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Saada, Elasticity Theory and Applications
P. 18-19 (Review of matrix algebra)

Given
3 -2 5 2 3 —1
[aJ=)6 0 3|and[b)=|4 1 ©
1 5 4 5 2 -1

(a) compute [a] + [b] and [a] — [b].

(b) Verify: [a] + ([b] — [e]) = ([a] + [6])) — [¢].

(c) Split [¢] into its symmetric and its antisymmetric parts
Given

1 -3 2 1 4 10
=12 1 -3|@p=2 1 11|
4 =3 -1 I -2 1 2

and

21 -1 =2

[e]=|3 =2 =1 -1/, show that [a][b] = [a]c]
2 -5 —-1 0

in spite of the fact that [b] 7= [c].

If [b] = [a]la], show that [b] = [b].

If (@) is a column matrix, show that {@}{a@}’ = [c], where [c]is a square
matrix with the property that [¢] = [¢].

Given

5 =2 0 3
[@=|-2 3 —lland{fy=|-2]
0o -1 1 1

compute the product [al{b}. _ o

If [a] is a square matrix of order 3, show that its determinant is given
by Eykﬂ'“ﬂzja%(f‘.j.k, = 1.2,3). )

Write out in full the following expressions :

by 8, x;x; ¢} 6, =a;/

a) ;X gl

i Xi%

d) CF;- = iy 'fimﬂkm e) U,-f = 2#3,1 + Aﬁgekk
The subscripts 7, /. k, and m take the values 1. 2, and 3.
Find the inverse of the matrices

2 -2 4
2 3 2

1 2 3
and {0 1 51
—1 | 4 0 3

P 91-94 (General Analysis of strain in Cartesian Coordinates)

1. The displacement components at the points of a body are:

U] = C x|, My =CyXy, Uy = 0Xy.

(a) Find the components & of the strain matrix, and the value of
the three invariants of the state of strain.

(b) What is the value of the volumetric strain g,?

(c) If the constants c¢|, c;, and ¢; are so small that their squares
and products are negligible, show that the components of the
strain matrix &; become equal to the components of the linear

strain matrix €.

2. Solve Problem | for displacement components given by

U = €)x;, M2=u3=0.
Draw sketches showing a cubic element at a point, and with its
edges parallel to the reference axes, before and after transformation.

Let
uy = C(2x + x3), wy = C(x} = 3x3), uy =0,

where C = 102, be the expressions of the displacements of a
certain body.

(a) Show the distorted shape of a two-dimensional element of
area whose sides dx; and dx, are initially parallel to the
coordinate axes; the two elements are at a point M whose
coordinates are (2, 1, 0).

(b) Determine the coordinates of M after transformation.

(¢) Decompose the matrix of the transformation at M into its
symmetric and antisymmetric components.

(d) Find the angle of rotation and the cylindrical dilatation of the
two elements dx; and dx,.

In Problem 3, compute the strain &, of an element MN whose
direction cosines are (1/v/3, 1/y/3, 1/y/3). What are the principal
directions and the principal strains?
Given the displacement components

up =cx,(xy + x3)%, uy = exa(xy + x)%, w3 = exy(x + x, P

where c is a constant:
(a) Find the components of the linear strain.
(b) Find the components of the rotation,
(¢) Find the principal elongations per unit length E,, E,, and E,
at a point M whose coordinates are (1, 1, 1).
The components of linear strain in a body are given by:

0 0

—cx;
[eij} = 0 0 5 I
—Ccxy X 0

where ¢ is a constant. Find the principal strains and the principal
directions at the point (1, 2, 4).
Determine the volumetric strain g, for the following state of strain:

05 1 0
1= 1 2 05|
0 05 0

Compare the result to the unit change of volume E,, and to the first
invariant.

}‘,741'& *|r|-

0005 m.

Fig. 4.6

8. A plate whose thickness is 1% in. is stretched as shown in Fig. 4.6.
Find the principal strains, e;, ¢;, and the maximum shearing strain
in the plate.

9. In a two-dimensional state of strain,

ey, = 800 X 1076, e), = 100 X 1076, e}, = —800 % 1075,

Find the magnitude and direction of the principal strains, ¢, and ;.
both analytically and through the use of Mohr’s diagram. Draw a
sketch showing the deformation of a unit square with edges initially
along OX) and 0X;.

10. If

e, = —800 X 1076, ey = —200 X 1076, ¢ = —600 X 1078,

show in a suitable sketch the position of the axes with which the
maximum shearing strain is associated.
11. Are the following states of strain possible?

ey = C(xt + x3) e = Cxy(xf + x3)

ey = Cx} e = Cxjxy
€3 = 2Cx1x; e =20x1x3x3
ep=epn=en=0 epy=e3=epn=0

C is a constant.

12. Show by differentiation of the strain-displacement relations (4.10.1)

that the compatibility relations (4.10.4) are necessary conditions for
the existence of continuous single-valued displacements.

13. Establish by differentiation a set of compatibility relations involving

both the ¢;” s and the w;” 5.



P p 180-182 (Analysis of Stress)

PROBLEMS

1.

3.

»

A stress field is given by:

oy = 20x} + x} O3 = X3
0y = 30}(]3 + 200 013 = x%
0y = 30x3 + 30x3  gy3 = x7.

What are the components of the body force required to insure
equilibrium?

The usual engineering equations for the stresses due to the bending
of a circular beam are (Fig. 7.25):
Mz, V(R? = x3)
o =7 G2 =——37
7 37 | IIR*
037 = 0 O3 = 0 - 4
Jy3 = 0 073 = 0

Do these equations satisfy equilibrium? M is the bending moment,
V is the shearing force, 7 is the moment of inertia about a diameter
of the section, and R is the radius.

The stress held in a continuous body 1s given by

| 0 :l:
foy]=10°] 0 1 dx |psi
2x; 4y, |

Find the stress vector & at a point M (], 2, 3), acting on a plane
Gtxy+x;=6
The state of stresses at a point is given by

10 5 =10
log)=10%) 5 20 IS | psi
-10 -15 -10

Find the magnitude and direction of the stress vector acting on a
plane whose normal has direction cosines (1/2, 172, 1/1/2); what are
the normal and tangential stresses acting on this plane?

