MA2001-6 Cálculo en Varias Variables

Profesor: Patricio Felmer A. Auxiliar: Diego Marchant D.

"El estudio profundo de la naturaleza es la fuente más fértil de descubrimientos matemáticos" - Joseph Fourier

Auxiliar 3

31 de Marzo de 2015

- 1. a) Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función continua tal que
 - f(0) > 0, y
 - f(x) < 0 para todo x con ||x|| > 1Demuestre que existe $\overline{x} \in \mathbb{R}^n$ tal que

$$f(x) \le f(\overline{x}) \ \forall x \in \mathbb{R}^n$$

b) Considere la función $f: \mathbb{R}^2 \to \mathbb{R}$ dada por:

$$f(x,y) = \begin{cases} x+y & \text{si } x+y \le 0\\ \sqrt{x+y} + xy & \text{si } x+y > 0 \end{cases}$$

Determine los puntos de \mathbb{R}^2 donde f es continua. Justifique su respuesta.

2. a) Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ definida por

$$f(x,y) = \begin{cases} \frac{sen(x^2 - y^2)}{x^2 - y^2} & \text{si } x^2 \neq y^2\\ 1 & \text{si } x^2 = y^2 \end{cases}$$

Demuestre que f es continua en todo punto de \mathbb{R}^2 .

b) Determine si existe el límite

$$\lim_{(x,y,z)\to(0,0,0)} \frac{x^2yz}{\sqrt{x^{12}+y^6+z^4}}$$

3. Determine la aproximación lineal afín a la función

$$f(x, y, z) = \frac{e^{xy} + z^2}{1 + \cos^2(xy)}$$

en el punto (0,3,2).

4. (**Propuesto**) Sea $f: \mathbb{R}^n \to \mathbb{R}$ una función continua y definamos $g: \mathbb{R}^n \setminus \{0\} \to \mathbb{R}$ mediante:

$$g(x) = f\left(\frac{x}{\|x\|}\right)$$

- I) Pruebe que g alcanza su máximo y mínimo en $\mathbb{R}^n \setminus \{0\}$ (<u>Hint</u>: Considere g restringida al conjunto $S = \{x \in \mathbb{R}^n \mid ||x|| = 1\}$).
- II) Pruebe que el límite

$$\lim_{x \to 0} g(x) \ existe$$

si y sólo si f es constante en $S = \{x \in \mathbb{R}^n \mid ||x|| = 1\}.$