MA2601-3 Ecuaciones Diferenciales Ordinarias Profesora: Karina Vilchez - Auxiliar: Dario Palma

Auxiliar 12 Un poco de "teoria"

Corrigiendo la convecion vista en clases y esperando aclarar como se hacen los diagramas veamos que al linealizar nuestro SNLA en torno a un punto P_1 obtenemos λ_1, λ_2 con sus vectores v_1 y v_2 . Luego la forma lineal en torno al punto P_1 es de la forma:

$$\begin{pmatrix} x \\ y \end{pmatrix} = c_1 e^{\lambda_1 t} \begin{pmatrix} v_{11} \\ v_{12} \end{pmatrix} + c_2 e^{\lambda_2 t} \begin{pmatrix} v_{21} \\ v_{22} \end{pmatrix}$$

donde las trayectorias de las soluciones dependen de las constantes c_1, c_2 y de los valores de los vectores propios. Veamos que si $c_1 \neq 0$ y $c_2 = 0$ tenemos que las soluciones siguen al v_1 y el otro caso es analogo.

Por ejemplo en torno a (0,0) si $\lambda_1 = \lambda_2 < 0$ el primer caso tomando $c_1 = v_{11} = v_{12} = 1, c_2 = 0$ y nos da:

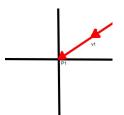


Figure 1: $c_1 = 1$

Figure 2: $c_1 = -1$

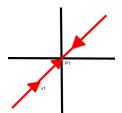


Figure 3: trayectoria sobre v_1

y con $c_1 = -1$ esto cambia a la figura 2. Luego el último diagrama es la trayectoria que pasa por el v_1 que definimos para este ejemplo. Si dibujamos tambien la trayectoria, de la misma forma, por v_2 asumiendo $v_{12} = -1$, $v_{22} = 1$ se tiene (junto a v_1):

Figure 4: trayectorias sobre v_1, v_2

Luego como $\lambda_1, \lambda_2 < 0$ si cambiamos las constantes es posible recorrer todo el plano.

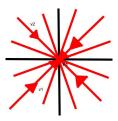


Figure 5: diagrama de fase en torno a (0,0)

Esto es lo que se llama diagrama de fase. En este caso es un sumidero. Esto nos permite visualizar como se comportan las soluciones del *SNLA* sin resolverlo (pues no es posible hacerlo en forma explícita).

Espero que esto resuelva la duda del auxiliar de hoy.

Preguntas (ahora si xd) a dpalma@dcc.uchile.cl.