In a solid circular shaft subjected to pure torsion, the stress field is
given by:

0 0 ~Cx
lo;] = 0 0 Cxy
Cx; Cxy 0

where C is a constant. At the point whose coordinates are (1, 2, 4),
find:

(a) the pnncipal stresses

(b) the pancipal directions

(¢) the maximum shearing stress and the plane on which it acts

(@)ay; = 4,000 psi

6. At a point M of a continuous body, the components of the stress

tensor are:
| -3 V2
|a,)-|0‘ -3 V2 | psi.
4

4
Vi -vVi2

[

(a) Find the principal stresses and the principal directions
(b) Draw Mohr's circles, and obtain the normal and tangential
stresses on a plane whose normal has direction cosines
(1/1/3,1/7/3,1/1/3) with respect to the reference axes.
(¢} Find the octahedral normal and shearing stresses.
(d) What are the invariants of the spherical and the deviatoric
components of this stress tensor?
(e) What is the equation of the stress quadric?
Find the components of the stress tensor of Problem 4 in a system
of coordinates whose axes have direction cosines (0, 0, 1), (1/1/2,
1/\/2’0)’ (]/'\/is '_l/\/jso)°
A very thin plate is uniformly loaded as shown in Fig. 7.26. Among
all the planes that are normal to the plane of the plate, which ones
are the principal planes and what is the value of the stresses to
which they are subjected?
For the following states of stress at a point, use Mohr’s circle to
obtain the magnitude and directions of the principal stresses:

(b)a; = 14,000 psi

(c)o;, = 12,000 psi

pp 180-182 (Elastic Stress-Strain Relationships)

PROBLEMS

Show that the stress-strain relations for a panel (Fig. 8.7) made of
orthotropic material under a condition of plane stress can be written
in the following form which involves only four independent con-
stants:

Oy = 0 0y = 5,000 pSl 0y = 5,000 pSl
a1 = 8.000 psi a1 = — 6,000 psi a); = 10,000 psi
O3 =033 =0353=0 O3 =03 =033=0 o3=0p=0;=0

10. Obtain the equations of equilibrium in the two systems of coordi-

nates defined in Problems I and 2 of Chapter 6.

~

B=10000 ps/

Fig. 7.26

2.

oy Hy H,; 0 €
op|=|Hy Hy 0 en |
a1z 0 0 2G;||en

X

Fig. 8.7

Derive the expression of H,|, H,,, H);, and G}, in terms of the
tensor Cy,. In Fig. 8.7, the reference axes are parallel to the axes of
symmetry.

Sometimes the components of the compliance matrix Sijxs are
written in terms of the constants E, », and G in the following
manner:

r
Sin = El", Sz = 2{(;—]2‘ S = —EI—IZ
where £ is Young’s modulus in the OX; direction, G|, is the shear
modulus associated with the OX,, OX, directions, and »,, is Pois-
son’s ratio for the strain in the OX; direction caused by the stress in
the OX, direction. The inverse of the siress-strain relations in
Problem 1 is written as:

1 "2
e E —E 9 ||
_h2 1
€y | = E[ Ez 0 gy |-
e 0 0 5(}72 o1z

Determine H,|, Hy,, and H), in terms of E,, E,, and »,,.

Find the coefficients of the matrix of the elastic coefficients in
Problem 2, if the system of axes is rotated 30 degrees counterclock-
wise around the OX; axis.



5.

o)
5]

)

o3 =03 =0 o3 =03=>0 G012 <
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A cubic material is a material in which the properties are the same
along three orthogonal directions. Show that the matrix of the
coefficients of elasticity contains three independent constants only:
Choosing the coordinate axes along these directions, the compliance
matrix can be written as follows:

Sllll
Sll22

Sz 0

Sun Snm 0

Spz Sum Sun 0
0 0 0 Son
0 0 0 0 Sun
0 0 0 0 0

SllZZ

(== e R e B )
S oo oo

S12l2

Prove that in an isotropic, homogeneous, linearily elastic solid, the
principal axes of the stress tensor coincide with the principal axes of
the linear strain tensor.

Could the following stress fields be possible stress fields in an elastic
solid, and, if so, under what conditions?

ax; + bxy o =axixi+ bx, oy =a[x} + b(x} — x3})]

ex) +dxy 6y =cx3 620 = afxf + b(x3 — xP)]

Sx + gxy 0y, = dx; x, 033 = ab(x{ + x3)

2abx) x,

033 =0 033 =0 )3 = 03 = 0.

a, b, ¢, d, f, and g are constants.

A cube of iron whose edges are 10 in. long is subjected to a uniform
pressure of 10 tons / in? on two opposite faces; the other faces are
prevented from moving more than 0.002 in. by lateral pressure.
Determine the pressures on these faces and the maximum shearing
stress in the cube. £ = 30 x 10° psi and » = 0.3.

A cube of Duralumin, whose edges are 5 in. long, is subjected to a
uniform pressure of 15,000 psi on the four faces normal to the OX]
and OX, axes. The two faces normal to the OX; axis are restricted
to a total deformation of 0.0006 in. Determine the stress o33 and the
change in length of the diagonal of the cube. E = 107 psi and »
=03.
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9. In Problem 8 of Chapter 7, find the change in length of the

diagonals. £ = 30 x 10% and » = 0.3.

10. A steel pulley is to be fitted tightly around a shaft. The internal
diameter of the hole in the pulley is 0.998 in., while the outside
diameter of the shaft is 1.000 in. The pulley will be assembled on
the shaft by heating the pulley, then allowing the assembly to reach
a uniform temperature. What is the temperature change required to
produce a clearance of 0.001 in. for easy assembly? For steel,
a=60x10"%/°F, E = 30 x 10° psi, » = 0.3.

11. A weight of 20,000 lbs. is supported on two short lengths of

concentric copper and steel tubes (Fig. 8.8). The thickness of these
tubes is such that both tubes have a cross-sectional area of 2 in2.
Determine the amount of load carried by each tube at room
temperature and when the temperature is raised 100 ° F above
room temperature. For steel, £ = 30X 10® psi, » = 0.3, a = 6
x 107¢/°F, and for copper, E = 17 x 108 psi, » = 0.35, ¢ = 9.2
% 107¢/°F. The tubes have the same length at room temperature
when unloaded.

