Profesora: Paola Bordon Auxiliar: Andrés Fernández

Auxiliar 8 (Stata) - Semestre Otoño 2015 12 de Mayo, 2015

Canción del día: En la ciudad de la furia, Soda Stereo

Problema 1: Ganándose un nobel

Utilice la base de datos sobre consumo (consumo.dta) que contiene medidas del consumo de los EE.UU. en el tiempo, y considere las siguientes series de tiempo anuales:

$$consum_t = \alpha_1 consumo_{t-1} + u_t \tag{1}$$

$$ingreso_t = \beta_1 ingreso_{t-1} + v_t$$
 (2)

$$serv_t = \gamma_1 serv_{t-1} + w_t \tag{3}$$

$$pob_t = \delta_1 pob_{t-1} + s_t \tag{4}$$

Donde, según los datos de la base mencionada:

Variable	Medida	
consum	consumo real per cápita	
ingr	ingreso disponible real per cápita	
pob	población medida en 100.000s	
serv	consumo de servicios en \$USD de 1992	

- 1. Luego de abrir la base de datos, inicialice la base para una serie de tiempo. Posteriormente explore preliminarmente las variables y determine si es necesario o no transformar alguna por ajuste (para esto puede usar logaritmos). Use¹:
 - I. tsset year, yearly
 - II. keep year consum ingr serv pob
 - III. tabstat consum ingr serv pob, statistics (mean sd min max n skewness kurtosis) columns (statistics)
 - IV. $gen\ lvar1 = log(var1)$

¹Reemplace var1, var2,... por la variable correspondiente.

- 2. Explore las variables en su dimensión temporal. Para esto, grafique cada variable temporalmente para visualizar tendencias, y realice también un gráfico de puntos sobre autocorrelación. Luego analice por raíces unitarias (test de Dickey-Fuller Aumentado) para confirmar sus hipótesis preliminares. Posteriormente, tome primeras diferencias y realice el mismo procedimiento:
 - I. line var1 var2 year
 - II. scatter var1 L.var1
 - III. $dfuller\ var1,\ lags(1)$
 - IV. gen dvar1 = var1 L.var1
- 3. Estime modelos conjuntos utilizando MCO para evaluar relaciones (hágalo de la siguiente manera (1) sobre (2); y por otro lado (3) sobre (4)). Para esto simplemente corra una regresión entre las dos variables dependientes. Evalúe la relación analizando los \mathbb{R}^2 . Hágalo también para las primeras diferencias.
- 4. Testee cointegración en los pares de ecuaciones mencionadas en el punto 3. Para esto realice los tests de Engle y Granger, Durbin y Watson; y Johansen. Siga los siguientes procedimientos:

Engle y granger	Durbin y Watson	Johansen
a. reg var1 var2	a. reg var1 var2	a. vecrank var1 var2
b. predict residuos1, res	b. estat dwatson	
c. line residuos1 year		
d. dfuller residuos1		

Tests e interpretación

Normalidad Una curva normal estándar se caracteriza por una simetría (skewness) de 0 y una kurtosis		
	de 3. El test de simetría y kurtosis (sktest) testea con hipótesis nula la igualdad a dichos	
	valores para cada una de las variables.	
DFA	El test ADF considera en su hipotesis nula la presencia de raíz unitaria en el modelo.	
	Se rechaza cuando el estadístico es mayor en valor absoluto que los valores críticos. El	
	estadístico de MacKinnon se asemeja al tradicional test t de significancia.	
Engle y	Corresponde a las 2 etapas que se realizan, aunque la interpretación se basa en el test de	
Granger	Dickey-Fuller. Debe tenerse en cuenta que si los errores poseen raíz unitaria, no integra	
	de orden 0. Notar que los errores $\hat{u}_t = Y_t - \beta X_t$ debe ser I(0), de otra forma no hay	
	cointegración entre las variables.	
Durbin y	El estadístico plantea en hipótesis nula $\hat{\rho} \approx 1$. Esto indicaría aproximadamente que el	
Watson	error sigue un camino aleatorio y por lo tanto los errores serían I(1) bajo hipótesis nula.	
	Esto implicaría que no existe cointegración entre las variables. Los valores críticos para	
	rechazar fueron tabulados de forma que si el estadístico ES MENOR que (0,511; 0,386;	
	0,322) NO se rechaza hipótesis nula para confianza de $(1\%, 5\% \text{ y } 10\%)$.	
Johansen	El test presenta el estadístico de la traza, el cual bajo hipótesis nula determina que no	
	todas las variables del modelo son $\mathrm{I}(0)$ y por lo tanto no se puede asumir cointegración.	
	Entonces, si el estadístico supera el valor crítico propuesto, se puede rechazar la hipótesis	
	nula en favor de la alternativa, la cual establece la presencia de cointegración.	