DECOHERENCE

AND THE TRANSITION
FROM QUANTUM TO CLASSICAL

The environment surrounding a quantum system can,

in effect, monitor some of the system’s observables.

As a result, the eigenstates of those observables
continuously decohere and can behave like classical states.

Wojciech H. Zurek

Quantum mechanics works exceedingly well in all practi-
cal applications. No example of conflict between its
predictions and experiment is known. Without quantum
physics we could not explain the behavior of solids, the
structure and function of DNA, the color of the stars, the
action of lasers or the properties of superfluids. Yet well
over half a century after its inception, the debate about the
relation of quantum mechanics to the familiar physical
world continues. How can a theory that can account with
precision for everything we can measure still be deemed
lacking?

What is wrong with quantum theory?

The only “failure” of quantum theory is its inability to
provide a natural framework that can accommodate our
prejudices about the workings of the universe. States of
quantum systems evolve according to the deterministic,
linear Schrodinger equation,

. d
S =H 1
i = H|f) (1)

That is, just as in classical mechanics, given the initial
state of the system and its Hamiltonian H, one can
compute the state at an arbitrary time. This deterministic
evolution of |¢/> has been verified in carefully controlled
experiments. Moreover, there is no indication of a border
between quantum and classical behavior at which equa-
tion 1 fails (see figure 1).

There is, however, a very poorly controlled experi-
ment with results so tangible and immediate that it has an
enormous power to convince: Our perceptions are often
difficult to reconcile with the predictions of equation 1.

Woijciech Zurek leads the theoretical astrophysics group at
Los Alamos National Laboratory, Los Alamos, New Mexico.
He is also an external professor at the Santa Fe Institute, Santa
Fe, New Mexico, where he directs the Complexity, Entropy
and the Physics of Information Network.

36  PHYSICS TODAY  OCTOBER 1991

Why? Given almost any initial condition the universe
described by |¢/> evolves into a state that simultaneously
contains many alternatives never seen to coexist in our
world. Moreover, while the ultimate evidence for the
choice of one such option resides in our elusive “conscious-
ness,” there is every indication that the choice occurs long
before consciousness ever gets involved. Thus at the root
of our unease with quantum mechanics is the clash
between the principle of superposition—the consequence
of the linearity of equation 1—and the everyday classical
reality in which this principle appears to be violated.

The problem of measurement has a long and fascinat-
ing history. The first widely accepted explanation of how
a single outcome emerges from the many possibilities was
the Copenhagen interpretation, proposed by Niels Bohr,'*
who insisted that a classical apparatus is necessary to
carry out measurements. Thus quantum theory was not
to be universal. The key feature of the Copenhagen
interpretation is the dividing line between quantum and
classical. Bohr emphasized that the border must be
mobile, so that even the “ultimate apparatus”—the
human nervous system—can be measured and analyzed as
a quantum object, provided that a suitable classical device
is available to carry out the task.

In the absence of a crisp criterion to distinguish
between quantum and classical, an identification of the
“classical” with the “macroscopic” has often been tenta-
tively accepted. The inadequacy of this approach has
become apparent as a result of relatively recent develop-
ments: A cryogenic version of the Weber bar—a gravity-
wave detector—must be treated as a quantum harmonic
oscillator even though it can weigh a ton.? Nonclassieal
squeezed states can describe oscillations of suitably
prepared electromagnetic fields with macroscopic
numbers of photons. (See the article by Malvin C. Teich
and Bahaa E. A. Saleh in pHYSICS TODAY, June 1990, page
26.) Superconducting Josephson junctions have quantum
states associated with currents involving macroscopic
numbers of electrons, and yet they can tunnel between the
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Delineating the border between the quantum

realm ruled by the Schrédinger equation and the classical realm

ruled by Newton’s laws is one of the unresolved problems of physics. Figure 1

minima of the effective potential.*

If macroscopic systems cannot always be safely placed
on the classical side of the boundary, might there be no
boundary at all? The many-worlds interpretation (or,
more accurately, the many-universes interpretation)
claims to do away with the boundary.® The many-worlds
interpretation was developed in the 1950s by Hugh
Everett III with the encouragement of John Archibald
Wheeler. In this interpretation all of the universe is
described by quantum theory. Superpositions evolve
forever according to the Schridinger equation. Each time
a suitable interaction takes place between any two
quantum systems, the wavefunction of the universe splits,
so that it develops ever more “branches.”

