

Universidad de Chile

Facultad de Ciencias Físicas y Matemáticas

Departamento Ciencias de la Computación

Profesor José Miguel Piquer

UNIDAD 2
PROTOCOLO IP

CC4303 - Redes

CONTENIDOS DE LA UNIDAD

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Concepto de CATENET
- Direcciones IP (v4 y v6)
- Paquete IP (v4 y v6)
- Redes
- Manejo de Errores
- Ruteo y Fragmentación

CONCEPTO DE CATENET

UNIDAD 2
Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- © Conmutación de Circuitos vs Conmutación por Paquetes.
- Principios de TCP/IP

CONMUTACIÓN DE CIRCUITOS VS CONMUTACIÓN POR PAQUETES (1)

UNIDAD 2
Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Diferencias entre las redes IP y las redes de telecomunicaciones clásicas.

Características	Computación	Telecom	
Puntas	Computadores	Teléfonos	
		TV, tontos	
Usuarios	Aplicaciones	Personas	
Interfaz	Open/Close	Interrupción	
	Read/Write	Señal	
Servicios	Usuarios	Carrier	
Redes	Tontas	Inteligentes	
Cuello Botella	Routers	Switches	
Tráfico	Datos	Audio/Video	
		(isócronos)	
Regulación	Ninguna	Gobierno	
Crecimiento	Desde abajo	Desde arriba	

CONMUTACIÓN DE CIRCUITOS VS CONMUTACIÓN POR PAQUETES (2)

UNIDAD 2
Protocolo IP

2.1. Concepto de CATENET

- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Tradicionalmente:

- Redes de Datos: Mail, FTP.
- Redes de Telecomunicaciones: Audio, Video análogos.

Actualmente

- Redes de Datos: Web, Multimedia, Audio, Video.
- Redes de Telecomunicaciones: Audio y Video Digitales
- Convergencia o Colisión?

CONMUTACIÓN DE CIRCUITOS VS CONMUTACIÓN POR PAQUETES (3)

UNIDAD 2
Protocolo IP

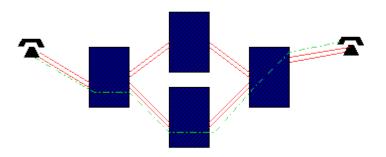
2.1. Concepto de CATENET

2.2. Direcciones IP

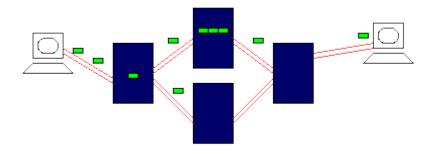
2.3. Paquete IP

2.4. Redes

2.5. Manejo de


Errores

2.6. Ruteo y Fragmentación


EL5107 Tecnologías de Información y Comunicación

© Conmutación de Circuitos

Conmutación por Paquetes

PRINCIPIOS DE TCP/ IP(1)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- El nivel de red de TCP/IP tiene como misiones el ruteo, el manejo de congestión y de errores.
- Ahora el problema radica en poder conectar una máquina con otra pasando por múltiples redes y enlaces, incluso cambiando la representación física de los paquetes y el encapsulamiento de una red a otra.
- © El protocolo que opera en esta capa y se encarga de lo anterior es el protocolo IP (Internet Protocol).

PRINCIPIOS DE TCP/ IP(2)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- IP tiene dos principios básicos:
- 1.- End-to-end Argument:
 - La inteligencia y el manejo de las conexiones va en las puntas.
 - Nunca hacemos algo en los nodos intermedios, si podemos hacerlo en el origen y/o en el destino.
 - De este modo, todos los costos por saturación, estado por conexión, etc, los manejan los nodos interesados en la conexión y no el resto.

PRINCIPIOS DE TCP/ IP(3)

UNIDAD 2
Protocolo IP

2.1. Concepto de CATENET

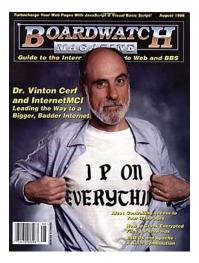
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- IP tiene dos principios básicos:
- 1.- End-to-end Argument:
 - Lo anterior permite no mantener el estado de las conexiones en la red misma, sino sólo en el origen y el destino.

PRINCIPIOS DE TCP/ IP(4)

UNIDAD 2
Protocolo IP

2.1. Concepto de CATENET

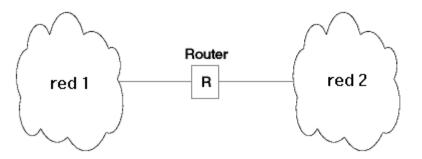

- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- IP tiene dos principios básicos:
- ② 2. IP sobre todas las cosas:
 - La idea es definir un protocolo independiente de la red física, que logre pasar a través de todos los medios y no dependa de ninguno en particular.

PRINCIPIOS DE TCP/ IP(5)


UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- IP se basa en el concepto de una inter-red, que es una red de redes. Es decir, no conecto un computador con otro, sino una red con otras (CATENET): red debe tener un identificador único
- Esto me permite factorizar una buena cantidad de información, puesto que solo debo identificar la red destino para rutear.

PRINCIPIOS DE TCP/ IP(6)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Supuestos sobre una red física

- Conecta a todos los computadores que están en la misma red física (red local)
- Permite enviar bytes, en alguna codificación, de un computador a cualquier otro
- Los computadores se identifican con una dirección física única en la red (conjunto de bits)
- Puede soportar broadcast: mensaje a todos los computadores conectados
- Un computador puede estar conectado a varias redes físicas simultáneamente (interfaces)

PRINCIPIOS DE TCP/ IP(7)

UNIDAD 2
Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- © El Router (que es un computador que conecta dos redes entre sí) se encarga del cambio de formato físico y del ruteo entre ambas redes. Para lograr hacer esto requerimos las siguientes características para IP:
 - 1.- Espacio de nombres (direcciones IP)
 - Únicos en toda la Inter-red
 - Independientes de la Red
 - Traducibles a direcciones físicas
 - Identifican la red y al dispositivo (ej: multi-interfaz
 => múltiples direcciones IP

PRINCIPIOS DE TCP/ IP(8)

UNIDAD 2
Protocolo IP

2.1. Concepto de CATENET

- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- El Router (que es un computador que conecta dos redes entre sí) se encarga del cambio de formato físico y del ruteo entre ambas redes. Para lograr hacer esto requerimos las siguientes características para IP:
 - 2.- Ruteo de los datos en base al "nombre" IP del destino (red+dispositivo)
 - 3.- Paso de los datos por los routers sin alteración
 - 4.- División de los datos en paquetes independientes

DIRECCIONES IP

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Direcciones IPv4
- Direcciones IPv6
- Traducción a Dirección Física

DIRECCIONES IPV4 (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Para el nivel red, se define un espacio de direcciones de 32 bits, que serán usados en forma única para identificar cada computador conectado a la Inter-red.
- Para permitir ruteo fácil en base a la dirección IP, se dividen los bits en una dirección de red (bits superiores) y una dirección de host (bits inferiores).

DIRECCIONES IPV4 (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- La notación de las direcciones IPv4 es en base a cuatro decimales separados por un punto (cada decimal codifica un byte: 0 - 255).
 - Por ejemplo: 146.83.4.11 (IPv4)
- Inicialmente, las direcciones se separaron en clases A, B y C. La idea era que la separación entre bits de red y bits de host es en un byte distinto para cada clase.

DIRECCIONES IPV4 (3)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Al rutear, se debe separar el prefijo de red del sufijo de host. Luego, se rutea en base al prefijo.
- Sólo cuando ya estoy en la red correcta, utilizo el sufijo de host para encontrar la máquina destino en la red local.
- El número de bits del sufijo determina cuantos hosts puedo tener en la misma red: 256 para una clase C, 65.536 para una clase B y 16.777.216 para una clase A.
- Los prefijos de red deben ser <u>únicos</u> en todo el mundo, por lo cual son asignados centralizadamente.
- El ligar el ruteo con la dirección de la máquina implica que una máquina conectada a varias redes posee varias direcciones IP (una en cada red), lo que puede hacer que en un momento sea accesible por una dirección y no por otra.

DIRECCIONES IPV4 (4)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Direcciones IP Reservadas:

- 0.0.0.0 "Este" Host (origen).
- 0.0.x.x Host en "esta" red.
- 255.255.255.255 Broadcast local.
- x.x.255.255 Broadcast en "esta" subred.
- 127.x.x.x. Loopback.