12. A prismatic bar of length / hangs under its own weight and is

supported at its top by the uniform stress pg/ where pg is the weight
per unit volume (Fig. 8.9). Show that the solution,

Fig. 8.8

O3 = pgx, O =op=ap=0;3=0;=0,

satisfies equilibrium, compatibility, and the prescribed boundary
conditions. If an element at A along the OX; axis is fixed, find the
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Fig. 8.9

expressions of the displacements uy, u;, and Uy .
13. The stress distribution in a thin disk of radius b rotating at an

angular velocity « rad./sec. is given by:
2
6, = 3 ?g- "pwzbz(l - i;)
340 2.2 _|+3v£)
g ¢ b (l 3+ v pt

Oy = Oz = Uﬂz=°zz=0'

Ogp =

Neglecting gravity forces, show that this solution salis‘files equilibri-
um, compatibility, and the prescribed boundary conditions.

14. The solution of the problem of the circular shaft fixed at one el.ld
and subjected (o a twisting moment at the other is given by (see Fig.

10.5):

) = —axyXg, My = 0X X3, U3 = 0.

What arc the conditions that this solution imposes on the applied
twisting moments? Is the shaft in a state of plane strain or of plane

stress?

REFERENCES

[1] S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill, New York, N. Y.,
1970. ) o )

{21 I N. Sneddon and D. S. Berry, “The Classical Theory of Elasticity,” Encyclopedia of
Physics, Vol. 6, Springer-Verlag, 1958.

3] A. E. H. Love, A4 Treatise on the Mathematical Theory of Elasiicity, 4th ed., Dover, New

York, N. Y., 1927. . ‘
[4] Y. C. Fung, Foundation of Solid Mechanics, Prentice-Hall, Englewood Cliffs, N. J., 19.6.5.
[5] N. J. Mushkelishvili, Some Basic Problems of the Mathematical Theory of Elasticity,

Noordhoff, Groningen, 1953. )
{6] L S. Sokolnikoff, Maihematical Theoty of Elasticity, McGraw-Hill, New York, N. Y., 1956.



pp 265-267 (Solutions of elasticity problems by
potentials)

PROBLEMS

1. Given the scalar and vector potentials ¢ = xf + 2x3 and § = pi,
does the displacement field generated by ¢ and i satisfy Navier’s
equations, and, if so, what is it?

2. Find the displacements and the stresses defined by the following
Lamé strain potentials:

&= A} — x3) + 2Bx; x;
¢ = Cr'cos(nf).

3. Determine the displacements and the stresses defined by the

Galerkin vectors:
() V= Cpliy
(b) ¥ =—Cp?xyiy + Coxyiy.

4. Find the stresses corresponding to the Lamé strain potential ¢
= Cin(p + x3). What is the problem to which this potential furnish-
es a solution [1]?

5. Show that the solution of Boussinesq’s problem can be obtained
through a combination of a Galerkin vector ¥ = Bpiy and a Lamé
strain potential ¢ = C/n(p + x3). Show that C = —(1 — 2»)B and
B = P/2II

6. What are the stresses corresponding to the following Airy stress

functions:
b= g\f + bxy x; + 5\5
¢ = gt,’ + gxfxz + le x3 + zt?
Xz
l— b _..*
-] S— 4
o A X,
Fig. 9.6

7. A thin square plate whose sides are parallel to the OX; and OX,
axes (Fig. 9.6) has in it stresses described by oy, = cx;, 03 = X,
and possibly some shearing stresses o,. ¢ is a constant.

(a) Find the stress function by integration, and the most general
shearing stresses which can be associated with the given o,
and o0y,.

(b) Obtain the strains and, by integration, deduce the expressions
of the displacements u, and u,.

(¢) Find the extension of the diagonal OC.

8. Show that the stress function

¢= (‘[(xf + x3 )lan"‘:f - x .\'2]

provides the solution to the problem of the semi-infinite elastic
medium acted upon by a uniform pressure ¢ on one side of the
origin (Fig. 9.7).

9. Investigate what problem of plane strain is solved by the stress
function ¢ = Crf sin 4.

10. Investigate the expression ¢ = cos?#/r as a possible stress function.

IR %
0 9=Tan"-;§

X2
Fig. 9.7

Pp 319-320 (The Torsion Problem)
PROBLEMS

1. A circular shaft is made of an inner circular solid cylinder whose
material has a shear modulus G, and an outer circular annulus
whose material has a shear modulus G, (Fig. 10.38). The materials
are perfectly bonded at the interface r; and the shaft is subjected to
a twisting moment M, :

:!) Fig. 10.38

(a) Find the expression of the angle of rotation per unit length a.

(b) Find the distribution of the shearing stresses o, in the
cylinder and the annulus.

(c) How much of the total twisting moment M, does the annulus
carry?

Fig. 10.39
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2. Show that the Prandtl stress function

o= m(r2~b2)(2a (;059_ l)

furnishes the solution to the problem of the circular shaft with a
circular groove (Fig. 10.39). Find the value of the constant m and
the expressions of the stresses o3 and 6,3 on the boundaries €| and
C;.

3. Three bars—one with a square cross section, one with an equilateral
triangle cross section, and one with a circular section—have equal
cross sectional areas and are subjected to equal twisting moments,
Compare the maximum shearing stresses and the torsional rigidities
of the bars.

4. A steel bar having a rectangular cross section 1 in. wide and 2 in.
long is subjected to a twisting moment of 1,000 Ib-in. Calculate the
maximum shearing stress and the shearing stress at the center of the
short side. (G = 12 x 10 psi)

5. A steel bar having a slender rectangular cross section } in. wide and
6 in. long is subjected to a twisting couple of 1,500 I1b-in. Find the
maximum shearing stress and the angle of twist per unit length «
using the exact solution of Sec. 10.7 and the approximate solution
based on the membrane analogy. What is the magnitude of the error
involved? (G = 12 X 106 psi .}

6. A brass bar having the cross section shown in Fig. 10.40 is subjected
to a twisting couple of 600 1b-in. This bar is 6 ft. long. What is the
angle of twist per unit length and the maximum shearing stress?
(G=4x10%psi.)



