MA3701-Optimización

Profesores: Jorge Amaya A., Natalia Ruiz G.

Auxiliares: Guillermo González C., Leonel Huerta R., Marco Oporto

Auxiliar 9

25 de Mayo del 2015

P1. Una empresa de arriendo de autos, debe satisfacer la demanda de cuatro ciudades en un cierto día:

Ciudad	Autos demandados
A	5
В	3
\mathbf{C}	7
D	2

La empresa tiene 3 garages donde guarda sus autos:

Garage	Autos guardados
1	4
2	7
3	10

Las distancias entre los garages y las ciudades están dadas por la tabla:

Gar. / Ciu.	A	В	\mathbf{C}	D
1	2	5	6	3
2	4	3	2	1
3	1	4	8	2

La empresa busca encontrar una asignación de los automóviles a las ciudades, de manera de minimizar la distancia total recorrida.

- (a) Dibuje un diagrama del problema a resolver.
- (b) Plantee el problema como uno de optimización lineal.
- **P2.** Considere el siguiente problema¹: Un vendedor desea visitar, recorriendo la menor distancia posible, *n* ciudades. El vendedor debe partir en una ciudad fija (donde vive) y terminar en la misma. Suponemos además que puede viajar entre cualquier par de ciudades.
 - (a) Plantee el problema como un problema de grafos.
 - (b) Escriba el programa lineal asociado.
- **P3.** Dadas las distancias entre las ciudades A,B,C,D,E,F y G representadas en la siguiente tabla, encuentre el camino más corto y la distancia asociada a dicho camino para llegar desde A hasta G.

Distancia	A	В	\mathbf{C}	D	\mathbf{E}	\mathbf{F}	G
A	-	3	2	4	∞	∞	∞
В	3	-	1	∞	8	∞	∞
$^{\mathrm{C}}$	2	1	-	2	3	5	∞
D	4	∞	2	-	∞	2	∞
\mathbf{E}	∞	8	3	∞	-	3	1
\mathbf{F}	∞	∞	5	2	3	-	6
G	$ \infty $	∞	∞	∞	1	6	_

Donde la distancia ∞ representa que no hay camino que conecte a las ciudades respectivas.

¹Este problema es bastante famoso, se conoce como el Problema del Vendedor Viajero (en inglés, *Traveling Salesman Problem* (TSP)).