], StyleBox["684.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[684., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.4, 0.}, {-0.2, 766.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{160.4265306122449, 169.71632653061224`}, {-88.9455501681646, 94.20450519183939}}], StatusArea[#, 766.]& , TagBoxNote->"766."], StyleBox["766.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[766., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{-0.2, 0.}, {0., 780.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{168.71632653061224`, 178.0061224489796}, {-92.27466345150671, 94.20450519183939}}], StatusArea[#, 780.]& , TagBoxNote->"780."], StyleBox["780.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[780., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0., 0.}, {0.2, 790.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{177.0061224489796, 186.29591836734696`}, {-94.65260151103678, 94.20450519183939}}], StatusArea[#, 790.]& , TagBoxNote->"790."], StyleBox["790.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[790., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.2, 0.}, {0.4, 761.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{185.29591836734696`, 194.5857142857143}, {-87.75658113839955, 94.20450519183939}}], StatusArea[#, 761.]& , TagBoxNote->"761."], StyleBox["761.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[761., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.4, 0.}, {0.6, 729.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{193.5857142857143, 202.87551020408165`}, {-80.14717934790332, 94.20450519183939}}], StatusArea[#, 729.]& , TagBoxNote->"729."], StyleBox["729.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[729., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.6, 0.}, {0.8, 647.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{201.87551020408165`, 211.16530612244898`}, {-60.648087259756664`, 94.20450519183939}}], StatusArea[#, 647.]& , TagBoxNote->"647."], StyleBox["647.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[647., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{0.8, 0.}, {1., 533.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{210.16530612244898`, 219.45510204081634`}, {-33.539593381113775`, 94.20450519183939}}], StatusArea[#, 533.]& , TagBoxNote->"533."], StyleBox["533.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[533., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1., 0.}, {1.2, 442.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{218.45510204081634`, 227.74489795918367`}, {-11.900357039390059`, 94.20450519183939}}], StatusArea[#, 442.]& , TagBoxNote->"442."], StyleBox["442.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[442., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.2, 0.}, {1.4, 319.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{226.74489795918367`, 236.03469387755104`}, { 17.348281092829893`, 94.20450519183939}}], StatusArea[#, 319.]& , TagBoxNote->"319."], StyleBox["319.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[319., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.4, 0.}, {1.6, 242.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{235.03469387755104`, 244.3244897959184}, { 35.6584041512115, 94.20450519183939}}], StatusArea[#, 242.]& , TagBoxNote->"242."], StyleBox["242.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[242., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.6, 0.}, {1.8, 193.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{243.3244897959184, 252.61428571428573`}, { 47.31030064290888, 94.20450519183939}}], StatusArea[#, 193.]& , TagBoxNote->"193."], StyleBox["193.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[193., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{1.8, 0.}, {2., 132.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{251.61428571428573`, 260.90408163265306`}, { 61.81572280604236, 94.20450519183939}}], StatusArea[#, 132.]& , TagBoxNote->"132."], StyleBox["132.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[132., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2., 0.}, {2.2, 86.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{259.90408163265306`, 269.1938775510204}, { 72.75423787988072, 94.20450519183939}}], StatusArea[#, 86.]& , TagBoxNote->"86."], StyleBox["86.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[86., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2.2, 0.}, {2.4, 59.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{268.1938775510204, 277.4836734693878}, { 79.17467064061192, 94.20450519183939}}], StatusArea[#, 59.]& , TagBoxNote->"59."], StyleBox["59.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[59., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2.4, 0.}, {2.6, 42.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{276.4836734693878, 285.77346938775514`}, { 83.21716534181306, 94.20450519183939}}], StatusArea[#, 42.]& , TagBoxNote->"42."], StyleBox["42.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[42., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2.6, 0.}, {2.8, 29.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{284.77346938775514`, 294.06326530612245`}, { 86.30848481920216, 94.20450519183939}}], StatusArea[#, 29.]& , TagBoxNote->"29."], StyleBox["29.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[29., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{2.8, 0.}, {3., 10.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{293.06326530612245`, 302.3530612244898}, { 90.82656713230931, 94.20450519183939}}], StatusArea[#, 10.]