Pp 349-351 (Thick cylinders, disks and spheres)

PROBLEMS

1.

Find the ratio of thickness to internal diameter for a tube subjected
to internal pressure when the pressure is equal in magnitude to % of
the maximum circumferential stress. If the internal diameter of the
tube is 4 in., determine the increase in the external diameter when
the internal pressure is 12,000 psi and the tube is prevented from
changing length. (E = 30 x 10% psi,» = 0.3.)

A solid bar of uniform circular section is subjected to uniform
radial pressure. Show that the stress at any point in a plane section
parallel to the axis of the bar is compressive and equal in magnitude
to the radial stress.

A steel bar of 2 in. diameter is pressed into a steel sleeve so that,
when assembled, the magnitude of the radial stress between the two
is 2,000 psi, and that of the circumferential stress at the inside of the
sleeve is 3,200 psi. Assuming a close fit and neglecting friction,
determine the change of radial stress when the bar is subjected to
an axial compressive load of 15,000 Ib. (r = 0.3.)

A short steel rod of 2 in. diameter is subjected to an axial
compressive load of 60,000 b, It is surrounded by a sleeve 1 in.
thick, slightly shorter than the rod so that the load is carried only
by the rod. Assuming a close fit before the load is applied and
neglecting friction, find the pressure between the sleeve and the rod,
and the maximum tensile stress in the sleeve. (» = 0.3.)

The external diameter of a steel hub is 10 in. and the internal
diameter increases 0.005 in. when shrunk on to a solid steel shaft of
5 in. diameter. Find the reduction in diameter of the shaft, the radial
pressure between the hub and the shaft, and the circumferential
stress at the inner surface of the hub, (E 30 x 10° psi,» = 0.3))

A steel cylinder of 8 in. external diameter and 6 in. internal
diameter has another steel cylinder of 10 in. external diameter
shrunk onto it. If the maximum tensile stress induced in the outer
cylinder is 10,000 psi, find the radial compressive stress between the
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10.

11.

12.

13

15.

cylinders. Determine the circumferential stresses at inner and outer
diameter of both cylinders, and show on a diagram how these
stresses vary with the radius. Calculate the necessary shrinkage

allowance at the common radius. (£ = 30 X 108 psi,» = 0.3.)

A steel hollow sphere, whose inside diameter is 5 in., is subjected to
an internal pressure of 5,000 psi. Determine the thickness of the
material if the magnitude of the maximum stress is not to exceed

10,000 psi. Compare this thickness to that obtained from Eq.
(11.4.25).

Find the expressions of the stresses and displacements for a hollow
sphere subjected to an external pressure £ and filled with an
incompressible fluid such that its inner diameter does not change.
Determine the greatest value of the radial and circumferential
stresses for a thin disk rotating at an angular velocity of 150 radians
per sec.; the inner and outer radii of the disk are 6 in. and 12 in.
respectively, and the mass per unit volume p of the material is
0.28 Ib/in.?. (E = 30 X 10 psi,» = 0.3.)
A solid steel shaft of 8 in. diameter has a steel cylinder of 16 in.
diameter shrunk onto it. The inside diameter of the cylinder prior
to the shrink fit operation was 7.992 in. (E = 30 X 10° psi,» = 0.3.)
(a) Determine the external pressure £ on the outside of the
cylinder which is required to reduce to zero the circumferential
stress at the inner surface of the cylinder.

(b) Determine the radial pressure on the surface of contact due

to shrink fit.

(c) Find the speed of rotation to loosen the fit. (p = 0.28 Ib/in.?).
A solid steel shaft 36 in. in diameter is rotating at 200 rpm. If the
shaft cannot deform longitudinally, calculate the total longitudinal
thrust over a cross section due to rotational stresses. (o
=0.28 1b/in3, E = 30 X 10° psi, » = 0.3.)

Show that the radial displacement in a rotating solid cylinder,
whose ends are free to deform, is given by:

pu(1 + v)(1 — 2»)[ (3 — 5v)b?r 3]
u, = —r |
v SE(T — ») T+ X1 =20

A brass rod is fitted firmly inside a steel tube whose inner and outer
diameters are | in. and 2 in., respectively, when the materials are at
a temperature of 60 ° F. If the rod and the tube are both heated to
a temperature of 300° F. determine the maximum stress in the brass
and in the steel. The coefficients of expansion for steel and brass are
6x10°° and 10X 10® per degree Fahrenheit, respectively.
Young’s modulus is 30 X 10% psi for steel and 12.5 x 10° psi for
brass. Poisson’s ratio is 0.3 for steel and 0.34 for brass.

. Find the expression of o,,, 049, and a... in a long hollow cylinder with

fixed ends, which conducts heat in steady state according to

(AT, — AT;)in®
lng '

AT =

AT, is a constant increase in the temperature of the inner surface of
the cylinder and AT7;, smaller than AT}, is a constant increase in the
temperature of the outer surface of the cylinder.

Find the expression of the axial stress in the cylinder of Problem 14
when the ends are free.



Hartog, Advanced Strength of Materials, Cap |
PROBLEMS

1. a. A 12in. steel I beam with flanges and webb 14 in. thick is subjected to &
torque of 35,000 in.-lb, Find the maximum shear stress and the twist per unit
length, neglecting stress concentrations.

b. In order to reduce the stress and the angle of twist of this section, ¥4-in.-thick
flat plates are welded onto the side of the section as shown by the dotted lines. Find
the stress and the twist per unit length.

,‘L' @ 2 3
t

ProBLEM 2,

Pl 2"

A

1
b
|

ProsrEM 1,

2. The three tubular sections shown all have the same wall thickness ¢ and are
made from the same width of plate, .., they have the same circumference. Neglect-
ing stress concentrations, find the ratio of the three shear stresses for

o. Equal twisting moments in all three cases.

b. Equal angles of twist in all three cases.

5. The specified dimensions of the cross section of a pipe were 4 in. mesn diameter
and 0.25 in. wall thickness. When the pipe was delivered, the wall thickness was
found to vary aecording to the equation ¢ = 0.25 + 0.05 cos  to a close enough
appm::imation. The calculated torsional shear stress in the ideal tube was 8.500
Ib/in.

f
P t
’ ] 1
a a
!
2a
Proarem 5. ProsreEM 6.

a. If subjected to the twisting moment for which it was designed, what would be
the maximum shear stress in the actual tube?

b. What would be the calculated and actusal angles of twist for & 5-t length of
tube?

