Profesora: Paola Bordon

Auxiliar: Andrés Fernández

Auxiliar 9 - Semestre Otoño 2015

26 de Mayo, 2015

Canción del día: La primera vez, Los Tres

Problema 1: ¿Cuál es el problema con las ecuaciones simultáneas?

Considere el siguiente modelo de serie de tiempo ampliamente utilizado en Macroeconomía (modelo Kevnesiano de determinación del ingreso):

$$C_t = \beta_0 + \beta_1 Y_t + u_t \tag{1}$$

$$Y_t = C_t + I_t (= S_t) \tag{2}$$

donde, C_t es el gasto de consumo, Y_t es el ingreso, I_t es la inversión y S_t es el ahorro.

- 1. Teniendo en cuenta la expresión para desvíos con respecto a la media $(y_t = Y_t \overline{Y})$, muestre la siguientes identidades:

 - I. $\sum_{t=0}^{n} y_{t} = 0$ II. $\frac{\sum_{t=0}^{n} Y_{t} y_{t}}{\sum_{t=0}^{n} y_{t}^{2}} = 1$
- 2. Muestre que la covarianza $(cov(X,Y) = \mathbb{E}[(X \mathbb{E}(X))(Y \mathbb{E}(Y))])$ entre Y_t y u_t es distinta de
- 3. Muestre que $\hat{\beta}_1$ es un estimador sesgado e inconsistente del parámetro $\beta_1.$

Problema 2: Usando Mínimos Cuadrados Indirectos

Considere el siguiente modelo de demanda y oferta:

$$Q_t = \alpha_0 + \alpha_1 P_t + \alpha_2 X_t + u_{1t} \tag{3}$$

$$Q_t = \beta_0 + \beta_1 P_t + u_{2t} \tag{4}$$

donde Q_t es la cantidad comprada/vendida, P_t es el precio y X_t es el ingreso o gasto total del consumidor. Se debe tener en cuenta el supuesto de equilibrio de oferta y demanda $(Q_t^o = Q_t^d)$.

- 1. ¿Está el sistema identificado? ¿Qué métodos de estimación se pueden usar?
- 2. Plantee las ecuaciones reducidas del sistema y las expresiones para estimar los parámetros reducidos.

- 3. Plantee las expresiones para obtener estimaciones de los parámetros poblacionales.
- 4. Utilizando los datos de las tablas, obtenga las ecuaciones poblacionales por MCI.
- 5. ¿Qué limitantes tiene el modelo de MCI?

P	Coef.	Std. Err.	Q	Coef.	Std. Err.
X	.004343	.0009847	X	.0019829	.000524
_cons	72.30908	9.200218	_cons	84.07021	4.896013

Problema 3: Usando Mínimos Cuadrados en 3 Etapas

El economista David Romer propone en 1993 un modelo sobre inflación y apertura económica. Él establece que existe una relación entre la inflación de un país y su apertura econonómica internacional. Para hacer su modelo, él mide el grado de apertura de los países, otorgando un valor numérico.

En la base de datos APERTURA.dta se encuentran las variables:

OPEN grado de apertura económica del país

INF escala de inflación del país

PCINC ingreso per-cápita del país [US\$] LAND área territorial del país $[km^2]$

OIL dicotómica si el país exporta petróleo

- 1. Plantee un modelo estructural e indique por qué existiría el problema de simultaneidad. Indique cuáles variables usaría, y cuáles de éstas serían endógenas y cuáles exógenas.
- 2. Indique si su modelo está identificado.
- 3. Indique cuáles esperaría que fueran los signos de los parámetros.
- 4. Contraste lo que esperaba con las tablas de estimación de MCO y de MC3E.

	Coef.	Std. Err.						
INF	3.536 (811)						2	
OPEN	3369705	.1419215				OPEN	05	Carl English
LPCINC	.8032879	2.080441	INF	Coef.	Std. Err.	OPEN	Coef.	Std. Err.
OIL	-6.55573	9.627909	160000	\$256,75.61	1 2940 (200) (200)	107.65.01	(C)	20.000000000000000000000000000000000000
_cons	24.00887	15.75165	OPEN	2145881	.0948595	INF	0680353	.0715556
¥						LPCINC	.5595009	1.493948
OPEN			LPCINC	.4512323	2.079197	LLAND	-7.393355	.8348144
INF	0596291	1.072298	OIL	-6.648918	9.72773	cons	116.2263	15.88083
LPCINC	.557892	1.481816	_cons	22.17311	15.83357			
LLAND	-7.414822	2.852951						
_cons	116.3323	20.62961	(b) MCO para INF			(c) MCO para OPEN		

(a) MC3E

Figura 1: Tablas.