MA2001-4 Cálculo en Varias Variables

Profesor: Alejandro Jofré

Auxiliar: José Palacios A., Sebastián Urzúa B.

Auxiliar 6

20 de Abril de 2014

1. Resumen

Teorema 1 (Regla de la Cadena). Sean $f: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$, $g: B \subseteq \mathbb{R}^m \to \mathbb{R}^p$, f diferenciable en $x_0 \in A$, g diferenciable en $f(x_0) \in B$. Luego, $g \circ f: A \subseteq \mathbb{R}^n \to \mathbb{R}^p$ es diferenciable en x_0 y

$$D(f \circ g)(x_0) = Dg(f(x_0))Df(x_0).$$

2. Problemas

P1. a) Sea $f: \mathbb{R} \to \mathbb{R}$ una función diferenciable tal que f(0) = 0, f'(0) = 1 y $g: \mathbb{R}^2 \to \mathbb{R}$ función diferenciable tal que $\nabla g(0,0) = (1,3)$. Considere la función $h: \mathbb{R}^3 \to \mathbb{R}$ definida por:

$$h(x, y, z) = g(f(x) + f(y)^{2}, f(x) + f(y)^{2} + f(z)^{3}).$$

Encuentre el vector $\nabla h(0,0,0)$.

b) Para una función $f: \mathbb{R}^2 \to \mathbb{R}$ considere la ecuación diferencial en derivadas parciales:

$$\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2 = e^{4x}\sin^2(y).$$

El objetivo de este problema es encontrar una solución f(x,y) de la ecuación planteada, definida en todo \mathbb{R}^2 . Para ello proponga una solución del tipo:

$$f(x,y) = g(e^x \cos(y), e^x \sin(y)),$$

encuentre una ecuación para g y resuélvala.

P2. (a) Considere la función:

$$f(x,y) = \begin{pmatrix} 4y^2x + 1\\ \sin(3x + y - 2) \end{pmatrix}$$

Muestre que f es diferenciable en (0,2) y encuentre la mejor aproximación lineal afín T(x,y) de f cerca de este punto.

(b) Sea $f: \mathbb{R}^2 \to \mathbb{R}^3$, $f = \begin{pmatrix} f_1 \\ f_2 \\ f_3 \end{pmatrix}$, una función diferenciable en el punto (0,2) tal que

$$f(0,2) = \begin{pmatrix} 3 \\ 4 \\ 0 \end{pmatrix}, f'(0,2) = \begin{pmatrix} 1 & 0 \\ 0 & 4 \\ 1 & 1 \end{pmatrix}.$$

Considere la función $g(x,y) = f_1(x,y) + f_2(x,y)f_3(x,y)$. Demuestre que g es diferenciable en (0,2). Encuentre el vector $\nabla g(0,2)$