Everett’s work was initially almost unnoticed. It was
taken out of mothballs over a decade later by Bryce
DeWitt, who managed—in part, through his pHySICS
ToDAY article (September 1970, page 30)—to upgrade its
status from virtually unknown to very controversial.® The
many-worlds interpretation is a natural choice for quan-
tum cosmology, which describes the whole universe by
means of a state vector. There is nothing more macroscop-
ic than the universe. It can have no a priori classical
subsystems. There can be no observer “on the outside.” In
this context, classicality has to be an emergent property of
the selected observables or systems.

At a first glance, the two interpretations—many-
worlds and Copenhagen—have little in common. The
Copenhagen interpretation demands an a priori “classical
domain” with a border that enforces a classical “embargo”
by letting through just one potential outcome. The many-
worlds interpretation aims to abolish the need for the
border altogether: Every potential outcome is accommo-
dated by the ever proliferating branches of the wavefunc-
tion of the universe. The similarity of the difficulties faced

by these two viewpoints nevertheless becomes apparent
when we ask the obvious question “Why do I, the observer,
perceive only one of the outcomes?” Quantum theory,
with its freedom to rotate bases in Hilbert space, does not
even clearly define which states of the universe corre-
spond to branches. Yet our perception of a reality with
alternatives and not a coherent superposition of alterna-
tives demands an explanation of when, where and how it is
decided what the observer actually perceives. Considered
in this context, the many-worlds interpretation in its
original version does not abolish the border but pushes it
all the way to the boundary between the physical universe
and consciousness. Needless to say, this is a very
uncomfortable place to do physics.

In spite of the profound difficulties and the lack of a
breakthrough for some time, recent years have seen a
growing consensus that progress is being made in dealing
with the measurement problem. The key (and uncontro-
versial) fact has been known almost since the inception of
quantum theory, but its significance for the transition
from quantum to classical is being recognized only now:
Macroscopic quantum systems are never isolated from
their environments. Therefore, as H. Dieter Zeh empha-
sized,” they should not be expected to follow Schrédinger’s
equation, which is applicable only to a closed system. Asa
result systems usually regarded as classical suffer (or
benefit) from the natural loss of quantum coherence,
which “leaks out” into the environment.® The resulting
“decoherence” cannot be ignored when one addresses the
problem of the reduction of wavepackets: It imposes, in
effect, the required embargo on the potential outcomes by
allowing the observer to maintain records of alternatives
and to be aware of only one branch.

This article aims to explain the physics and thinking
behind this approach. The reader should be warned that I
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am not a disinterested witness to this development™? but
rather one of its proponents. Ishall, nevertheless, attempt
to paint a fairly honest picture and point out difficulties as
well as accomplishments.

Correlations and measurements

A convenient starting point for the discussion of the
measurement problem, and more generally of the emer-
gence of classical behavior from quantum dynamics, is the
analysis of quantum measurements due to John von
Neumann."" In contrast to Bohr, who assumed at the
outset that apparatus must be classical, von Neumann
analyzed the case of quantum apparatus. I shall repro-
duce his analysis for the simplest case: a measurement on
a two-state system & (which can be thought of as spin Y,)
with the result recorded by a quantum two-state (one bit)
detector.

The Hilbert space #7 of the system is spanned by the
orthonormal states |1 and |1}, while the states |d, ) and
|d,> span the space %7, of the detector 9. A two-
dimensional %9, is the absolute minimum needed to
record the possible outcomes. One can devise a quantum
detector (see figure 2) that begins in the |d, ) state and
“clicks,” |t |d, >—|1)> |d, >, when the spin is in the state
|1> but remains unperturbed otherwise.”"'?

I shall assume that before the interaction the system
was in a pure state |¢ > = a|1> + B| 1>, with the complex
coefficients satisfying |a|* + |5|*= 1. The composite sys-
tem starts as |®'5 = |, > |d,>. Interaction results in the
evolution of |®') into a correlated state |®° :

9> = (alt>+B|1)) |d, >
—a|r)y|d > +B|1>|d > =) (2)
This essential and uncontroversial first stage of the
measurement process can be accomplished with a Schré-
dinger equation with an appropriate interaction. It might
be tempting to halt the discussion of measurements with
equation 2. After all, the correlated state vector |®°)
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Reversible Stern-Gerlach apparatus (a)
splits a beam of atoms into two branches (b)
that are correlated with the component of the
spin of the atoms and then recombines the
branches before the atoms leave the device.
Eugene Wigner used this gedanken experiment
to show that a correlation between the spin
and the location of an atom can be reversibly
undone.’? The introduction of a one-bit—that
is, two-state—quantum detector that changes
its state when the atom passes nearby
prevents this: The detector inherits the
correlation between the spin and the
trajectory, so the reversible Stern-Gerlach
apparatus can no longer undo the correlation.
(Adapted from ref. 8.) Figure 2

implies that if the detector is seen in the state |d, >, the sys-
tem is guaranteed to be found in the state |1>. Why ask for
anything more?

