MA2001-6 Cálculo en Varias Variables

Profesor: Patricio Felmer A. Auxiliar: Diego Marchant D.

"En las matemáticas, el arte de proponer una pregunta debe tener un valor más alto que resolverlo" - Georg Cantor

Auxiliar 2

20 de Marzo de 2015

1. Sea la sucesión definida como

$$S_n = \left(sen\left(\frac{\pi n}{2}\right), \left(1 + \frac{1}{n}\right)^n\right)$$

demuestre que existe una subsucesión S_{n_k} convergente y determínela.

- 2. Sea $(x_n)_{n\in\mathbb{N}}$ una sucesión de Cauchy en \mathbb{R}^n . Si $(y_n)_{n\in\mathbb{N}}$ es otra sucesión que verifica $d(x_n,y_n)<1/n$ para todo $n\geq 1$. Pruebe que:
 - a) $(y_n)_{n\in\mathbb{N}}$ también es de Cauchy.
 - b) $\lim_{n \to \infty} x_n = x \iff \lim_{n \to \infty} y_n = x$
- 3. Sea $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ una función que cumple la siguiente propiedad:

$$\exists k \in (0,1) \ tal \ que \ \forall x, y \in \mathbb{R}^n, \ \|f(x) - f(y)\| \le k\|x - y\|$$

Demuestre el **Teorema del Punto Fijo de Banach** en \mathbb{R}^n . Para ello proceda como sigue: Considere la sucesión definida por $x_{n+1} = f(x_n)$

- a) Pruebe que $||x_{n+1} x_n|| \le k^n ||x_1 x_0|| \ \forall n \in \mathbb{N}$
- b) Pruebe que $||x_{n+p}-x_n|| \leq \frac{k^n}{1-k}||x_1-x_0|| \ \forall n,p \in \mathbb{N}$. Concluya que $\{x_n\}_n$ es convergente a algún $\overline{x} \in \mathbb{R}^n$
- c) Pruebe que \overline{x} es el único con la propiedad $f(\overline{x}) = \overline{x}$. A este \overline{x} le llamamos Punto Fijo.