8. A thin-walled box section of dimensions 2a X a X tis to be compared with a
solid circle section of diameter a. Find the thickness ¢ so that the two sections have

a. The same stress for the same torque.

b. The same stiffness.

7. A two-compartment thin-walled box section with one compartment slit open
has constant wall thickness {. Write formulae for

a. The stress for a given torgue.

b. The stifiness, that is, M,/8,.

-..-q_-.l

PrROBLEM 8.

Cap Il (Rotating Disks)

33. A solid steel shaft of 8 in, diameter has a steel cylinder of 16 in. dinmeter plane strain, i.e., there is no distortion of the normal eross sections, but there will

shrunk over it with a shrink allowance of 0.0005 in./in.

a. Calculate the external pressure p, on the outside of the cylinder which is
required to reduce to zero the tangential tension at the inside of the eylinder,

b. Caleulate the resultant radial pressure at the shaft surface due to the shrink
fit and to that externsal pressure.

%y

&

16
ProsLEM 33,

34, A steel shaft of 5 in. diameter has a steel disk shrunk on it of 25 in. diameter.
The shrink sllowanee is 0.0008 in./in.

a. Find the radial and tangential stresses of the disk at standstill.

b. Find the rpm necessary to loosen the fit.

¢. From (a) and (b) deduce quickly what the shrink pressure is at half the speed
found in (b).

8b6. A steel disk of 20 in. outside diameter and 4 in. inside diameter js shrunk
on a steel shaft so that the pressure between shaft and disk at standstill iz 5,000
Ib/sq in.

a!.qusuming that the shaft does not change its dimensions because of its own
centrifugal force, find the speed at which the disk is just free on the shaft.

b. Bolve the problem without making the assumption a by considering the shaft
and disk assembly as a single solid non-holed disk.

38. A steel disk of 30 in. diameter is shrunk onto a steel shaft of 3 in. diameter.
The interference on the diameter is 0.0018 in.

a. Find the mazimum tangential stress in the disk at standstill.

b. Find the speed In rpm at which the contact pressure is zero.

¢. What is the maximum tangential stress at the speed found in (b)?

37. A flat steel turbine disk of 30 in. outside diameter and 6 in. inside diameter
rotates at 3,000 rpm, at which speed the blades and shrouding cause & tensile rim
loading of 600 lb/sq in. The maximum stress at this speed is to be 16,000 1b/sq in,
Find the maximum shrinkage allowance on the diameter when the disk is put on the
shaft.

38. The outward radial deflection at the outside of a thick eylinder subjected to
an internal pressure p; is

2?(’0"?
E(ro — 73)
By Maxwell's reciprocal theorem find the inward radial deflection at the inside of a
thick evlinder subjected to external pressure.
39, A rotating flat disk is in & state of plane siress, i.e., the stresses are all parallel
to one plane, and the axial stress is zero. A rotating long cylinder is in a state of

[by Eq. (41), page 54]

be an axial stress s, Derive the equations

s.=01+%'—%351:—_—2%m'="
,‘=C‘_g§___(ﬁ2&l ’r’

P81 -

which are the equivalent of Eqgs. (39) (page 52), for the case of plain strain,

40. Using the results of Prob, 39, obtain the expression

80 = b (1 — 2
4(1 — p)

for the axial stress in & rotating long solid eylinder with zero internal and external
pressures and ends free from constraint.

41. From Eqs. (43) show that the ratio of the maximum tangential stress to the
maxiraum radial stress for a rotating flat disk with no boundary loading is

or + ~ 27
( )

3+
(ro — Ti)n
Where do these maximum stresses occur?

48, A circular disk of outside and inside radii ry and r, fits snugly without clear-
ance or pressure around an incompressible core of radius r,. It is then subjected to
& compressive load of p, Ib/sq in. uniformly distributed around the outer boundary.

Develop the approximate formulae

g = — 2P0 2P
" 1+ a # 14+ &
for the radial and tangential stresses at the radius r,, assuming that r, is small

compared with ro.

43. A steel turbine rotor of 30 in. outside diameter, 6 in. inside diameter, and 2 in.
thickness has 100 blades 6 in. long, each weighing 11b. Assuming no expansion of
the 6 in. shaft due to its oun centrifugal foree, caleulate the initial shrink allowance
on the diameter go that the rotor loosens on the shaft at 3,000 rpm.

44, A disk of thickness t and outside diameter 2r, is shrunk onto & shaft of diam-
eter 2r, producing a radial interface pressure p in the non-rotating condition. Itis
then rotated with an angular velocity w radians/sec. If fisthe coefficient of friction
between disk and shaft and w, is that value of the angular velocity for which the
interface pressure falls to zero, show that

6. The maximum horsepower is transmitted when & = w/ /3.

b. This maximum horsepower is equal to 0.00036573fpw,, where the dimensions
are pounds and inches.

45. A steel gear is approximated by a disk 2.82 in. thick of 4 in. inside diameter
and 30 in. outside diameter. The gear is shrunk onto a steel shaft with a diametral
interference of 0.0024 in.; the coefficient of friction at the fit is f = 0.3,



a. What is the maximum horsepower which this gear can transmit?

b. At what rpm should the gear run in transmitting this maximum power?

¢. What should the dizmetral shrink interference be if the power to be trans-
mitted is double that possible with the 0.0024-in. interference?

d. At what speed should this new gear run?

g

ProsrEM 45.

ProprLEM 46.

46. A bronze ring of 16 in. outside diameter is shrunk around a steel shaft of
8 in. diameter. At room temperature the shrink allowance is 0.001 in./in. (that is,
0.004 in. on the radius). Calculate

a. The temperature above room temperature to which the entire assembly must
be raised in order to loosen the shrink fit.

b. The rpm at room temperature which will loosen the shrink fit.

The constants are

For steel: E = 30 X 10° Ib/sq in.; p = 0.3; @ = 6.67 X 107° in./in./°F;
¥ = 0.28 lb/eu in.

For bronze: K = 15X 10% 4 = 0.8;0 = 10 X 107% v = 0.33 lb/cu in.