DIRECCIONES IPV6 (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Objetivos

- Principales
 - Enfrentar la escasez de direcciones IPv4.
 - Enfrentar el excesivo crecimiento de la tabla de rutas global de Internet.

Secundarios

- Soporte para servicios de tiempo real.
- Soporte para seguridad.
- Autoconfiguración.
- Funcionalidades extendidas de ruteo, por ejemplo, para host móviles.

DIRECCIONES IPV6 (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Principales Características
- Direcciones de 128 bits, lo que da un total de 3.4 * 10³⁸ para un 100% de eficiencia.
- Aprox 667 * 10²¹
- Pero estimaciones han determinado que habrían 1500 direcciones IP por metro cuadrado de superficie terrestre aun con la tasa de pérdida más pesimista posible (ver Host-Density Ratio)
 - No existen clases, pero sí agrupaciones por prefijos de bits. Algunos para mapear direcciones IPX, NSAP, IPv4. Otros para multicast, para "direcciones privadas", etc.

DIRECCIONES IPV6 (2.5)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

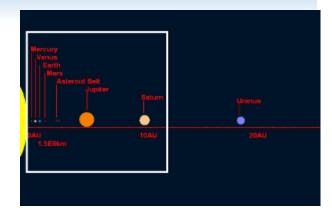
2.3. Paquete IP

2.4. Redes

2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación


EL5107 Tecnologías de Información y Comunicación

IPv4 address space

(256 / pixel)

IPv6 address space

(256 / pixel)

IPv6: 10³⁸

Estrellas: 10²²

Átomos: 10^81

DIRECCIONES IPV6 (3)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Prefijos Asignados en IPv6:

Table 24. : IPv6 - Format prefix allocation

Allocation	Prefix (bin)	Start of address range (hex)	Mask length (bits)	Fraction of address space
Reserved	0000 0000	0::/8	8	1/256
Reserved for NSAP	0000 001	200:: /7	7	1/128
Reserved for IPX	0000 010	400:: /7	7	1/128
Aggregatable Global Unicast Addresses	001	2000:: /3	3	1/8
Link-local Unicast	1111 1110 10	FE80:: /10	10	1/1024
Site-local Unicast	1111 1110 11	FEC0:: /10	10	1/1024
Multicast	1111 1111	FF00::/8	8	1/256
Total Allocation				15%

DIRECCIONES IPV6 (4)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

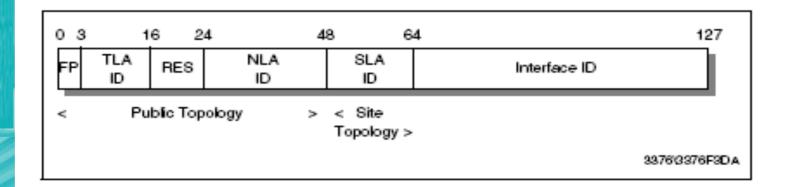
2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

- Prefijos Asignados en IPv6:
 - Aggregatable Global Unicast Addresses: Rango de direcciones para asignar a interfaces de red públicas y únicas
 - Site-local Unicast: Direcciones que no pueden ser publicadas en Internet. Equivalentes a las direcciones IPv4 privadas.
 - Link-local Unicast: Direcciones que sólo son válidas a nivel de la misma red física.
 - Los locales necesitan un "zone_id" (interfaz), ej:

fe80::5626:96ff:fedb:f347%en0

DIRECCIONES IPV6_(5)


UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Jerarquía de las direcciones unicast.

_3	m	n	0	p 1	25- m- n- o- p
010	RegistryID	ProviderID	SubscriberID	SubnetID	InterfaceID

DIRECCIONES IPV6 (6)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Notación de las direcciones
 - Ejemplo: 47CD:1234:4422:AC02:0022:1234:A456:0124
 - 47CD:0000:0000:0000:0000:A456:0124
 pueden ser escrita como 47CD:0:0:0:0:A456:124 y
 más brevemente como 47CD::A456:124
 - www.nic.cl: 2001:1398:5::6003
 - Una dirección IPv4 128.96.33.81 se mapea en IPv6 como ::FFFF:128.96.33.81
 - ::1 es localhost (como 127.0.0.1)

TRADUCCIÓN A DIRECCIÓN FÍSICA (1)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Utilizando la parte de Red de la dirección IP se rutean los paquetes hasta la red de destino.
- Una vez que ya llegó a la red de destino hay que entregar el datagrama a su máquina destino correcta.
- Esto no es trivial, puesto que solo conozco su dirección IP, y lo que requiero ahora es su dirección física. Por supuesto, este problema también se aplica al tener que enviar paquetes a routers en mi propia red, para que ellos continúen el ruteo.

TRADUCCIÓN A DIRECCIÓN FÍSICA (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- En definitiva, nuestro problema general es enviar un datagrama cualquiera a una máquina de mi red, conociendo sólo su dirección IP.
- Obviamente, conozco la interfaz de red por donde debo enviar el datagrama y también conozco la forma de encapsular el datagrama en un frame físico de este tipo de red. Pero aún así, debo encontrar la dirección física del destinatario (dirección ethernet, NSAP ATM, número de Token Ring, etc). Esto es un protocolo de traducción de direcciones, que depende de la red física en cuestión.

TRADUCCIÓN A DIRECCIÓN FÍSICA

(3)

IPv4

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de Errores

2.6. Ruteo y Fragmentación

- El protocolo más usado para IPv4 es ARP (Address Resolution Protocol) en medios que soportan broadcast. Broadcast de un paquete con protocolo ARP (esto no es un datagrama IP), que contiene mis datos (dirección IP y física) y la dirección IP que quiero resolver.
- Este paquete es recibido por todas las máquinas de la red, quienes verifican si tienen esa dirección IP registrada como propia o no.
- quien tiene esa dirección como propia debe responder, completando la información del paquete ARP y enviándolo directamente al origen.

TRADUCCIÓN A DIRECCIÓN FÍSICA (4) IPv4

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Al recibir la respuesta, el origen agrega a una tabla local (en memoria) el par dirección IP, dirección física.
- Este cache de ARP sirve para no preguntar por cada paquete en caso de tráfico continuo. Sin embargo, los valores deben ir expirando en el tiempo para permitir cambios de asociaciones dinámicos.

TRADUCCIÓN A DIRECCIÓN FÍSICA (5) IPv4

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- En el caso de redes que no soportan broadcast, debemos tener tablas locales (mantenidas por personas) o un servidor ARP central a quien enviarle las preguntas (como un directorio).
- En este último caso, requiero que configuren a mano la dirección física de dicho servidor solamente.
- ARP es uno de los problemas de IP en redes grandes, puesto que genera broadcasts que ningún filtro de nivel físico puede parar. Tormentas de broadcasts son frecuentes en redes con más de 100 máquinas.

TRADUCCIÓN A DIRECCIÓN FÍSICA (6)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Existen algunas redes físicas que trivializan esta operación, por ejemplo en Token Ring las estaciones están numeradas en el orden del anillo, y puedo usar el último byte de la dirección IP para almacenar el número de la estación.
- En este caso, puedo traducir directamente, sin ningún protocolo de red.

TRADUCCIÓN A DIRECCIÓN FÍSICA (7)

UNIDAD 2 Protocolo IP

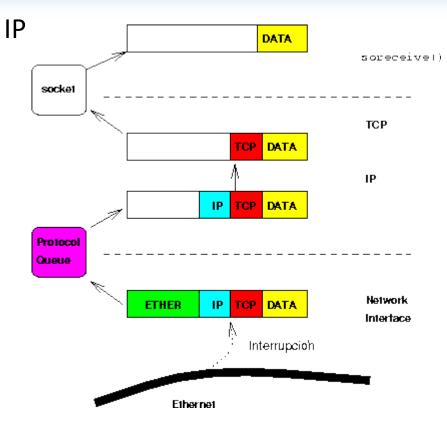
2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de


Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Al encapsular un paquete IP en un paquete físico, termina el proceso de empaquetamiento y finalmente es emitido el datagrama a la red.

TRADUCCIÓN A DIRECCIÓN FÍSICA (8)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Si el datagrama va dirigido a un host de esta red local, la dirección IP y la dirección física serán de la misma máquina.
- Sin embargo, si el datagrama va dirigido a un host de otra red, la dirección física corresponderá a la del router de esta red y no estará relacionada con el destino.

