MA2001-6 Cálculo en Varias Variables

Profesor: Patricio Felmer A. Auxiliar: Diego Marchant D.

Guía Complementaria C3 y Examen

1. Multiplicadores de Lagrange

- 1. Encontrar los puntos extremos de la función f(x,y,z)=x+3y-2z sobre la esfera unitaria $x^2+y^2+z^2=1$
- 2. Analice los puntos críticos de la función $f(x,y)=x^3+y^3$ sujeto a la restricción $F=\{(x,y)|x^2+y^2=1\}$
- 3. Calcular los puntos más lejanos y más cercanos al origen de la curva $5x^2 + 5y^2 + 6xy 8 = 0$
- 4. Determine los puntos extremos de

$$f(x, y, z) = 2x^2 + y^2 + z^2 - xy$$

en la región

$$\frac{x^2}{2} + \frac{y^2}{4} + \frac{z^2}{8} = 1$$

2. Integración

1. Sea $f: \mathcal{R} \subset \mathbb{R}^2 \to \mathbb{R}$ una función continua con $\mathcal{R} = \{(x,y) | 0 \le x \le a; 0 \le y \le b\}$. Demuestre que existen $m:=\min_{(x,y)\in\mathcal{R}} f(x,y)$ y $M:=\max_{(x,y)\in\mathcal{R}} f(x,y)$ tales que

$$m \cdot ab \le \int_{\mathcal{R}} f \le M \cdot ab$$

Indicación: Aplique el teorema de Weierstrass y concluya. Otra forma de hacerlo es a través de sumas de Riemann.

2. Se define la región $D=\{(x,y)|\ 0\leq x\leq 2;\ -x\leq y\leq x\}.$ Calcule:

$$I = \iint_D \frac{1}{\sqrt{1+4x+4y}} dy dx$$

- 3. Demuestre usando sumas de Riemann que las siguientes funciones son integrables y calcule su valor:
 - a) f(x,y) = x + 4y; $\Omega = \{(x,y) | 0 \le x \le 2; 0 \le y \le 1\}$
 - b) $f(x,y) = 3x^2 + 2y$; $\Omega = \{(x,y) | 0 \le x \le 2; 0 \le y \le 1\}$
- 4. Sea $f: \mathbb{R}^2 \to \mathbb{R}$ de clase \mathcal{C}^2 , pruebe el Lema de Schwarz. Para ello defina la función $g(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y) \frac{\partial^2 f}{\partial y \partial x}(x,y)$ e integre sobre un rectángulo arbitrario, luego justifique el hecho de que una función continua es nula ssi su integral sobre cualquier rectángulo es nula.

3. Volúmenes

- 1. Encuentre el volumen de la región $D = \{(x, y, z) | 0 \le z \le (x + 2y 1)^2; x \ge 0; y \ge 0; x + 2y 1 \le 0\}$
- 2. Calcular el volumen del sólido que se forma al intersectar el cilindro $x^2 + y^2 \le rx$ con los planos z = 0 y x + y z = 0.
- 3. Calcule el volumen del prisma (dibújelo) en \mathbb{R}^3 con base el triángulo en el plano z=0 limitado por las rectas y=0, x=1 e y=x cuya parte superior yace sobre el plano x+y+z=3
- 4. Considere el dominio $\Omega \subseteq \mathbb{R}^3$ determinado por $x^2 + y^2 \le 9$, $z \ge 0$, $z \le 2 + (y-3)^2$, $z \le 2 + (y+3)^2$. Encuentre el volumen de Ω .

4. Teorema del Cambio de Variable

1. Considere la transformación $T: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$(u,v) \mapsto T(u,v) = (x(u,v),y(u,v)) = (u+v,u^2-v)$$

Para la pregunta 2 de Integración:

- a) Bosquejar D y encontrar D^* tal que $T(D^*) = D$.
- b) Utilizando TCV calcule I.
- 2. Calcule la integral doble

$$\iint_{R} (x^2 + y^2) dx dy$$

donde

$$R = \{(x, y) | x \ge 1; y \ge 1; x^2 + y^2 \le 4\}$$

- 3. Determinar el volumen de la región limitada por la superficie esférica $x^2+y^2+z^2=a^2$ y los planos $y=x,\,y=\sqrt{3}x$ y que está dentro de $x\geq 0,\,y\geq 0$
- 4. Sea $D = \{(x,y) | x \ge 0; y \ge 0; x \le y \le 1; y \ge 1/2 x\}$. Calcule

$$\iint_D \frac{ye^y}{(x+y)^2} dxdy$$

usando el cambio de variables x + y = u, y = uv.

5. Superficies

- 1. Determinar el área de la superficie de la esfera $x^2 + y^2 + z^2 = a^2$ incluída dentro del cilindro $x^2 + y^2 \le ay$ (considere simetría en el problema y use coordenadas cilíndricas). Dibuje.
- 2. Considere la superficie S del paraboloide $z=1+x^2+y^2$ que queda dentro del cilindro $(x-1)^2+y^2\leq 1$.
 - a) Bosqueje S y encuentre una parametrización para la superficie.
 - b) Calcule el vector normal unitario a S y el elemento de superficie.
 - c) Calcule la masa total de S, suponiendo densidad

$$f(x, y, z) = \frac{1}{\sqrt{1 + 4x^2 + 4y^2}}$$

 $\# \ LoDamos Vuelta$