47. A solid cest-iron disk of 12 in, diameter has a steel rim of 16 in. outside diam-
eter shrunk on it. If at 10,000 rpm the pressure between the rim and the disk is
zero, calculate the shrink allowance used.

& = 0.3 and v = 0.283 Ib/cu in. for both materials
Eout 1ren = 16 X 10° B, = 30X 10°

48. A steel rim of 30 in. outside diameter is shrunk on an aluminum disk of 24 in,
outside diameter and 4 in. inside diameter. At standstill the normal pressure be-
tween the disk and the rim in p. Assuming no pressure between the disk and the
shaft, what is the magnitude of the normal pressure between the disk and the rim
when the disk is rotating at 1,800 rpm?

Eyjumimem = 10X 10°Ib/sqin. 5= 0.095lb/ouin. u= 0.3

49, A steel shaft of 4 in. diameter is shrunk inside a bronze cylinder of 10 in.
outside diameter. The shrink allowance is 1 part per 1,000 (that is, 0.002 in.
difference between the radii). Find the tangential stress in the bronze at the inside
and outside radii and the stress in the shaft.

Epen = 30 X 10°1b/aqin,  Eyrome = 15 X 10° Ib/sq in.,

u = 0.3 for both metals
B0, A steel shaft of 3 in, dismeter has an aluminum disk shrunk on it of 10 in,

The shrink sllowance i8 0.001 in./in. Calculate the rpm of
Neglect the expansion of the shaft

outside diameter.
rotation at which the shrink fit loosens up.
caused by rotation.

w=03 E=10X10° y= 0.095Ilb/euin.

51. Show that when an aluminum disk of constant thickness and of radii r, and
ro is forced onto a steel shaft of radius r, 4 &, the maximum stress in the disk
(i.e., at the inner radius) is given by

1=, d\o—ri _1_]_2_
‘[( A E.) AxatE]=y

52. A rod of constant cross section and of length 2a rotates about its center in
its own plane, so that each end of the rod describes a circle of radius a. Find the
maximum stress in the rod as a function of the peripheral speed V. At what speed
is the stress 20,000 lb/sq in. in a steel rod?

B3. A thick-walled spherical shell of radii r, and r, is subjected to internal or
external pressure. By symmetry the principal stresses are s, radially and s,
tangentially (the same in sll tangential directions).

a. Sketch Mohr's circle for the stresses at a point.

b. Derive the equilibrium equation

rs; + 25, — 25, =0

by considering the stresses on a section of an elementary shell.

¢. Derive the compatibility equation by eliminating u, the radial displacement,
between the expressions for the radial and tangential strains ¢, = du/dr; ¢, = u/r;
that is, derive the equation

s(l+ ) +rai(l —w) — a1+ p) — prsl =0

d. Combining ‘‘compatibility’”” with “equilibrium,” obtain the differential
equation rs!’ 4 4s, = 0 for s,, and show that the solutions for s, and s, are

B
2
e. Bhow that if the internal and external pressures are p, and p,, we have

B
Br'-‘—'A+r—;

8 = A —

3 3
Te — T
A=E¢f P:o

]
To — T

g - @ = I,

rll_r?

64. Wound Cylindrical Pressure Vessel. Cylindrical thick-walled pressure vessels
have been made by starting from a comparatively thin-walled eylinder (say 56 in.
diameter and 1 in. wall thickness), to which a thin sheet (say 14 in. thickness)
is welded all along & longitudinal Jine, This sheet is then wrapped around the
veasel many times, under tension, so that finally the outer diameter (say 80 in.) is
considerably larger than the inner one. The last wrap of the thin sheet is held in
place by welding and by the end head pieces fitting over the cylinder. Assume that
the tensile stress in the sheet during winding is constant = s; let r, = the inner
radius of the central tube; r, + a = the outer radius of the central fube; { = the

thickness of the wrapping sheet, to be considered “small” ealculus-wise; r, = the
outer radius of the assembly: p = a variable radius between r; and r,.
a. Prove that the hoop stress locked up in the cylinder by this process is given by

e r r?
(snu)-u = 3(9) e j:_' 3(.&‘) o (1 + ps) dr
where s(p) = sy forr, + a < p<rmand s(p) = Oforr, < p < r,+ a.

b, Now put an internal pressure p, into the vessel, which sets up a Lamé hoop-
stress distribution in addition to the locked-up wrapping hoop stress. Write the
condition that the fofal hoop stress at r, is the same as that at .. This condition
will contain as the only unknown the wrapping tension s,.

¢. Caleulate the required wrapping tension s, for the case of p, = 10,000 1b/sq in.,
r, = 28in.,a = 1lin., r, = 40 in.; and calculate the combined hoop stress at r, and
7o (which is the same value), as well as halfway between.

65. Finish the problem of page 656 of the text, by answering questions 3 and 4
of page 56 for the hyperbolic disk.

B6. A disk of hyperbolic profile has diameters of 60 in. and 12 in. with correspond-
ing disk thicknesses of 3 in. and 6 in. Find the maximum blade loading, expressed in
pounds per inch of circumference permissible when the maximum stress at the bore
is limited to 20,000 Ib/sq in.

67. a. Prove that the maximum shear stress at the bore of a disk shrunk on &
solid shaft of the same material, with & given interference, is independent of the
shape of the disk (flat, hyperbolic, ete.)

b. Prove that the maximum shear stress at the bore of a disk shrunk on a solid
shaft of the same material does not change as the speed varies from zero to the
critical loosening speed (neglect the expansion of the shaft due to rotation).

58. A turbine blade is to be designed for constant tensile stress s, under the action
of centrifugal force by varying the area A of the blade section. Consider the
equilibrium of an element, and show that the condition is

A —_— p— PuT (rf=ra®)/2uaa
4, ¢
where A, and r, are the cross-sectionsal area and radius at the hub (i.e., base of the

blade).

59. A steel turbine rotor of 30 in. outside diameter and 4 in. inside diameter
carries 100 blades, each weighing 1 Ib with centers of gravity lying on & circle of
34 in, diameter, At the outside diameter of the disk its thickness must be 2 in,
to accommodate the blades. The rated speed is 4,000 rpm. Assume no pressure
at the bore.

a. Find the maximum stress for a disk of uniform thickness.

b. Find the maximum stress for a disk of hyperbolic profile, the thickness at the
hub being 15 in. and the tip thickness being 2 in. as before.