TRADUCCIÓN A DIRECCIÓN FÍSICA (9)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- © En Ipv6 se busca eliminar completamente ARP y broadcasts
- 64 bits se reservan para la dirección de host, por lo que la MAC ethernet cabe completa ahí dentro
- O se usa multicast para evitar molestar a toda la red (ver ICMPv6 más adelante)

REDES

UNIDAD 2 Protocolo IP

- 2.1. Concepto de
- **CATENET**
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

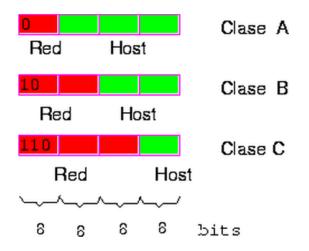
EL5107 Tecnologías de Información y Comunicación

CIDR

- Sub-Redes
- Super-Redes

SUB REDES (1)

UNIDAD 2 Protocolo IP


- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Recordemos que inicialmente se dividieron las direcciones IPv4 en 3 clases: Clase A, Clase B y Clase C.
- Cada clase tiene un número distinto de bytes asignado para la dirección de la Red y la dirección del Host.

SUB REDES (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- © Con clase C se tiene un byte para el host, o sea pueden haber 256 computadores en esa red.
- © Con clase B por otro lado se tienen 2 bytes para el host, es decir, 65.536 hosts.
- © Como obviamente 256 computadores es poco para la mayoría de las organizaciones, casi todas pedían una red clase B.

SUB REDES (3)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de
- Errores
- 2.6. Ruteo y Fragmentación

- Por otro lado 65.536 computadores era mucho para una sola red. Para dividir una red corporativa en múltiples redes internas, se usa el concepto de una sub-red, que considera los primeros bits de la parte host, como una extensión de la parte red, y los últimos como el verdadero host.
- O sea, en vez de dividir la dirección en red, host; la dividimos en red, sub-red, host.

SUB REDES (4)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- El número de bits en la sub-red es variable, y se define con una máscara de red, que es un conjunto de bits.
- Los bits en 1 definen el prefijo de red (red + subred) y los bits en 0 corresponden a la parte host.
 - Por ejemplo, la clase B 146.83.0.0 la dividimos en redes con un máximo de 128 hosts cada una.
 - Para esto el primer byte completo y un bit más son necesarios para el prefijo de red. La máscara es entonces: 255.255.255.128.

SUB REDES (5)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Esto me permite manejar la red como una sola entrada en las tablas de rutas de Internet, pero internamente sé que son múltiples redes interconectadas.
- La máscara de sub-red no requiere ser conocida fuera de la red local, puesto que hacia afuera somos una sola red.

SUB REDES (6)

UNIDAD 2
Protocolo IP

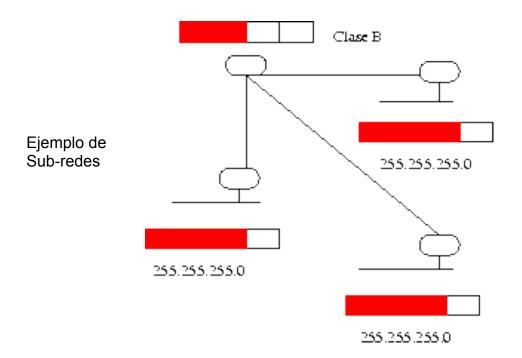
2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de


Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Para separar la parte red y la parte host, entonces, primero uso el prefijo de la clase. Si corresponde a mi red, uso la máscara para terminar de extraer el prefijo de red.

SÚPER REDES (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- En el año 1992 se generó un importante proyecto de cambios en el manejo y asignación de direcciones IP en Internet.
- Básicamente, existían tres riesgos de muerte del Internet a mediano plazo:
 - 1.- Término de las direcciones clase B.
 - A esa altura casi la mitad de las direcciones clase B estaban asignadas. Al ritmo de crecimiento de ese momento, iban a terminarse en un par de años.
 - Básicamente, toda organización normal, requería de una clase B, puesto que una clase C era insuficiente.

SÚPER REDES (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- 2.- Término de todas las direcciones IP
 - Claramente 32 bits no son suficientes para el crecimiento de Internet.
 - La tasa de pérdida que es parte de cualquier sistema de asignación que se utilice, dado que son prefijos de red, y las redes no están nunca totalmente utilizadas.

SÚPER REDES (3)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de
- Errores
- 2.6. Ruteo y Fragmentación

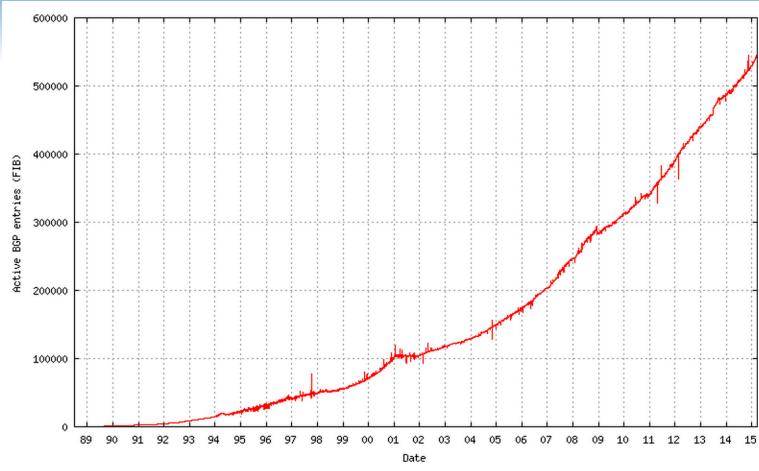
EL5107 Tecnologías de Información y Comunicación

3.- Explosión en las tablas de rutas

- Los routers centrales de Internet deben mantener una tabla con una entrada para cada red conectada a Internet en el mundo entero.
- Actualmente, hay unas 500.000 redes, y cada vez resulta más difícil manejar ese tamaño, tanto en memoria como en ancho de banda para los protocolos de actualización.
- Se duplica cada 5 años aproximadamente
- IPv6 va recién en 22.000 prefijos

SÚPER REDES (3)

UNIDAD 2 Protocolo IP


- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

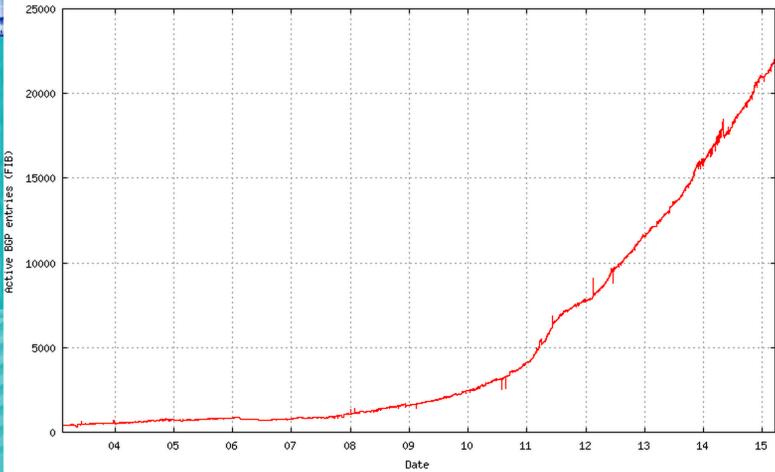
2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

http://bgp.potaroo.net/as2.0/bgp-active.html

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de


Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

SÚPER REDES (3)

http://bgp.potaroo.net/v6/as2.0/index.html

SÚPER REDES (4)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Para resolver los problemas 1 y 3 se decidió desplegar un nuevo esquema de asignación y de manejo de las direcciones IP, de modo de disminuir el problema y darle tiempo al desarrollo de la nueva versión de IP (IP versión 6) que resolvería el punto 2.
- Básicamente, una red clase A, B o C puede verse como una red con una máscara implícita.
- © En el nuevo esquema, conocido como CIDR (Class-less IP), todas las redes se manejan con una máscara explícita para poder dividirlas en red/host y nos olvidamos de las clases.