The reason for dissatisfaction with |®° as a descrip-
tion of a completed measurement is simple and fundamen-
tal: In the real world, even when we do not know the out-
come, we do know what the alternatives are, and we can
safely act as if only one of them has already occurred. As
we shall see in the next section, this is not true for a system
described by |®°>. But how can an observer who has not
yet consulted the detector express his ignorance about the
outcome without giving up his certainty about the “menu”
of the possibilities? Quantum theory provides the right
formal tool for the occasion: A density matrix can be used
to describe the probability distribution for the alternative
outcomes.

Von Neumann was well aware of these difficulties.
Indeed, he postulated'' that in addition to the unitary
evolution given by equation 1 there is an ad hoc “process
1”—a nonunitary reduction of the state vector—that takes
a pure, correlated state |®° ) into an appropriate mixture.
This process makes the outcomes independent of one
another by taking the pure-state density matrix

p° =[PP
=|al® |1><t]| |d,><d, | +aB* |t) <] |d,><d, |
+aB 1] |d > <d |+ 1B [ | [d><d| @)
and canceling the off-diagonal terms, which express
quantum correlations, leaving a reduced density matrix
pr=la? (1) |d > <d, | + |BI* 1> <] |d ><d. | @)

Why is the reduced p” easier to interpret as a description
of a completed measurement than p°? After all, both p*
and p° contain identical diagonal elements, and both
outcomes are still present. What, if anything, was gained
at the substantial price of introducing the nonunitary
“process 1”7



The preferred basis: What was measured?

The key advantage of p™ over p° is that its coefficients may
be interpreted as classical probabilities. The density
matrix p” can be used to describe the alternative states of a
composite spin—detector system that has the classical
correlations: When the off-diagonal terms are absent one
can safely maintain that the apparatus and the system are
each separately in a definite but unknown state, and that
the correlation between them exists in the preferred basis
defined by the states appearing on the diagonal. By the
same token, two halves of a split coin are classically
correlated: Holding an unopened envelope containing one
of them we can be sure that its state is either heads or tails
(and not some superposition of the two), and that the
second envelope contains the other, matching alterna-
tive.!® (See the box on this page.)

By contrast, it is impossible to interpret p° as denoting
such “classical ignorance.” In particular, the detector has
not even decided on the set of alternatives! This can be il-
lustrated by choosing @ = — = 1/v2, so that

@ =([1>d,>—[4>]d,>)/V2 (5)

This state is invariant under rotations of the basis. For in-
stance, instead of using the eigenstates [1) and |1} of &,
one can rewrite [®°> in terms of the eigenstates of &,,
[@>=(1>+ [1»)/v2, and |&)> =(|t>— |1D)/v2. This imme-
diately yields

|99 = (|®> |deg > — |@) [de») /V2 (6)

where the states |dg)=(|d, >+ |d »)/v2 and |dy )=
(|d,>—|d, »)/v2 are perfectly “legal” states of the
quantum detector. Therefore, the density matrix
pt=|9°> (d°| could have many different states of the
subsystems on the diagonal.

This should not come as a surprise. Except for
notation the state vector |P°) is the same as the
wavefunction of a pair of correlated spin-¥, systems in
David Bohm’s version of the Einstein—Podolsky-Rosen
paradox.'* Related experiments'® show that nonseparable
quantum correlations violate Bell’s inequalities.'® The
key point is that before the measurement neither of the
two spins in a system described by |®°> has a definite
state—their states are not merely unknown. We conclude
that when a detector is quantum, a superposition of the

records exists and is a record of a superposition of

outcomes—a very nonclassical state of affairs.

Missing information and decoherence

Unitary evolution condemns every closed quantum system
to “purity.” Yet if the outcomes of a measurement are to
become independent, with consequences that can be
explored separately, a way must be found to dispose of the
excess information. This disposal can be caused by
interaction with the degrees of freedom external to the
system, which we shall summarily refer to as “the
environment.”

Reduction of the state from p® to p° decreases the
information available to the observer about the composite
system &7). Thus its entropy S = — Trp Inp increases as it
must, AS=S(p")—S(p°)= —(|a|®1n|a|*+ |B* n|B?.
The initial state described by p° was pure, and the reduced
state is mixed. Information gain—the objective of mea-
surement—is accomplished only when the observer inter-
acts and becomes correlated with the detector in the
already precollapsed state p”. This must be preceded by
an increase in entropy if the outcomes are to become
classical, so that they can be used as initial conditions to
predict the future.