¢. Find the thickness at the axis and the thickness just under the rim if & disk of
constant stress (10,000 Ib/sq in.) is used.

60. A turbine disk of constant stress is to be designed to suit existing blading.
The design stress is to be 30,000 Ib/eq in. with & maximum axial thickness of 4 m,
Blading particulars are: pitch approximately 1 in.; weight of one blade and root

0.525 1b.; the center of gravity of the blades to lie at the rim of the disk; peripheral
speed 1,000 ft/sec. From these data determine the wheel radius, the epeed, and
the disk thickness just under the blades.



Cap V (Beams of Elastic Foundation)

81. A rail with cross section as shown rests on ballast having a modulus
k = 1,500 Ib/sq in. and is loaded by a single concentrated load of 40,000 1b. Find

a. The maximum rail deflection.

b. The maximum bending stress.

e. The bending moment 18 in. from the load.

”.
&A ]
=
1z 1285 in? Z=1e in*
ProBLEM 91, ProBLEM 92,

92, A rail with cross section as shown rests on a ballast foundation of modulus
k = 1,500 1b/sq in. The rail is subjected to two concentrated loads each of 30,000
1b, b ft apart. What are the maximum stress and maximum deflection of the rail?

83. A long steel rail of 7 = 88.5 in.* lies on & foundation of modulus k = 1,500
Ib/sq in. The rail carries many concentrated loads of 30,000 Ib, all equally spaced
20 ft apart along the rail. Find the deflection under the loads and also at points
midway between loads.

84, A small locomotive weighing 75 tons with its weight distributed uniformly on
three axles 7 ft apart runs on & light track of k¥ = 1,400 Ib/sq in., I = 41 in¥,
Z,... = 15cuin., and F = 30 X 10°Ib/sq in. Find the maximum deflection and
maximurm stress produced by the locomotive in passing over the track.

85. The semi-infinite beam of Fig. 105 (page 157) has the left end clamped
instead of hinged. Show that the deflection is now given by

y =21 = Figa)]

96. A grid work of beams is as shown. Ip, I; are the moments of inertia of the
transverse and longitudinal beams, [ is the length of the transverse beams, and a
is their center-to-center spacing. If the transverse beams are considered “built in"
at the ends, find the value of 8 for the longitudinal beam considered as a beam on
an elastic foundation.

L.
&g
Ml f
l — I &
i N,
ProBLEM 96, PronLEm 97,

87. A bronze pipe of 6 in, diameter and 14 in. wall thickness is subjected to a
circumferential load as shown. At what distance from the end is the diameter
unchanged by the load? What is the value of the load (pounds per inch) if the
diameter under it changes by 0.006 in.? Fyene = 15 X 10° Ib/sq in,

88. A long thin-walled steel pipe of radius r and wall thickness ¢ has a steel ring
shrunk over it in the middle of its length, Show that if the cross section of the ring
is A = 1.56 +/rf3, then the shrink allowance is shared equally between the ring
and the pipe (i.e., the reduction in pipe diameter equals the incresse in ring diam-
eter during shrinkage).

89. A long steel pipe of 12 in. inside diameter, 34 in. wall thickness, with an
internal pressure of 300 1b/sq in., is to have & maximum radial deflection of 0.002 in.
To do this, steel rings of 14 by 14 in. square cross section are shrunk on the pipe
with an interference of 1/1,000. What is the maximum ring spacing under these
conditions?

100. A steel pipe of 3 ft diameter, 14 in, thickness, with an internal pressure of
500 lb/sq in., is joined to a pressure vessel. The connection is assumed to be rigid,
i.e., there is no expansion or angular rotation of the end of the pipe. At what dis-
tance from the end of the pipe does the pipe diameter reach its fully expanded
value, and what is the maximum bending stress?

101. A long steel pipe of 48 in. outside diameter and 14 in. thickness is used in &
structure as & column. At the center of the column a thin platform prevents radial
expansion. Under an axial load of 750,000 lb, what are the longitudinal and
tangential stresses in the outer fibers under the constraint?

L 454

+5
'_%‘,ooo lbs,

ProsrLeEM 101,

102, A steel pipe of 30in. internal diameter and 14 in. thickness is subjected to an
internal pressure of 300 Ib/sq in. A rigid circular support (assume a knife-edge) is
located midway between the ends of the shell. Find the axial and tangential stresses
in the outer fiber under the support for the three conditions below:

a. The pipe takes no longitudinal thrust.

b. The axial thrust of the internal pressure is taken by ends welded to the pipe.

¢. The shell is rigidly supported at the ends by two fixed walls.

.
)

@

__|p=300 v {.&E’QWK
Y
a) b)

Proniesm 102

103. A long pipe of 30 in. outside diameter and 14 in. thickness is subjeeted to
radial loads of 1,500 Ib/in. distributed around the circumference at two sections

2 in. apari, as shown in the figure. For the section midway between the loads
determine

a. The radial deflection.

b. The longitudinal and tangential stresses in the outer fiber.

7 £
i —_— 4\\\\\\\\‘\\\\\\\\\\\\\\\\\\\\\\\'
T L] *' b
30" — I g
A
1500 lb/inl 11500 1b/in
Prosren 103. ProBLEM 104.

104. A long steel hollow shaft of 4 in. outside diameter and 14 in. thickness
rotates at 10,000 rpm end has steel flanges welded to the ends as shown. Using
Eqgg. (40) and (43), find the longitudinal bending stress in the shaft at the flange
due to the difference in centrifugal expansion of the tube and the flange. Assume
that no change of slope can take place at the end of the tube.

106. Steel boiler tubes of 4 in. outside diamater and 14 in. wall thickness are full
of water under 500 lb/sq in. pressure. They fit into a “header,” where the radial
support may be considered knife-edged, and protrude 34 in. as shown.

a. Show by superposition that the deflection under P is given by

y = %f. [1 4 2F¥(Be) -+ Fi(8e)]

where ¢ is the distance from the knife-edge to the end of the tube.
b. Apply the above to find the load per inch of circumference in this case.