SÚPER REDES (5)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Por ello, podemos agrupar varias clases C contiguas, con una máscara común, extendiendo los bits de host hacia los de red, implementando lo que se conoce como súper-redes.
 - Por ejemplo, las clases C 200.0.0.0 y 200.0.1.0 pueden agruparse en una súper-red 200.0.0.0 con máscara 255.255.254.0.
- Actualmente, las máscaras ya no se anotan así, y se prefiere escribir el número de bits del prefijo de red. En el ejemplo anterior, se habla de la red 200.0.0.0/23.
- © Clase A: /8, clase B: /16, clase C: /24 (/32=1IP)
- IPv6: soporta hasta un /128 = 1IP

SÚPER REDES (6)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- La existencia de súper-redes ha permitido asignar el número de redes adecuado a cada institución sin sobrevender demasiado, disminuyendo el problema 1.
- Sin embargo, si las súper-redes no son entendidas por los routers de Internet, exacerban el problema 3.
- Por ello, los nuevos protocolos de ruteo ya manejan este concepto, difundiendo redes agregadas, con un prefijo y una máscara.
- Esto me permite factorizar varias redes clases C agrupadas en una súper-red, como una sola entrada en mi tabla de rutas.

SÚPER REDES (7)

UNIDAD 2
Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de Errores

2.6. Ruteo y Fragmentación

- Para poder manejar super-redes, sin embargo, se requiere un cambio mayor en la representación de las tablas de ruteo porque (al contrario que en el caso de las sub-redes) ahora requiero conocer la máscara de red en todas partes, incluso fuera de la red misma.
- En IP sin clases (CIDR) se supone que toda máquina y Router manejan tablas con el prefijo de red y la máscara asociada, de modo de poder separar la parte red y la parte host de una dirección cualquiera.

SÚPER REDES (8)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- O Un punto importante es que aunque mi Router no hable CIDR y utilice el sistema antiguo igual funciona.
- Esto se logra haciendo que ese Router maneje una entrada para cada clase C de la súper-red en cuestión, sin factorización.
- Obviamente, perdemos la ventaja de CIDR, pero al menos funciona.
- En IPv6 no hay opción: debo tener la máscara

SÚPER REDES (9)

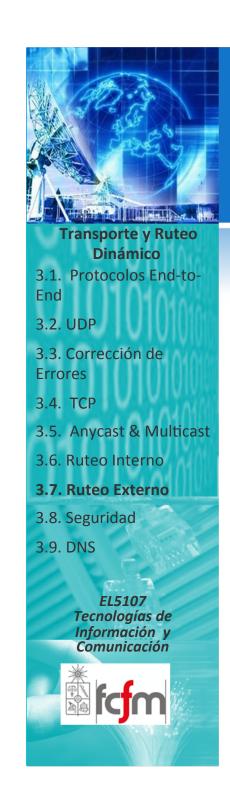
UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación


- IPv6 usa el mismo esquema de prefijos
- NIC Chile prefix: 2001:1398::/32
- © Ejemplo host:

b.nic.cl \rightarrow 2001:1398:274:0:200:7:4:7

Redes Privadas

- ¿Cómo crecer en IPv4 sin usar más direcciones?
- Armar redes internas IP (Intranets) usando direcciones cualesquiera
- Anunciar hacia fuera sólo una IP pública
- Poner todos los servicios en esa IP
- Traducir direcciones en el router de acceso (NAT)
- © RFC1918: 10/8, 172.16/12, 192.168/16 reservadas
- ¡No tenemos idea cuántas redes privadas hay!

Redes Privadas (2)

- Necesitan un router que haga NAT
- Todo equipo actual sabe hacerlo
- Incluso en la casa de Uds
- Mala idea usar redes 10.0.0.0 o 192.168.1
- Todo el mundo las usa!
- Esto ha permitido aguantar hasta hoy
- Casi sin usar IPs públicas v4

Fin de Ipv4

This report generated at 30-Nov-2011 07:59 UTC.

IANA Unallocated Address Pool Exhaustion:

03-Feb-2011

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

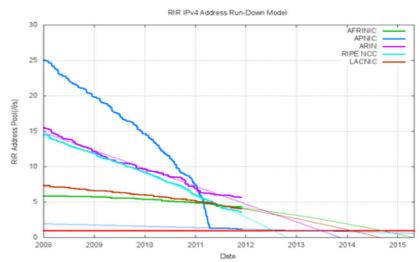
2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de

Errores


2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Projected RIR Address Pool Exhaustion Dates:

RIR	Projected Exhaustion	Remaining Addresses in RIR Pool
	Date	(/8s)
APNIC:	19-Apr-2011	1.2017
RIPENCO	:14-Jul-2012	3.5721
ARIN:	22-Jun-2013	5.7067
LACNIC:	28-Jan-2014	4.1000
AFRINIC:	03-Sep-2014	4.3643

Projection of consumption of Remaining RIR Address Pools

Fin de Ipv4

UNIDAD 2
Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de Errores

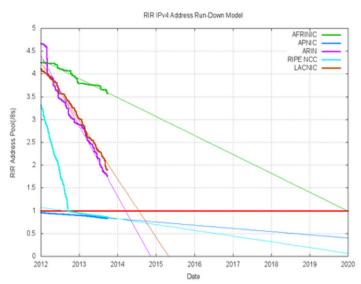
2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

This report generated at 25

IANA Unallocated Address Pool Exhaustion:

03-Feb-2011


Projected RIR Address Pool Exhaustion Dates:

 RIR
 Projected Exhaustion Date
 Remaining Addresses in RIR Pool (/8s)

 APNIC:
 19-Apr-2011 (actual)
 0.8329

 RIPE NCC:
 14-Sep-2012 (actual)
 0.8633

ARIN: **09-Jan-2015** 1.7637 LACNIC: **19-Apr-2015** 1.9011 AFRINIC: **26-Aug-2022** 3.5705

Projection of consumption of Remaining RIR Address Pools

IPv4 Address Report

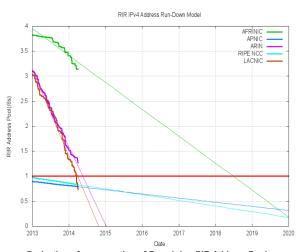
This report generated at 01-Apr-2014 08:4

IANA Unallocated Address Pool Exhaustion:

03-Feb-2011

Projected RIR Address Pool Exhaustion Dates:

RIR Projected Exhaustion Date Remaining Addresses in RIR Pool (/8s)


 APNIC:
 19-Apr-2011 (actual)
 0.7939

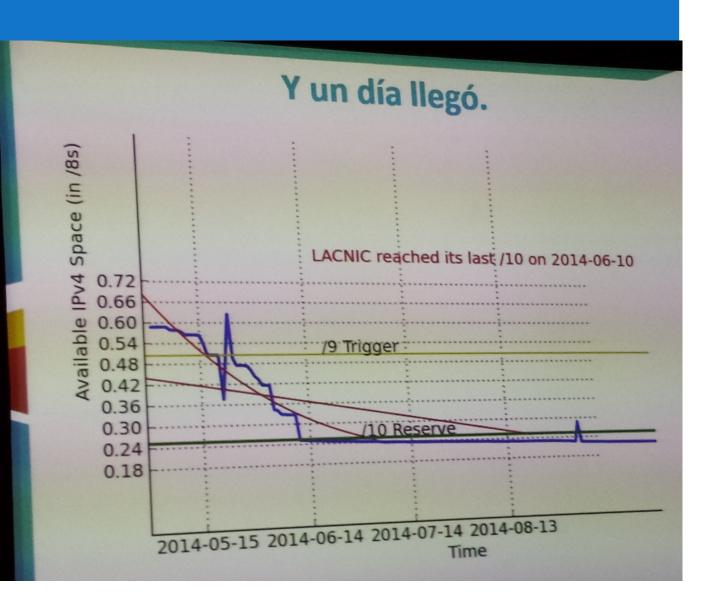
 RIPE NCC:
 14-Sep-2012 (actual)
 0.8277