Classical and Quantum Correlations

When a coin is split into two halves that are put into two
envelopes, which are then shuffled, numbered and sent
to two observers, the state of the system can be described
by a statistical operator—the density matrix,

Peain = "hllH1> <Hy| [Ty To| + |T13 T |Ha)> <Ha)

This correctly represents the certainty about the two
alternatives—that is, whether the heads (4) or tails (7)
half is in the selected envelope; the correlation between
the contents of the two envelopes; and the (classical)
ignorance about which of the two alternatives is actually
the case. A density matrix representing a pointer of an
apparatus correlated with a measured system ought to
have a similar form.

By contrast, in David Bohm's version of the Einstein—
Podolsky—Rosen experiment the two photons have corre-
lated polarizations, so that their state must be described
by |¥p> = (|A:> [Bap — [B1) |AzD) /N2, where polariza-
tions A and B correspond to the opposite poles of the
Stokes sphere. Given |3, we have all the information
quantum theory allows one to have about their combined
state. Such complete information comes at a price:
Neither of the two photons has a state “of its own.”
Hence even the alternatives are undefined. A quantum
apparatus correlated with a quantum system is described
by an analogous state vector and would suffer from an
analogous ambiguity about the alternative outcomes.
(Figure adapted from ref. 13.)
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As an illustration of the process of environment-
induced decoherence consider a system &, a detector 7) and
an environment &. The environment is also a quantum
system. Following the first step of the measurement
process—establishment of the correlation as shown in
equation 2—the environment similarly interacts and
becomes correlated with the apparatus:

[P (60> = (a|1> |d, >+ Bl1> |d, ) [6e>

—~a|ty|d,>[6,>+ B> |d>|65=[¥ @)

The final state of such a combined “von Neumann
chain” of correlated systems §7¢ extends the correlation
beyond the £ pair. When the states of the environment
|&; > corresponding to states |d, > and |d, > of the detector
are orthogonal, {&,|&;)>=6,;, the density matrix that
describes the detector-system combination obtained by
ignoring (tracing over) the uncontrolled (and unmeasured)
degrees of freedom is

Pan =Trg |W) (V| =Z,{6, (V> V|6, > =p" @)

The result p' is precisely the reduced density matrix of
equation 4 that von Neumann called for. Now, a
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WAVEFUNCTION y{(x)

POSITION x

Coherent superposition of two Gaussian
wavepackets. Such a wavefunction may
describe a particle inside a Stern-Gerlach
apparatus (figure 2) or may develop in the
course of a double-slit experiment. The phase
between the two components has been
chosen to be zero. Figure 3

superposition of the records—of the states of D—is no
longer a record of a superposition. Any coherent superpo-
sition of the states |d, > and |d, ) is continuously reduced to
a mixture. A preferred basis of the detector, sometimes
called a “pointer basis,” has been singled out. An effective
superselection rule has emerged—decoherence prevents
superpositions of the preferred basis states from persist-
ing. Moreover, we have obtained all this—or so it
appears—without having to appeal to anything beyond
the ordinary, unitary Schriodinger evolution.

The preferred basis of the detector—or for that
matter, of any open quantum system—is selected by the
dynamics. Not all aspects of this process are completely
clear, but the detector-environment interaction Hamilto-
nian certainly plays a decisive role. In particular, when
the interaction with the environment dominates, the
reduced density matrix ends up being diagonal in the
eigenspaces of an observable A that commutes with the
interaction Hamiltonian® [A, H,,,]=0. This commuta-
tion relation has a simple physical interpretation: It
guarantees that the pointer observable A will be a
constant of motion of the interaction Hamiltonian. Thus
when a system is in the eigenstate of A, interaction with
the environment will leave it unperturbed.

In the real world, the spreading of quantum correla-
tions is practically inevitable. For example, if in the
course of the experiment depicted in figure 2 a photon had
scattered from the spin-carrying atom while it was
traveling along one of its two alternative routes, this
would have resulted in a correlation with the environment
and would have necessarily led to decoherence. The
density matrix of the £ pair would have lost its off-
diagonal terms. Moreover, given that it is impossible to
catch up with the photon, such a loss of coherence would
have been irreversible. Irreversibility can also arise from
more familiar, statistical causes: Environments are noto-
rious for having large numbers of interacting degrees of
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freedom, making extraction of lost information as difficult
as reversing trajectories in a Boltzmann gas.

Decoherence: How long does it take?

A tractable model of the environment is afforded by a
collection of harmonic oscillators'”'? or, equivalently, by
a quantum field.*® If a particle is present, excitations of
the field will scatter off it. The resulting “ripples” will
constitute a record of its shape, orientation and so on, and
most importantly its instantaneous location and hence its
trajectory.

