Control 4 Tiempo: 90 minutos

- 1. (45pts) Considere un modelo de Cournot en que $n \geq 2$ firmas escogen simultáneamente cantidades q_i , $i = 1, \ldots, n$. La demanda viene dada por P(Q), donde Q es la cantidad total, y $P: \mathbb{R}_+ \to \mathbb{R}_+$ es continua y decreciente. Las firmas son simétricas y tienen una función de costos $c: \mathbb{R}_+ \to \mathbb{R}_+$ continua y estrictamente creciente con c(0) = 0.
 - a. (15pts) Sea $q^* \in \mathbb{R}_+$ y denotemos $\mathbf{1} = (1, \dots, 1) \in \mathbb{R}^n$ el vector que toma el valor 1 en cada componente. Muestre que

 $q^*\mathbf{1}$ es un EN simétrico ssi $q^* \in B((n-1)q^*)$

Profesor: Juan Escobar

Auxiliar: Sebastián Vergara

donde $B(Q) = \arg \max_{q>0} P(q+Q)q - c(q)$. Muestre que B(Q) es no vacio para todo $Q \ge 0$.

En lo que sigue del problema, suponga que B(Q) es un singleton para todo $Q \ge 0$

- b. (15pts) Muestre que B(Q) es una función decreciente de Q. HINT: Puede serle útil considerar primero el caso en que la función objetivo que define B(Q) es cóncava y diferenciable y ver cómo cambian la función de ingreso marginal y la utilidad marginal cuando cambia Q. Luego pruebe el caso general.
- c. (15pts) Suponga que P(0) > 0 y que existe $\bar{Q} > 0$ tal que P(Q) = 0 para todo $Q \ge \bar{Q}$. Muestre que existe un único EN simétrico.
- 2. (45pts) Considere el siguiente juego de votaciones en que |I| votantes, con |I| > 3, escogen uno de |J| candidatos posibles. Los votantes simultáneamente ponen un voto $j \in \{1, ... J\}$ en una urna. Abstenciones no son permitidas. Gana el candidato que tenga más votos (en caso de emptate entre 2 o más candidatos se escoge un ganador unformemente entre los que recibieron más votos). Si el candidato ganador es j entonces el pago del jugador i es $\pi_i(j)$, donde π_i : $\{1, ..., |J|\} \to \mathbb{R}_+$. Suponemos que para todo i y todo $j \neq k$, $\pi_i(j) \neq \pi_i(k)$.
 - a. (5ts) Escriba el modelo como un juego en forma normal.
 - Dado un perfil de estrategias mixtas σ , definimos $\bar{j}(\sigma) \in \Delta(\{1,\ldots,|J|\})$ como la distribución de probabilidades sobre el candidato ganador cuando los votantes votan de acuerdo a σ .
 - b. (10pts) Sea $j \in \{1, ... |J|\}$ un candidato. Muestre que existe un ENEM σ^* tal que $\bar{j}(\sigma^*)$ pone probabilidad 1 en el candidato j
 - c. (10pts) Suponga que existe π : $\{1, \ldots, |J|\} \to \mathbb{R}_+$ tal que $\pi \equiv \pi_i$ para todo i y consideremos un candidato j^* tal que $j^* \in \arg\min_i \pi(j)$. Explique por qué el ENEM σ^* tal que $\bar{j}(\sigma^*) = j^*$ podría no ser razonable.
 - d. (20pts) Sea ahora $\tau \in \Delta(\{1, ..., J\})$ una distribución sobre candidatos. Existe un ENEM σ^* tal que $\bar{j}(\sigma^*) = \tau$? Si su respuesta es afirmativa, provea una demostración. Si no, provea un contrajemplo.