 LACNIC:
 16-Sep-2014
 0.7359

 ARIN:
 19-Mar-2015
 1.2719

 AFRINIC:
 29-Apr-2020
 3.1418

Projection of consumption of Remaining RIR Address Pools



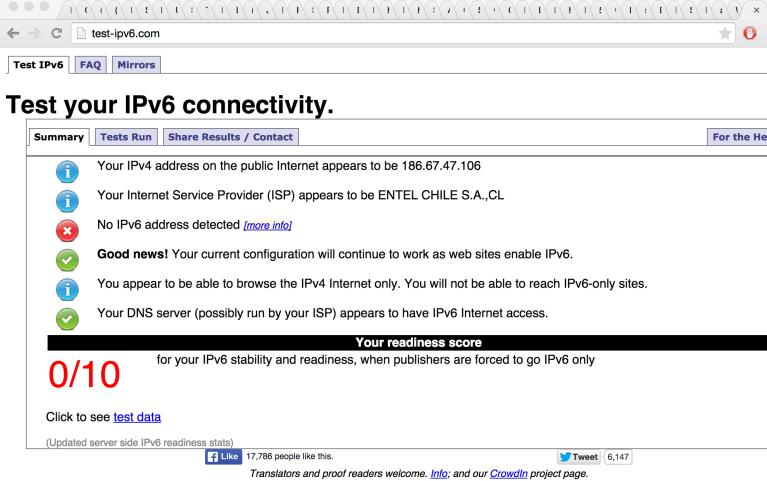
Fin de Ipv4

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

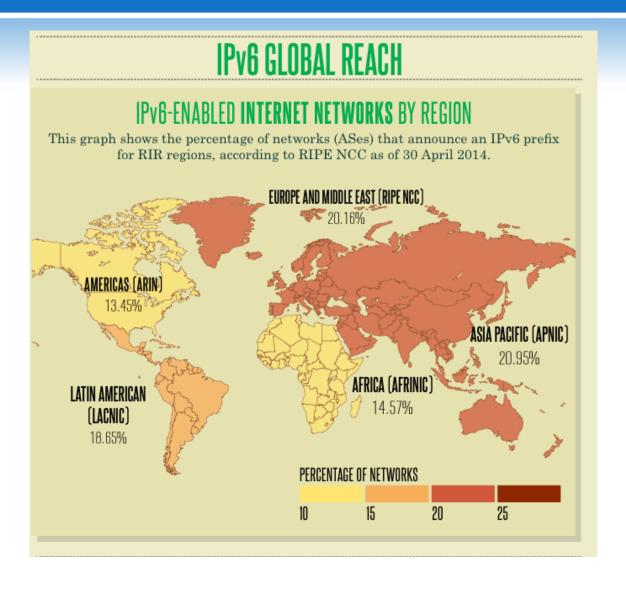
Muerte de Internet

- Ahora sí que murió
- CIDR nos dio tiempo desde 1992 hasta 2015!
- Ya no quedan direcciones IPv4
- ISPs tienen stock para un par de años más
- Es la hora de IPv6 (¡al fin!)



Despliegue en el mundo

- Junio 2012: IPv6 day
- Moy (3 años después): va creciendo un poco más rápido de lo esperado
- 2018: se espera que IPv6 sea el protocolo dominante en Internet (1995 dije: 2005!)
- Sabemos vivir en ambos mundos
- Pronto nos tocará: servidores sólo en IPv6 (http://ipv6.google.com)
- Ver: http://test-ipv6.com


Despliegue en el mundo

Despliegue en el mundo

Conclusiones

- Se necesitará mucho conocimiento en redes
- Poca gente entiende la complejidad de esto
- Y será urgente pronto
- Difícil que haya una transición sin sobresaltos
- May que estudiar IPv4 e IPv6 en igualdad de condiciones hoy
- Y probar configuraciones posibles
- Los ISPs no dan el servicio fácilmente hoy (pídanlo en sus empresas)

PAQUETES IP

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Datagrama
- Meader
- Datagrama IPv4
- Datagrama IPv6
- MTU de la Red

DATAGRAMA(1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Los datos se empaquetan en un datagrama, que es la unidad utilizada para atravesar las redes en camino.
- La idea básica de un datagrama es equivalente a una carta envuelta en un sobre.
- Los datos del sobre van en el header del paquete y el contenido va como datos.
- Al igual que en la carta, la idea es que al irse ruteando por la red el datagrama queda intacto, sin modificarse ni el header (casi) ni el contenido.

DATAGRAMA(2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Cada datagrama es independiente, por lo cual pueden rutearse por caminos distintos.
- Por otro lado, IP provee un servicio de "mejor esfuerzo", es decir no garantiza la entrega.
- Los paquetes pueden llegar a su destino desordenados, duplicados, alterados o incluso perderse.

DATAGRAMA(1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

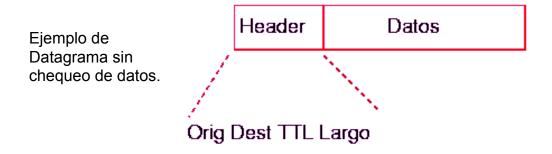
2.6. Ruteo y Fragmentación

- •En resumen los datagramas IP son:
 - paquetes de datos auto contenidos.
 - Independientes.
 - Auto-ruteables.
 - Sin manejo de estado en los routers.
 - Sin conexiones.
- Los datagramas IP se dividen en dos partes
 - Header (Encabezamiento).
 - Datos.

HEADER (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de


Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

 En el Header se encuentra toda la información relevante para rutear el paquete a través de la red, los datos son sólo importantes para la aplicación que los recibe.

HEADER (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- •El encabezamiento contiene las direcciones IP del origen y del destino, así como el largo y un checksum del header. La parte datos no se valida, por lo que el nivel trasporte tendrá que encargarse de ellos.
- •Todos los campos del encabezamiento se representan en forma estándar, conocida como network order.
 - En alguna máquinas, deberemos traducir los enteros para llevarlos la representación correcta para esa arquitectura.

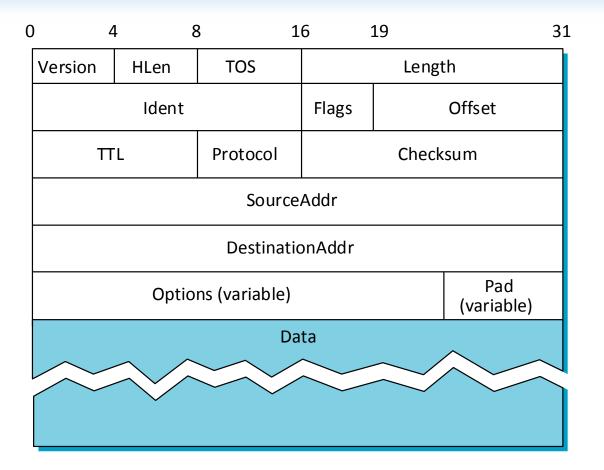
DATAGRAMA IPV4 (1)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP


2.4. Redes

2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

DATAGRAMA IPV4 (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- VERS: Contiene la versión del Protocolo IP. Las versiones más usadas son la 4 y la 6. La 5 es una versión experimental.
- HLEN: El largo del header IP contado en unidades de 32-bit. No incluye el campo de los datos.
- TOS: El tipo de servicio es una indicación de la calidad del servicio que se pide para este datagrama IP.

DATAGRAMA IPV4 (3)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

- TOS: Además contiene los siguientes campos:
 - Precedence: Indica la naturaleza y prioridad del datagrama:

000: Routine

001: Priority

o 010: Immediate


o 011: Flash

100: Flash override

101: Critical

110: Internetwork control

111: Network control

DATAGRAMA IPV4 (4)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- TOS: Además contiene los siguientes campos:
 - TOS: Especifica el valor del tipo de servicio:
 - 1000: Minimize delay
 - 0100: Maximize throughput
 - 0010: Maximize reliability
 - 0001: Minimize monetary cost
 - 0000: Normal service
 - MBZ: Reservado para uso futuro.

DATAGRAMA IPV4 (5)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Flags: Este campo contiene flags de control:
 - 0: Reservado, debe ser cero.
 - DF (Do not Fragment): 0 significa que se permite fragmentación; 1 significa que el datagrama no se puede fragmentar.
 - MF (More Fragments): 0 significa que este es el último fragmento del datagrama; 1 significa que más fragmentos siguen al datagrama.

DATAGRAMA IPV4 (6)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Fragment Offset

Es emitido para ayudar a re-ensamblar el datagrama completo. El valor de este campo contiene el número de segmentos de 64-bits contenidos en fragmentos anteriores (los bytes del header no cuentan). Si este es el primer segmento este campo toma el valor de cero.

DATAGRAMA IPV4 (7)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Time to Live

- Este campo especifica el tiempo (en segundos)
 que el datagrama tiene permitido para viajar por
 la red.
- Más adelante se profundizará en su funcionamiento.

DATAGRAMA IPV4 (8)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Meader Checksum

- Este campo contiene el checksum de la información contenida en el encabezado. Si la checksum del header no concuerda con los contenidos de éste, el datagrama es descartado.
- Source IP Address
 - La dirección de 32-bits del host que envió este datagrama.
- Destination IP Address
 - La dirección de 32-bits del host de destino de este datagrama.