& , TagBoxNote->"10."], StyleBox["10.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[10., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3., 0.}, {3.2, 6.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{301.3530612244898, 310.64285714285717`}, { 91.77774235612134, 94.20450519183939}}], StatusArea[#, 6.]& , TagBoxNote->"6."], StyleBox["6.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[6., { GrayLevel[0]}], "Tooltip"]& ], TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{3.2, 0.}, {3.4, 4.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{309.64285714285717`, 318.9326530612245}, { 92.25332996802736, 94.20450519183939}}], StatusArea[#, 4.]& , TagBoxNote->"4."], StyleBox["4.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[4., { GrayLevel[0]}], "Tooltip"]& ], {}, {}, {}, TagBox[ TooltipBox[ TagBox[ DynamicBox[{ FEPrivate`If[ CurrentValue["MouseOver"], EdgeForm[{ GrayLevel[0.5], AbsoluteThickness[1.5], Opacity[0.66]}], {}, {}], RectangleBox[{4., 0.}, {4.2, 1.}, "RoundingRadius" -> 0]}, ImageSizeCache->{{342.80204081632655`, 352.0918367346939}, { 92.96671138588638, 94.20450519183939}}], StatusArea[#, 1.]& , TagBoxNote->"1."], StyleBox["1.`", { GrayLevel[0]}, StripOnInput -> False]], Annotation[#, Style[1., { GrayLevel[0]}], "Tooltip"]& ]}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesOrigin->{-3.8, 0}, FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}}, GridLines->{None, None}, PlotRange->NCache[{{ Rational[-19, 5], Rational[21, 5]}, {All, All}}, {{-3.8, 4.2}, {All, All}}], PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.1]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{{3.603663723168139*^9, 3.6036637282834673`*^9}, { 3.6036643490706244`*^9, 3.603664365272087*^9}}] }, Open ]] }, WindowSize->{740, 867}, WindowMargins->{{162, Automatic}, {Automatic, 0}}, FrontEndVersion->"10.0 for Mac OS X x86 (32-bit, 64-bit Kernel) (June 27, \ 2014)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[557, 20, 104, 1, 30, "Text"], Cell[664, 23, 693, 21, 63, "Input"], Cell[CellGroupData[{ Cell[1382, 48, 197, 4, 28, "Input"], Cell[1582, 54, 166, 3, 32, "Output"] }, Open ]], Cell[1763, 60, 291, 8, 28, "Input"], Cell[CellGroupData[{ Cell[2079, 72, 134, 2, 28, "Input"], Cell[2216, 76, 1583, 32, 245, "Output"] }, Open ]], Cell[3814, 111, 187, 3, 28, "Input"], Cell[4004, 116, 287, 7, 28, "Input"], Cell[CellGroupData[{ Cell[4316, 127, 98, 1, 28, "Input"], Cell[4417, 130, 178, 4, 28, "Output"] }, Open ]], Cell[4610, 137, 112, 1, 30, "Text"], Cell[CellGroupData[{ Cell[4747, 142, 318, 8, 28, "Input"], Cell[5068, 152, 274650, 4508, 374, 204327, 3354, "CachedBoxData", "BoxData", \ "Output"] }, Open ]], Cell[279733, 4663, 230, 6, 28, "Input"], Cell[279966, 4671, 347, 10, 28, "Input"], Cell[280316, 4683, 368, 10, 28, "Input"], Cell[280687, 4695, 462, 14, 28, "Input"], Cell[281152, 4711, 482, 14, 46, "Input"], Cell[CellGroupData[{ Cell[281659, 4729, 275, 4, 28, "Input"], Cell[281937, 4735, 332, 4, 28, "Output"] }, Open ]], Cell[282284, 4742, 93, 1, 30, "Text"], Cell[282380, 4745, 164, 2, 28, "Input"], Cell[282547, 4749, 1564, 45, 114, "Input"], Cell[284114, 4796, 659, 22, 80, "Input"], Cell[284776, 4820, 613, 18, 80, "Input"], Cell[285392, 4840, 499, 11, 28, "Input"], Cell[CellGroupData[{ Cell[285916, 4855, 102, 1, 28, "Input"], Cell[286021, 4858, 797, 26, 46, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[286855, 4889, 240, 4, 28, "Input"], Cell[287098, 4895, 2633, 49, 239, "Output"] }, Open ]], Cell[289746, 4947, 343, 7, 28, "Input"], Cell[CellGroupData[{ Cell[290114, 4958, 203, 5, 28, "Input"], Cell[290320, 4965, 236, 6, 28, "Output"] }, Open ]], Cell[290571, 4974, 369, 11, 28, "Input"], Cell[CellGroupData[{ Cell[290965, 4989, 389, 7, 28, "Input"], Cell[291357, 4998, 8736, 148, 363, "Output"] }, Open ]], Cell[300108, 5149, 157, 2, 30, "Text"], Cell[300268, 5153, 774, 24, 80, "Input"], Cell[301045, 5179, 811, 25, 80, "Input"], Cell[301859, 5206, 882, 25, 97, "Input"], Cell[302744, 5233, 660, 16, 28, "Input"], Cell[CellGroupData[{ Cell[303429, 5253, 149, 3, 28, "Input"], Cell[303581, 5258, 7516, 268, 216, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[311134, 5531, 240, 4, 28, "Input"], Cell[311377, 5537, 3023, 55, 238, "Output"] }, Open ]], Cell[314415, 5595, 343, 7, 28, "Input"], Cell[CellGroupData[{ Cell[314783, 5606, 203, 5, 28, "Input"], Cell[314989, 5613, 260, 7, 28, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[315286, 5625, 565, 14, 28, "Input"], Cell[315854, 5641, 8882, 151, 363, "Output"] }, Open ]], Cell[324751, 5795, 103, 1, 30, "Text"], Cell[324857, 5798, 206, 5, 28, "Input"], Cell[CellGroupData[{ Cell[325088, 5807, 98, 1, 28, "Input"], Cell[325189, 5810, 90, 1, 28, "Output"] }, Open ]], Cell[325294, 5814, 267, 8, 28, "Input"], Cell[CellGroupData[{ Cell[325586, 5826, 129, 2, 28, "Input"], Cell[325718, 5830, 9721, 298, 242, "Output"] }, Open ]], Cell[335454, 6131, 101, 1, 30, "Text"], Cell[335558, 6134, 669, 23, 46, "Input"], Cell[CellGroupData[{ Cell[336252, 6161, 788, 25, 46, "Input"], Cell[337043, 6188, 1110, 37, 74, "Output"] }, Open ]], Cell[CellGroupData[{ Cell[338190, 6230, 130, 2, 28, "Input"], Cell[338323, 6234, 331, 11, 62, "Output"] }, Open ]], Cell[338669, 6248, 385, 11, 28, "Input"], Cell[CellGroupData[{ Cell[339079, 6263, 102, 1, 28, "Input"], Cell[339184, 6266, 114, 1, 28, "Output"] }, Open ]], Cell[339313, 6270, 321, 9, 28, "Input"], Cell[CellGroupData[{ Cell[339659, 6283, 129, 2, 28, "Input"], Cell[339791, 6287, 24244, 741, 242, "Output"] }, Open ]] } ] *) (* End of internal cache information *)