A boat traveling on a quiet lake or a stone falling into
water leaves such an imprint on the surface. Our eyesight
relies on the perturbation left in the preexisting state of
the electromagnetic field. It is hardly surprising that an
imprint is left whenever two quantum systems interact,
even when “nobody is looking,” and even when the lake is
stormy and full of waves, and the field is full of excitations.
“Messy” initial states of the environment make it difficult
to decipher the record, but do not interfere with its
existence.

A specific model—a particle with position x and a
scalar field ¢(g,t) propagating in direction g, interacting
through H;,, = exdg/dt—is one particularly attractive
implementation of the above ideas.'” ?° Computations
can be carried out furthest in the case where x and g differ
(that is, when the field propagates in a direction orthogo-
nal to x). Conclusions are especially easy to formulate in
the so-called high-temperature limit, in which only effects
of the thermal excitations of the field ¢ are taken into
account.

In this case the density matrix p(x,x’) of the particle in
the position representation evolves according to the
master equation

0 _ 3 g e f(é'&_é&
d¢ ﬁ[ Pl =i x)dr 6x')

— =B (x —xp (9)

where H is the particle’s Hamiltonian (although with the
potential Vix) adjusted because of H,,,, ), ¥ is the relaxation
rate, kg is the Boltzmann constant, and 7 is the
temperature of the field. Such master equations can be
derived in a number of different ways: Amir Caldeira and
Anthony Leggett'® used a modification of the path integral
formalism due to Richard Feynman and Frank Vernon'”
to obtain the high-temperature limit presented above,
while William Unruh and I have studied the coupled field-
harmonic oscillator equations of motion to arrive at a
version that also takes into account zero-point fluctu-
ations.*

I will not analyze equation 9 in detail; for our purposes
it suffices to note that it naturally separates into three
distinet terms, each of them responsible for a different
aspect of classical behavior. The first term, the von
Neumann equation, can be derived from the Schrodinger
equation. Classically, it generates Newton's equations of
motion for the averages of observables (Ehrenfest’s
theorem). The second term causes dissipation: the loss of
energy and a decrease of the average momentum. The
relaxation rate is y = 17/2m, where the viscosity 7 = €2/2 is
caused by the interaction. The last term is responsible for
the fluctuations or random kicks that lead to Brownian
motion.



For us, however, the effect of the last term on
quantum superpositions will be of much greater interest.
1 shall show that it destroys quantum coherence, eliminat-
ing -off-diagonal terms responsible for quantum correla-
tions between spatially separated pieces of the wave-
packet. It is therefore responsible for the classical
structure of phase space, as it converts superpositions into
mixtures of localized wavepackets that, in the classical
limit, turn into the familiar points in phase space. This ef-
fect is best illustrated by an example. Consider a coherent
superposition of two Gaussians y(x) ~ y"(x) + y (x) with
widths & and separated by a distance Ax, as shown in figure
3. For the case of wide separation (Ax> &) the correspond-
ing density matrix p(x,x') = y(x) y*(x') has four peaks: two

on and two off the diagonal (see figure 4). Quantum.

coherence is due to the off-diagonal peaks, for which x and
x' are very different. With their disappearance, position
emerges as an approximate preferred basis.

The effect of the last term of equation 9 on the
diagonal peaks is small: Near the diagonal x~x', so that
the last term, which is proportional to (x —x')% is
negligible. By contrast, for the off-diagonal peaks
(x — x')*~(Ax)?, the square of the separation. Therefore
the off-diagonal terms decay at the rate
' ~2ymbyT(Ax)?/#. It follows that the quantum
coherence will disappear exponentially on a decoherence
time scale*

# _.(AT )
g # A 10
DRk TAxE | \Ax L

where A, =#/y2mkygT is the thermal de Broglie wave-
length. For macroscopic objects, the decoherence time
scale r, predicted by equation 10 is typically orders of
magnitude smaller than the relaxation time m =y "
For instance, for a system at room temperature
(T'= 300 K) with mass m = 1 g and separation Ax = 1 cm,
the ratio 7, /7y = 10~ %! Thus, even if the relaxation time
was of the order of the age of the universe, r; ~10'7 sec,
quantum coherence would be destroyed in 7, ~10~* sec.
Such enormous ratios obtain only for macroscopic objects,
and can be inferred only when all of the assumptions made
in the derivation of equation 10 are valid. Nevertheless it
is now easy to understand why the decoherence between
macroscopically distinguishable positions can be nearly
instantaneous even for rather well-isolated systems. Of
course, equation 10 does not imply that everything will
become effectively classical: For a massive Weber bar,”
tiny Ax (~10"""em) and eryogenic temperatures
(T~10"%-1K) suppress decoherence. For an electron
m = 10"*" g, and hence 7, can be much more than 7y on
atomic and larger scales.