DATAGRAMA IPV4 (9)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Algunas Opciones IP

Option	Description			
Security	Specifies how secret the datagram is			
Strict source routing	Gives the complete path to be followed			
Loose source routing	Gives a list of routers not to be missed			
Record route	Makes each router append its IP address			
Timestamp	Makes each router append its address and timestamp			

DATAGRAMA IPV6 (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

0	4 1	2 1	6	24	31
Version	TrafficClass	FlowLabel			ı
	PayloadLen			HopLimit	
	SourceAddress				
	Desti	nationA	ddress		
Next header/data					

DATAGRAMA IPV6 (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- El campo Version ocupa la misma posición.
- TrafficClass y FlowLabel están relacionados con QoS. TrafficClass es equivalente al header ToS de IPv4 y FlowLabel es un número que identifica una secuencia de paquetes que van un origen a un destino y que deben ser "tratados" de cierta manera.
- PayloadLen indica el largo del paquete descontando el largo del header.

DATAGRAMA IPV6 (3)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- El campo NextHeader indica la existencia de opciones IP, por ejemplo la fragmentación es una opción más. Si no hay opciones, el campo indica el protocolo de nivel superior (como el campo Protocol).
- MopLimit equivale al campo TTL de IPv4.
- © El header IPv6 es de tamaño fijo (40 bytes).

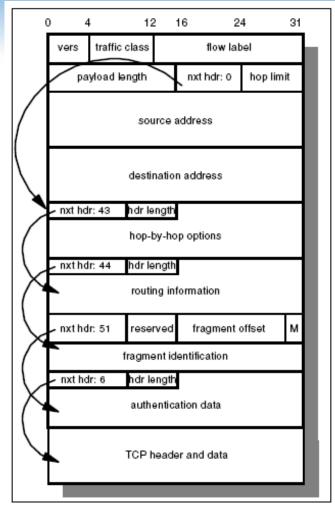


Figure 220. IPv6 packet containing multiple extension headers

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

JUBOGRAMAS IPV6

- El campo NextHeader indica que este es un Jumbograma y el payload length == 0
- © El largo va en 32 bits en el header opcional
- Requiere que TCP y UDP cambien un poco
- Supercomputing applications

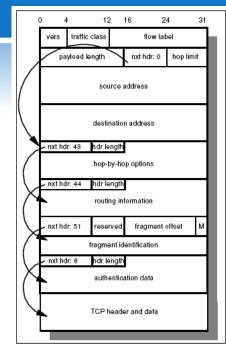


Figure 220. IPv6 packet containing multiple extension headers

	Additional header length	option code (datagram size)	size a 4 Byte number				
Next header	0	194	4				
Jumbo payload length							

MTU DE LA RED (1)

UNIDAD 2 Protocolo IP

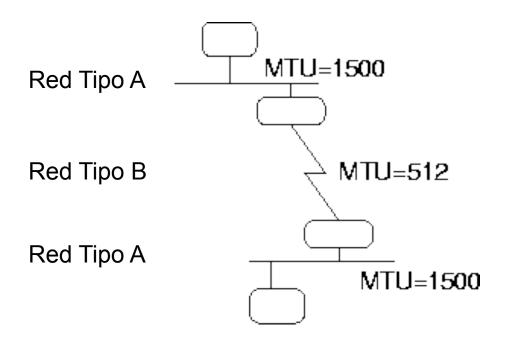
- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Antes de enviar un datagrama es necesario determinar su tamaño.
- Obviamente quiero que sea lo más grande posible, pero debe caber en un frame físico.
- Las redes por las que transitará pueden tener tamaños de frames (MTU: Maximum Transfer Unit) distintos.

MTU DE LA RED (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de


Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Si un paquete llega a un router y es muy grande para seguir su camino debo <u>fragmentarlo</u> en unidades más pequeñas. (detalles luego)

MANEJO DE ERRORES

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Manejo de Errores
- El ICMP (IPv4)
- ICMPv6 (Ipv6) y Multicast

MANEJO DE ERRORES

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Al detectarse un error relacionado con un datagrama, se envía un mensaje de error a la dirección IP de origen.
- © Este mensaje va en un datagrama dirigido al layer IP propiamente tal, no a una aplicación de nivel superior.
- Por ello, se encapsula en un datagrama IP con valor protocolo (en el header) de ICMP. El datagrama original (que causó el error) va como dato
- Típicos paquetes de error son porque el TTL llegó a cero, porque no existen rutas a esa red, tiempo esperando fragmentos excedido, etc.

ICMP (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Internet Control Message Protocol
 - Protocolo integral de IP, utilizado para reportar errores.
 - Utiliza a IP como un protocolo de capa "inferior".
 - ICMP no se puede usar para reportar errores de mensajes ICMP.

ICMP (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Internet Control Message Protocol
 - En el caso de los fragmentos, sólo se generan mensajes ICMP para el primer fragmento.
 - Nunca se genera ICMP para datagramas con direcciones de destino broadcast o multicast, o direcciones de origen que no sean únicas.

ICMP (3)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Los mensajes ICMP tienen un tipo y un código asociado (que depende del tipo). Algunos mensajes además contienen datos adicionales.
 - 0: Echo reply
 - 3: Destination unreachable
 - 4: Source quench
 - 5: Redirect
 - 8: Echo
 - 9: Router advertisement

ICMP (4)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Los mensajes ICMP tienen un tipo y un código asociado (que depende del tipo). Algunos mensajes además contienen datos adicionales.
 - 10: Router solicitation
 - 11: Time exceeded
 - 12: Parameter problem
 - 13: Timestamp request
 - 14: Timestamp reply
 - 30: Traceroute
 - 32: Mobile host redirect

ICMP (5)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y
- Fragmentación

- Para los mensajes de tipo==3, tenemos los siguientes códigos:
 - 0: Network unreachable
 - 1: Host unreachable
 - 2: Protocol unreachable
 - 3: Port unreachable
 - 4: Fragmentation needed but the Do Not Fragment bit was set
 - 5: Source route failed
 - 6: Destination network unknown

ICMP (6)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Para los mensajes de tipo==3, tenemos los siguientes códigos:
 - 7: Destination host unknown
 - 9: Destination network administratively prohibited
 - 10: Destination host administratively prohibited
 - 11: Network unreachable for this type of service
 - 12: Host unreachable for this type of service
 - 13: Communication administratively prohibited by filtering

ICMPv6 (1)

UNIDAD 2 Protocolo IP

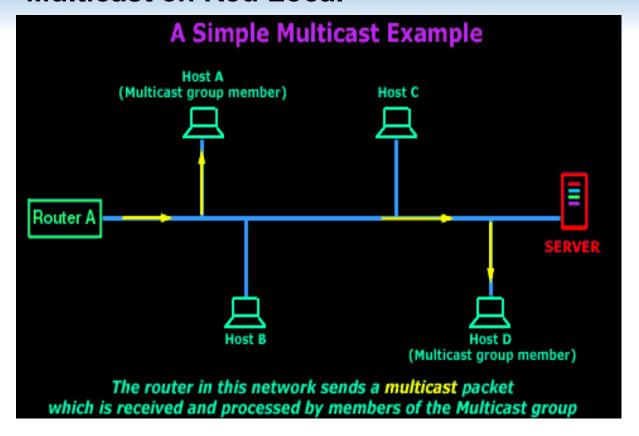
- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Multicast:

- Uno a muchos (pero no todos, != broadcast)
- Los computadores se "suscriben" a grupos
- Se usa intensivamente en la red local
- Pero se busca masificar para difusión (tipo canal de TV), y entonces es ruteable
- IPv4: usa direcciones 224.0.0.0-239.255.255.255
 (16 bloques /8 o clases A; llamadas clase D)
- IPv6: usa ff00::/8
- La conexión uno a uno ahora se llama "unicast"

ICMPv6 (2)


UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Multicast en Red Local

ICMPv6 (3)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Multicast en ethernet:

- En IPv4 se usan los 23 últimos bits
- Se usa 01:00:5E:00:00:00 01:00:5E:7F:FF:FF
- En IPv6 se usan los últimos 32 bits
- Se usa 33:33:xx:xx:xx:xx
- Genera colisiones, pero no muchas
- Las tarjetas aceptan que el kernel les pida escuchar direcciones específicas de este rango

