Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática MA3802 - Teoría de la Medida

Auxiliar 1

Profesor: Rafael Correa. Auxiliares: Diego Gramusset, Sebastián Tapia.

Definición 1 (π -sistema). Sea X un conjunto y $P \subseteq \mathcal{P}(X)$, P se dirá π -sistema si $\forall A, B \in P$, se tiene que $A \cap B \in P$.

Definición 2 (λ -sistema). Sea Sea X un conjunto e $I \subseteq \mathcal{P}(X)$, I se dirá λ -sistema si:

- $X \in I$.
- $Si A \in I, A^c \in I.$
- $Si(A_n)_{n\in\mathbb{N}\setminus I}$ son disjuntos, entonces $\cup A_n\in I$.

Definición 3 (λ -sistema engendrado). Sea $P \subseteq \mathcal{P}(X)$, se define el λ -sistema engendrado por P:

$$\lambda(P) = \bigcap_{I \in Y} I,$$

 $donde\ Y = \{ I \subseteq X |\ I \supseteq P,\ I\ es\ \lambda - sistema \}$

Como observación es fácil notar que intersección arbitraria de π -sistemas (λ -sistema resp.) es π -sistemas (λ -sistema resp.).

- **P1.** Sea X un conjunto y $T = \{A \subseteq X | A \ oA^c \ es \ numerable\}$. Muestre que T es una σ -álgebra.
- **P2.** Siga el siguiente esquema para demostrar el π , λ -Teorema:
 - (a) I es λ -sistema y π -sistema ssi I es una σ -álgebra.
 - (b) Si P es π -sistema, entonces $\sigma(P) = \lambda(P)$. Indicación: Considere el conjunto $\kappa(A): \{B \subseteq X: A \cap B \in \lambda(P)\}$, muestre que $B \in \kappa(A)$ ssi $A \in \kappa(B)$ y que para $A \in \lambda(P)$, $\kappa(A)$ es un λ -sistema.
 - (c) $(\pi, \lambda$ -Teorema) Sea P un π -sistema y I un λ -sistema tal que $P \subseteq I$, entonces $\sigma(P) \subseteq I$.
- **P3.** Sea (X,T) un espacio medible y consideremos $C \subseteq \mathcal{P}(\overline{\mathbb{R}})$ una colección tal que $\sigma(C) = \beta(\overline{\mathbb{R}})$. Entonces $f: X \to \overline{\mathbb{R}}$ es medible ssi para todo $A \in C$, $f^{-1}(A) \in T$.
- **P4.** Sea A la tribu generada por los singletons en un conjunto X no numerable. Muestre que una función $f: X \to \mathbb{R}$ es $A \beta(\mathbb{R})$ medible si y sólo si es constante salvo a lo más en un conjunto numerable.