Classical limit of quantum dynamics

The Schrodinger equation was deduced from classical
mechanics in the Hamilton—Jacobi form. Thus it is no
surprise that it yields classical equations of motion when #
can be regarded as small. This fact, Ehrenfest’s theorem,
Bohr’s correspondence principle and the kinship of
quantum commutators with classical Poisson brackets are
all a part of the standard lore found in the textbooks.
However, establishing the quantum-classical correspon-
dence involves the states as well as the equations of
motion. Quantum mechanics is formulated in Hilbert
space, which can accommodate localized wavepackets with
sensible classical limits as well as the most bizarre

Density matrix (a) of a particle described by
the wavefunction y(x) of figure 3 in the
position representation, p(x,x') = y(x)y*(x).
The peaks near the diagonal (green)
correspond to the two possible locations of
the particle. The peaks away from the
diagonal (red) are due to quantum coherence.
Their existence and size demonstrate that the
particle is not in either of the two approximate
locations but rather is in a coherent
superposition of them. Environment-induced
decoherence causes decay of the off-diagonal
terms of plx,x’). b: Partially decohered p(x,x").
Further decoherence would result in a density
matrix with diagonal peaks only. It can then
be regarded as a classical probability
distribution with an equal probability of
finding the particle in either of the locations
corresponding to the Gaussian

wavepackets. Figure 4
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superpositions. By contrast, classical dynamics happens
in phase space.

To facilitate the study of this aspect of the problem, it
is convenient to employ the Wigner transform of a
wavefunction 1(x),

Wix,p) = ﬁ J‘:c elry/h :.b’(x + %) xb(x = %) dy (11)

which expresses quantum states as functions of position
and momentum.

The Wigner distribution Wix,p) is real, but it
can be negative. Hence it cannot be regarded as a
probability distribution. Nevertheless, when integrated
over either of the two wvariables, it yields the
probability distribution for the other (for example,
S Wix,p)dp = |#x)[%). For a minimum-uncertainty wave-
packet ¥(x)~exp{ — (x — x()*/28° + ipyx/#}, the Wigner
distribution is a Gaussian in x and p:

(x — x,)* P — Pu)zézy
5 7 (12)
A system described by this type of Wigner distribution is
localized in both x and p. Nothing else that Hilbert space
has to offer is closer to being a classical point in phase
space.

The Wigner distribution is easily generalized to the
case of a general density matrix:

1
Wix,p) = —ex
L i P

1 =
W ,):_f eiry/A ( L l)d 13)
(x,p vy I P - x+2 Y (

We will be using the evolving (initially pure but eventually
mixed) density matrix of the particle, discussed above.

The Wigner transform suggests a strategy for exhibit-
ing classical behavior: Whenever Wix,p) is a mixture of
localized wavepackets (as in equation 12), it can be
regarded as a classical probability distribution in the
phase space. However, when the underlying state is truly
quantum, its Wigner distribution function will have
alternating sign. This property alone will make it
impossible to regard the function as a probability distribu-
tion in phase space. For the superposition of the two
(Gaussians discussed above,

Wrsw- , 1 ( p8® xz) (Ax )
W 2 + ”ﬁexp 7z 5 cos 7 pl (14)
where W' and W~ are Wigner transforms of the
Gaussians y* and y . The resulting Wix,p) is shown in fig-
ure ba. A mixture of two Gaussian wavepackets would be
described by the same two Gaussians, but without the last,
oscillating term.

The equation of motion for Wix,p) can be obtained
from equation 9 for p(x,x'). For a harmonic oscillator
(V~x?) it does not depend on #:

dw ( pdW ava dpW) FW
W _(_pdW A VIW)  , W)
dt ol e

m dx
where V is the renormalized potential and
D =2mykyT = nkyT. The three terms of this equation
correspond to the three terms of equation 9.

The first term is easily identified as a classical Poisson
bracket {H,W]. Thus classical dynamics in its Liouville
form follows from quantum dynamics, at least for the
harmonic oscillator case (for more general V(x) the Poisson
bracket would have to be supplemented by quantum
corrections of order #). The second term is friction. The
last term results in the diffusion of Wix,p) in momentum at
arate D.

This last term has precisely the right effect on
nonclassical Wix,p) to produce the correct structure of the

(15)
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classical phase space by barring all but the probability
distributions of well-localized wavepackets. This can be
seen as follows: A superposition of two spatially separated
wavepackets results in a sinusoidal modulation of the
Wigner distribution in the momentum coordinate (see
figure 5a). The oscillating term cos(pAx/#) is an eigen-
function of the diffusion operator #/dp® in the last term of
equation 15. As a result, the modulation of Win p will be
washed out by diffusion at a rate r, ! = 2myky T(Ax)*/#.
Negative valleys of Wix,p) will fill in on a time scale of or-
der 7y, the same rate given by equation 10. In the
example described here Wi(x,p) will retain just two peaks
(see figure 5b), which now correspond to the two classical
alternatives. Superpositions of momenta will also deco-
here once the resulting difference in velocities has spread
out the wavefunction in x.