ICMPv6 (3)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- IPv6 usa multicast intensivamente (es obligatorio)
 - Principalmente en red local
 - ff02:: multicast local
 - ff02::1 todos los computadores (broadcast)
 - ff02::2 todos los routers en la red
 - ff02::1:2 Todos los servidores DHCPv6
 - ff02::1:ffxx:xxxx nodo solicitado (~ ARP)

ICMPv6 (4)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

IPv6 usa ICMPv6 para traducción de direcciones

- Busco destino: 2037::01:800:200e:8c6c
- Envío pregunta a: ff02::1:ff0e:8c6c
- Se envía a MAC: 33:33:ff:0e:8c:6c
- Toda tarjeta con dirección IPv6 pide recibir ese multicast (copiando sus últimos3 bytes)
- La probabilidad de "colisión" es baja y no molesta mucho (simplemente no respondo si no soy yo)

RUTEO Y FRAGMENTACIÓN

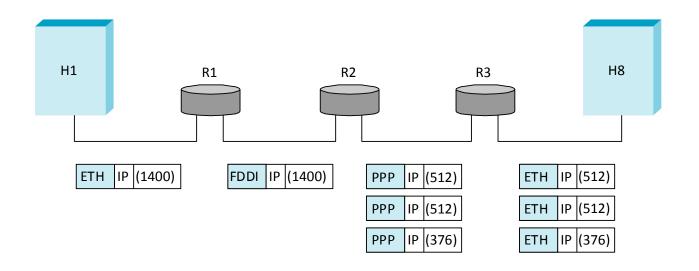
UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Fragmentación
- Ruteo Básico
- TTL


FRAGMENTACIÓN (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- © Como se vio anteriormente los paquetes pueden atravesar distintos tipos de redes.
- © Cada una de éstas redes tiene un MTU determinado.
- Si un paquete llega a un router y es muy grande para seguir su camino debo fragmentarlo en unidades más pequeñas.

FRAGMENTACIÓN (2)

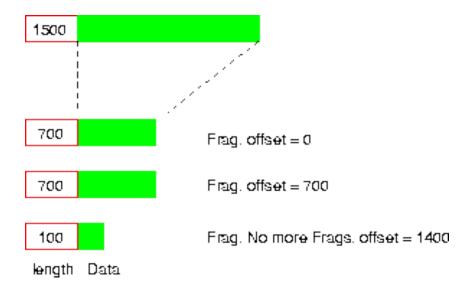
UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Al fragmentar divido el datagrama en varios datagramas con (casi) el mismo header y los trozos de los datos en cada uno.
- © El largo de cada datagrama es el que corresponde a cada fragmento.
- © Cada uno de estos fragmentos será ruteado luego como un datagrama independiente.
- El problema es que si el nivel transporte envía un datagrama, el receptor debe recibir también uno (y no varios más pequeños).

FRAGMENTACIÓN (3)

UNIDAD 2 Protocolo IP


- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Para esto, el receptor final "pega" los fragmentos para reconstruir el datagrama original.
- En esto se usan los otros campos del encabezado: el identificador es un valor único por cada datagrama enviado desde un mismo host.

FRAGMENTACIÓN (4)

UNIDAD 2
Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de Errores

2.6. Ruteo y Fragmentación

- Recordar: IPv4 tiene espacio en el header siempre para esto, IPv6 tiene un header opcional que sólo va en los paquetes fragmentados
- Los fragmentos llevan todos el identificador del datagrama original, permitiendo reconocerlos.
- El offset del fragmento indica la posición dentro del datagrama original donde van los datos de este fragmento.
 - Para ahorrarse espacio en el header, el offset va anotado contando de a 8 bytes, por lo que debe multiplicarse por ocho para obtener el verdadero valor.

FRAGMENTACIÓN (5)

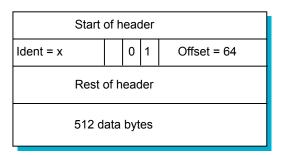
(b)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores


2.6. Ruteo y Fragmentación


> EL5107 Tecnologías de Información y Comunicación

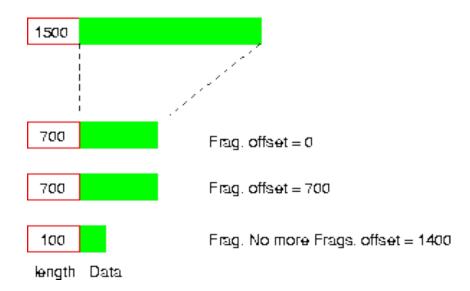
Start of header					
Ident = x				Offset = 0	
Rest of header					
1400 data bytes					

(a)

Start of header					
ldent = x	1 1 Offset = 128				
Rest of header					
376 data bytes					

FRAGMENTACIÓN (6)

UNIDAD 2 Protocolo IP


- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Finalmente, en el campo Flags se anota que son fragmentos y no un datagrama completo.
- Otro bit existe (No more fragments) para el último fragmento, de modo de saber cuándo terminar.

FRAGMENTACIÓN (7)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Al recibir el primer fragmento de un datagrama, se activa un timer de modo que al transcurrir demasiado tiempo esperando armarlo lo descarto generando un error.
- Esto descarta el datagrama completo, aunque se hayan recibido varios fragmentos en el intertanto.

FRAGMENTACIÓN (8)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Típicamente la implementación consiste en una lista enlazada de fragmentos para cada datagrama (identificado por su campo identificador), donde se van agregando los fragmentos a medida que llegan.
- Esto se hace así puesto que desconocemos el largo total del datagrama, hasta que no recibimos el último fragmento.
- Al fragmentar, debo re-calcular el chksum del hdr
- © EN IPv6 los routers no PUEDEN fragmentar. Solo el origen.

RUTEO BÁSICO (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- © Cada router y cada host mantiene una tabla de rutas, puesto que incluso un host conectado a una sola red debe saber cómo llegar a los distintos destinos.
- Todo el ruteo de un datagrama se hace paso a paso (hop-by-hop), decidiendo cada vez a qué router de la red local debo entregárselo para acercarme al destino final.

RUTEO BÁSICO (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- El ruteo se hace igual para los datagramas generados internamente por una aplicación como para uno recibido desde la red.
- Un router está conectado directamente a una o más redes, cuyos prefijos de red conocemos. En esas redes pueden haber otros routers que nos permiten ir más lejos.
- El algoritmo de ruteo que toda implementación de IP debe realizar, se basa en una tabla de rutas.

RUTEO BÁSICO (3)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de Errores

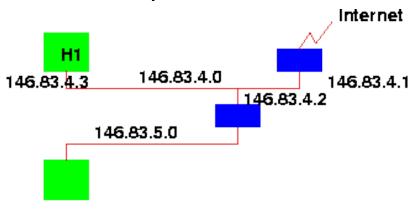
2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

- Esa tabla consiste de una entrada para una red y el router que debo usar para ir hacia ella.
- © El router va representado por una dirección IP de una red a la cual yo estoy directamente conectado.
- © En esa tabla también figuran todas las redes a las que estoy conectado las que se marcan con un tipo especial (DIR).

Kernel routing table Destination Gateway Genmask Flags Metric Ref Use Iface 192.80.24.49 255.255.255.255 UGHDM O 146.83.4.67 1 eth0 146.83.4.0 0.0.0.0 255.255.255.128 U 2251 eth0 127.0.0.0 0.0.0.0 255.0.0.0 U 0 0 10 0 0.0.0.0 146.83.4.11 0.0.0.0 UG 2 eth0

RUTEO BÁSICO (4)


UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Aquí se puede ver un Host conectado a la red con más de un router y su tabla de rutas.

Tabla en H1:

Net	Gateway	Туре
146.83.4.0	146.83.4.3	DIR
146.83.5.0	146.83.4.2	GW
default	146.83.4.1	GW

RUTEO BÁSICO (5)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Para evitar el tener la tabla de todas las redes de Internet en todas las máquinas conectadas, se usa una ruta default que nos indica nuestro router usual para todas las redes que no conozco.
- Esta ruta se representa con la red 0.0.0.0 y se usa en todos los routers para mostrar la ruta hacia el resto de Internet.

RUTEO BÁSICO (7)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP

2.4. Redes

2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Ejemplo de tabla de rutas:

NetPrefix 0.0.0.0 default	Mask	GW (IP) 0.0.0.0: DIR	Interface
192.168.1.0	255.255.255.0	0.0.0.0	eth0
127.0.0.0	255.0.0.0	0.0.0.0	lo0
0.0.0.0	0.0.0.0	192.168.1.1	eth0

RUTEO BÁSICO (6)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Obviamente, se requiere que algunos Routers de la red (los principales) no tengan ruta default, y efectivamente manejen la tabla completa de las redes conectadas (se llaman Routers defaultless).
- Desde cualquier punto de Internet, la cadena de rutas default deben llevarnos a un Router default-less para que el algoritmo funcione.

RUTEO BÁSICO (7)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Algoritmo de búsqueda en la tabla:
- Filas ordenadas por largo del prefijo de red (máscaras con más 1's primero)
- Entrada default calza siempre (final)

```
search(IP, table)
{
   for(i=0; i < table.rows; i++)
      if((IP & table[i].Mask) == table[i].NetPrefix)
        return(table[i]);

   return NULL;
}</pre>
```


RUTEO BÁSICO (7)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

El algoritmo básico de ruteo es el siguiente:

```
RouteIP(dgram, table)
{
    Route = search(dgram.destIP, table);
    if(Route == NULL)
        error(dgram, "Net Unreachable");

if( Route.type == DIR )
        sendphys(dgram, dgram.destIP, Route.interface);
    else if ( Route.type == GW )
        sendphys(dgram, Route.gateway, Route.interface);
}
```


RUTEO BÁSICO (8)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- El algoritmo anterior depende de la correctitud de las tablas de rutas utilizadas.
- © Como estas tablas pueden contener errores, se incluyen algunos mecanismos básicos en IP para evitar daños demasiado graves.
- Por ello, los datagramas IPv4 incluyen el campo TTL, de modo de impedir que un ciclo en las rutas no genere datagramas permanentemente girando en la red, consumiendo ancho de banda sin llegar a ningún lado.

TTL (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Cada paquete IP tiene un campo llamado TTL (Time to Live), HopLimit en IPv6
 - Este campo especificaba el tiempo (en segundos) que el datagrama tiene permitido para viajar por la red. Teóricamente, cada router que procesa el datagrama debe restarle su tiempo de procesamiento a este campo.
 - En la práctica un router procesa un datagrama en menos de un segundo. Por lo tanto el router resta 1 al valor de este campo. Entonces el TTL se convierte en una métrica de "saltos" en vez de ser una métrica de tiempo.

TTL (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Cada paquete IPv4 tiene un campo llamado TTL (Time to Live)
 - Cuando el valor llega a cero, se asume que el datagrama lleva viajando en un ciclo y es descartado. El valor inicial debe ser asignado por el protocolo de más alto nivel que crea el datagrama.
 - Al destruir un datagrama por TTL, se genera un ICMP "Time Exceeded"

RUTEO BÁSICO (9)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- En IPv6 el equivalente es el campo HopLimit.
- En IPv4 implica recalcular el checksum SIEMPRE
- Al llegar este contador a cero, el datagrama debe destruirse y no seguir ruteándolo.
- Sin embargo, es bueno generar un mensaje de error para el origen, de modo de advertirle que sus datagramas se están perdiendo.
- Esto va en un datagrama ICMP (Time Exceeded) al origen.

RUTEO BÁSICO (10)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

- Sin embargo, es probable que (si hay un ciclo en una dirección) haya un ciclo también en la dirección del origen.
- Si esto ocurre, el datagrama ICMP también verá su TTL llegar a cero, y deberá ser destruido.
- Obviamente, si genero otro ICMP en este caso, ocurrirá lo mismo.

RUTEO BÁSICO (11)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- Por ello, se define en IP que nunca se genera un mensaje ICMP para reportar errores producidos por paquetes ICMP de reportes de errores.
- En el caso de recibir un paquete que debe rutearse por la misma interfaz de red por la que llegó, un Router rutea bien el paquete, pero también genera un ICMP redirect hacia el host de origen, si el origen está en la misma red.

RUTEO BÁSICO (12)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

Traceroute:

- Queremos ver la lista de routers que atravesamos para ir a "destino"
- © Enviamos paquetes UDP a un puerto desconocido con IP "destino"
- Primero con TTL=0 y miramos la IP de origen del ICMP "time exceeded"
- Luego TTL=1, TTL=2, ...

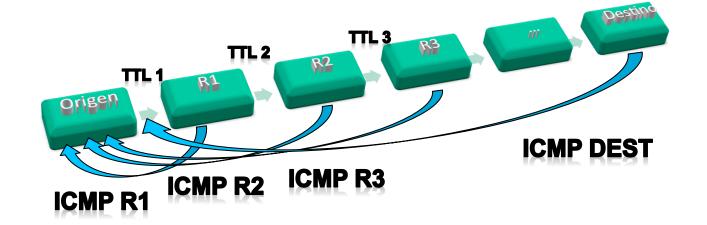
RUTEO BÁSICO (13)

UNIDAD 2 Protocolo IP

2.1. Concepto de CATENET

2.2. Direcciones IP

2.3. Paquete IP


2.4. Redes

2.5. Manejo de

Errores

2.6. Ruteo y Fragmentación

RUTEO BÁSICO (14)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

EL5107 Tecnologías de Información y Comunicación

traceroute to dnc.org.nz (202.78.242.181), 30 hops max, 40 byte packets

- 1 nat.nic.cl (200.7.6.1) 0.248 ms
- 2 ciscom1e.nic.cl (200.16.114.11) 0.375 ms
- 3 200.27.103.25 (200.27.103.25) 0.933 ms
- 4 190.208.9.9 (190.208.9.9) 5.904 ms
- 5 190.208.9.86 (190.208.9.86) 2.906 ms
- 6 ae2-202.nyc20.ip4.gtt.net (173.241.129.209) 157.925 ms
- 7 xe-2-3-2.nyc38.ip4.gtt.net (141.136.105.18) 157.822 ms
- 8 206.111.13.221.ptr.us.xo.net (206.111.13.221) 151.871 ms
- 9 207.88.14.185.ptr.us.xo.net (207.88.14.185) 204.332 ms
- 10 te-11-0-0.rar3.sanjose-ca.us.xo.net (207.88.12.69) 202.814 ms
- 11 207.88.13.234.ptr.us.xo.net (207.88.13.234) 201.901 ms
- 12 ip67-92-171-26.z171-92-67.customer.algx.net (67.92.171.26) 203 ms
- 13 ten-0-2-0-3.cor01.sjc01.ca.VOCUS.net (114.31.199.242) 358.034 ms
- 14 ten-0-2-0-3.cor01.syd04.nsw.VOCUS.net.au (114.31.199.28) 355 ms
- 15 ten-0-2-0-2.cor03.syd03.nsw.VOCUS.net.au (175.45.72.224) 355 ms
- 16 ten-0-1-0-1.cor01.alb01.akl.VOCUS.net.nz (114.31.199.117) 351 ms
- 17 ten-1-0-0.bdr01.alb01.akl.VOCUS.net.nz (114.31.202.39) 350 ms
- 18 as9503.cust.bdr01.alb01.akl.VOCUS.net.nz (175.45.93.118) 352 ms
- 19 TenGigabitEthernet0-3-0-5020309.akkin-rt2.fx.net.nz (202.53.187.197) 351.807 ms
- 20 * * *
- 21 * * *

HEADER (1)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores
- 2.6. Ruteo y Fragmentación

- El header IPv4 puede contener opciones que lo hagan más largo, por ello lleva un campo con el largo del header. IPv6 en cambio tiene un Header de largo fijo.
- Teóricamente, un router no debe cambiar nada en el encabezamiento, de modo de mantener el sobre y el contenido intactos hasta el destino final.

HEADER (2)

UNIDAD 2 Protocolo IP

- 2.1. Concepto de CATENET
- 2.2. Direcciones IP
- 2.3. Paquete IP
- 2.4. Redes
- 2.5. Manejo de Errores

LITUICS

2.6. Ruteo y Fragmentación

- El TTL es la excepción a la regla, y esto complica todo, puesto que el checksum del header debe recalcularse y cambiarse en cada router. Esto hace casi imposible hacer un ruteo eficiente de paquetes IPv4.
- La fragmentación es otro ejemplo
- En IPv6 se ha rediseñado completamente el header de modo de hacerlo de tamaño fijo, sin checksum y las opciones típicamente sólo son analizadas en el destino final.
- La fragmentación ahora es opción end-to-end