The ratio of the decoherence and relaxation time
scales depends on #2/m (see equation 10). Therefore when
m is large and # small, decoherence can be nearly
instantaneous (7, =0), while at the same time the motion
of compact wavepackets (points in classical phase space) in
the smooth potential becomes nearly reversible. I suggest
that this idealization is responsible for our confidence in
classical mechanics and, more generally, our belief in
classical reality. Consequently, the discussion above
demonstrates that decoherence and the transition from
quantum to classical (usually regarded as esoteric) is an
inevitable counterpart of the ubiquitous phenomenon of
friction.

Decoherence, histories, and the universe

The universe is, of course, a closed system. As far as
quantum phase information is concerned, it is practically
the only system that is effectively closed. Of course, an
observer inhabiting a quantum universe can monitor only
very few observables, and decoherence can arise when the
unobserved degrees of freedom are “traced over.”?! A
more fundamental issue, however, is that of the emer-
gence of the effective classicality as a feature of the
universe that is more or less independent of special
observers, or of coarse grainings such as a fixed separation
of the universe into observed and unobserved systems.

The quantum mechanics of the universe must allow
for possible large quantum fluctuations of space-time
geometry at certain epochs and scales. In particular, it
may include important effects of quantum gravity early in
the expansion of the universe. Nontrivial issues such as
the emergence of the usual notion of time in quantum
mechanics must then be addressed. Here we shall neglect
such considerations and simply treat the universe as a
closed system with a simple initial condition.

Significant progress in the study of decoherence in
this context has been reported by Murray Gell-Mann and
James B. Hartle,'” who are pursuing a program suitable
for quantum cosmology that may be called the many-
histories interpretation. The many-histories interpreta-
tion builds on the foundation of Everett’s many-worlds
interpretation, but with the addition of three crucial
ingredients: the notion of sets of alternative coarse-
grained histories of a quantum system, the decoherence of
the histories in a set, and their approximate determinism
near the effectively classical limit.

A set of coarse-grained alternatives for a quantum
system at a given time can be represented by a set of
mutually exclusive projection operators, each correspond-
ing to a different range of values for some properties of the
system at that time. (A completely fine-grained set of
alternatives would be a complete set of commuting
operators.) An exhaustive set of mutually exclusive
coarse-grained alternative histories can be obtained, each



one represented by a time-ordered sequence of such
projection operators.

The definition of consistent histories for a closed
quantum system was first proposed by Robert Griffiths.??
He demonstrated that when the sequences of projection
operators satisfy a certain condition (the vanishing of the
real part of every interference term between sequences),
the histories characterized by these sequences can be
assigned classical probabilities—in other words, the proba-
bilities of alternative histories can be added. Griffiths’s
idea was further extended by Roland Omnés,® who
developed the “logical interpretation” of quantum me-
chanics by demonstrating how the rules of ordinary logic
can be recovered when making statements about proper-
ties that satisfy the Griffiths criterion.

Recently Gell-Mann and Hartle pointed out that in
practice somewhat stronger conditions than Griffiths’s
tend to hold whenever histories decohere. The strongest
condition is connected with the idea of records and the
crucial fact that noncommuting projection operators in a
historical sequence can be registered through commuting
operators designating records. They defined a decoher-
ence functional in terms of which the Griffiths criterion
and the stronger versions of decoherence are easily stated.

Given the initial state of the universe (perhaps a

Wigner distributions. a: Distribution
corresponding to the pure state of figure 3.
Note the two separate positive peaks (green)
as well as the oscillating interference term in
between them. WAx,p) cannot be regarded as
a classical distribution in the phase space as
long as it has negative (red) contributions.

b: Decoherence results in diffusion of Wix,p)
in the direction of momentum. As a result,
the negative and positive ripples of the
interference term diffuse into each other and
cancel out. This process is almost
instantaneous for open, macroscopic systems.
In the appropriate limit both the classical
structure of the phase space and classical
dynamics emerge naturally. Figure 5

mixed state) and the time evolution dictated by the
quantum field theory of all the elementary particles and
their interactions, one can in principle predict probabili-
ties for any set of alternative decohering coarse-grained
histories of the universe. Gell-Mann and Hartle raise the
question of which sets exhibit the classicality of familiar
experience. Decoherence is a precondition for such
classicality; the réemaining criterion, approximate deter-
minism, is not yet defined with precision and generality.

Within the many-histories program, one is studying'®
the stringent requirements put on the coarseness of
histories by their classicality. Besides the familiar and
comparatively trivial indeterminacy imposed by the
uncertainty principle, there is the further coarse graining
required for decoherence of histories. Still further coarse-
ness—for example, that encountered in following hydrody-
namic variables averaged over macroscopic scales—can
supply the high inertia that resists the noise associated
with the mechanics of decoherence and so permits
decohering histories to exhibit approximate predictability.
Thus the effectively classical domain through which
quantum mechanics can be perceived necessarily involves
a much greater indeterminacy than is generally attribut-
ed to the quantum character of natural phenomena.

Quantum theory of classical reality

We have seen how classical reality emerges from the
substrate of quantum physics: Open quantum systems are
forced into states described by localized wavepackets.
These essentially classical states obey classical equations
of motion, although with damping and fluctuations of
possibly quantum origin. What else is there to explain?
The origin of the question about the interpretation of
quantum physics can be traced to the clash between
predictions of the Schriodinger equation and our percep-
tions. It is therefore useful to conclude this paper by
revisiting the source of the problem—our awareness of
definite outcomes. If the mental processes that produce
this awareness were essentially unphysical, there would
be no hope of addressing the ultimate question—why do
we perceive just one of the quantum alternatives?—within
the context of physics. Indeed, one might be tempted to
follow Eugene Wigner in giving consciousness the last
word in collapsing the state vector.** I shall assume the
opposite. That is, I shall examine the idea that the higher
mental processes all correspond to well-defined but, at
present, poorly understood information processing func-
tions that are carried out by physical systems, our brains.
Described in this manner, awareness becomes sus-
ceptible to physical analysis. In particular, the process of
decoherence is bound to affect the states of the brain:
Relevant observables of individual neurons, including
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chemical concentrations and electrical potentials, are
macroscopic. They obey classical, dissipative equations of
motion. Thus any quantum superposition of the states of
neurons will be destroyed far too quickly for us to become
conscious of quantum goings-on: Decoherence applies to
our own “state of mind.”

One might still ask why the preferred basis of neurons
becomes correlated with the classical observables in the
familiar universe. The selection of available interaction
Hamiltonians is limited and must constrain the choices of
the detectable observables. There is, however, another
process that must have played a decisive role: Our senses
did not evolve for the purpose of verifying quantum
mechanics. Rather, they developed through a process in
which survival of the fittest played a central role. And
when nothing can be gained from prediction, there is no
evolutionary reason for perception. Moreover, only classi-
cal states are robust in spite of decoherence and therefore
have predictable consequences. Hence one might argue
that we had to evolve to perceive classical reality.

There is little doubt that the process of decoherence
sketched in this paper is an important fragment central to
the understanding of the big picture—the transition from
quantum to classical: Decoherence destroys superposi-
tions. The environment induces, in effect, a superselec-
tion rule that prevents certain superpositions from being
observed. Only states that survive this process can
become classical.

There is even less doubt that the rough outline of this
big picture will be further extended. Much work needs to
be done both on technical issues (such as studying more re-
alistic models that could lead to experiments) and on
issues that require new conceptual input (such as defining
what constitutes a “system” or answering the question of
how an observer fits into the big picture).

Decoherence is of use within the framework of either
of the two major interpretations: It can supply a
definition of the branches in Everett’s many-worlds
interpretation, but it can also delineate the border that is
80 central to Bohr’s point of view. And if there is one les-
son to be learned from what we already know about such
matters, it is undoubtedly the key role played by informa-
tion and its transfer in the quantum universe.

The natural sciences were built on a tacit assumption:
Information about a physical system can be acquired
without influencing the system’s state. Until recently,
information was regarded as unphysical, a mere record of
the tangible, material universe, existing beyond and
essentially decoupled from the domain governed by the
laws of physics. This view is no longer tenable (see, for ex-
ample, Rolf Landauer’s article in pHYsics TopAy, May
1991, page 23). Quantum theory has helped to put an end
to such Laplacean dreams of a mechanical universe. The
dividing line between what is and what is known to be has
been blurred forever. Conscious observers have lost their
monopoly on acquiring and storing information. The
environment can also monitor a system, and the only
difference from a man-made apparatus is that the records
maintained by the environment are nearly impossible to
decipher. Nevertheless, such monitoring causes decoher-
ence, which allows the familiar approximation known as
classical objective reality—a perception of a selected
subset of all conceivable quantum states evolving in a
largely predictable manner—to emerge from the quantum
substrate.

* ok &
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