Proprem 105,

ProsLEM 106,

108. The body of an axial compressor rotor is constructed s shown by attaching
a thin-walled hollow cylinder to two solid ends.

Assuming no change of slope at the ends, find the local bending stresses for 7,000
rpm, radius 6 in., and wall thickness 1 in.

107. A large 8-ft-diameter compressed-air vessel is to be made of 14-in. plate and
is to carry a pressure of 1001b/sq in. Investigate the three types of end construction



shown, for local bending stresses at the discontinuity. Assume that at the joint
only shear forces exist and no bending moments. Also assume that in {b) and (c)
the radial gap is shared equally between the cylinder and the head. At (a) the end
it attached to a “solid” foundation, (b) is a hemispherical end, and (c) & head of

constant stress (page 84).
b) )
cj 9.
i I | I
I

ProsLEM 107.

a)

AR

108. A long cylindrical shell supported as shown is raised in temperature by T'
degrees. Show that the maximum local bending stresses due to this expansion
are given by s = 0.5882TE, where o is the linear coefficient of thermal expansion.
Thus the stresses for & given material depend only on the temperature rise and not
on the shell dimensions.

\Ring shaped
knite edge

ProsLEM 108.

109. A cylindrical shell with no constraints has a radial temperature difference
AT across the wall thickness, varying linearly across the wall.

a. Show that the maximum bending stresses away from the ends due to this
temperature variation are (@EAT)/2(1 — u) in both the axial and tangential
directions.

b. At the ends of the shell there are no moments. Hence the condition at the end
is obtained by superimposing an end moment, opposite in sign to that given by the
stresses in (@), Using this, show that the increase in radius at the end is

_ 28 aE AT H
T ko120 — )

¢. Find the tangential stress at the ends from (b), using the condition u = (»/E)
(8; — MSuin1), and to this add the stress from (a) to show that the maximum stress
at the ends is 25 per cent greater than the stress at a considerable distance from the
ends.

110. A steel tank of 40 it diameter and 30 ft height is full of oil of specific gravity
0.9. The upper half of the tank is made from }4-in. plate and the lower half from
14in. plate. What are the values of the moment and shear force at the discon-
tinuity?

111. A long steel pipe of 40 in, diameter and 14 in. wall thickness carries water
under 200 1b/sq in. pressure. At the joints spaced ‘“far’’ apart it can be considered

built in, i.e., no expansion or rotation oceurs there. What are the longitudinal and
tangential stresses at the inside and outside of the pipe at these joints?

ProsrEm 111,

112 The theory of bending of beams is governed by the second-order differential
equation Ely” = M, while for torsion we have the much simpler first-order equa-
tion GI# = —M,. The theory of torsion of & bar embedded in an elastic founda-
tion is likewise much simpler than that of bending. Develop such & theory, and
carry it to the point of finding equations corresponding to Eqs. (84) to (89) and a
result corresponding to Fig. 94.

Cap VI (The Energy Method)

128. A square block of side ¢ has tensile stresses in it deseribed by s. = Cy,
8, = Cz, and possibly some shear stresses in eddition.

a. Find the stress function by integration.

b. Find the most general shear stresses which can be associated with these tensile
stresses.

¢. Find the displacement functions » and v, proceeding as indicated in Prob. 125.

d. Find the extension of the diagonal OB,
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ProsrEM 126.
127. Using the method of Prob. 125 and the stresses obtained for Fig. 120
(page 182), show that the deflection at the center of s simply supported beam
carrying uniform load w per unit length is

3K (& g)]
5»[1 + 5 7 \5 + 2
where 2! is the length of the beam, A the height and &, the deflection given by

strength of materials.
128. The stresses and deflections in rectangular beams with arbitrary load dis-

11}
1j]]=

5,

A

o st
Iy

tributions along the upper or lower edge could be obtained by building up stress
funetions in the form of polynomials, which is mainly & matter of trial and error.
A better method consists in the use of Fourier series, and for this we require the
stress function for a beam with sinusocidal loading as shown in the figure. Assuming
that

@ = sin 7 /(1)

where f(y) is as yet an unknown function, show that in corder to satisfy compat-
ibility we must have

& = sin 2 (c. mhlf + ainh"—f+ Cyy cash’T’*‘-l- C.yamhif)

I
U

ProsLEM 128.

129, o. Apply the stress function of Prob. 128 to the case of & flat thin beam of
infinite length and of height h, subjected to equal sinusoidal load distributions on
both of its long sides, of half wave length [, as indicated. Solve the four integration
constants by satisfying the conditions of sinusoidal normal stress and zero shear
stress on these faces, and prove that the result for the normal stress in the center line

of the beam is

ah xh . wh

2 Oy ey
jnh T 4 TR
sinh . + 7

b. Plot the ratio (s,},-0/(8,)y-rz = (8,),-0/A against the ratio I/A.

(3)y=0 = 24
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Pp 33-40 (Mathematical Preliminaries)
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s the two-dimensional Kronecker delta §,,=1 for a=pf and
¢f. Also define the two-dimensional alternator e,,=f-a,
and B=1,2, that is, e;; =€, =0, ey=—¢ey = 1. Show that
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S 81 Om| |92 O,
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Carpy=dasr Conas™?
 a=det(a,p) = €agd1a2p ™ a2
() &)
® 8,6,
® Agpu=0it A,=4,
@ A, B8 =ABy
15 (@) I f=f(x, x3%;), show that df/ do=(3f/dx)(dx,/ dt).
() Expand the double sum §= A, %%,
(o) Show that (a,x).p =4
(@ Show that 8,8,0,,= 4,
: Let §=a,xx=0 for all values of the variables x,,x;x; Show tha
“=-a
17 Let S=a,xxx, =0 for all values of the variables x,,x;,x,. Show that

Exercise 1.16
+ay, + g+ a4 ay + ay=0.
PN 117 With reference to Exercise 1.14 and 116, show Ea.u_..n_.&r and
18 Expand the determinants in 1.6 and show that they are equal (0 ¢, .rlnurﬁggaoqonﬁ_.iosai?&é =S
~ Enumerate all possible cases. iy Show that in a two-dimensional space, there is & unique scalar T

=16y, associated with every skew-symmetric tensor of order two, so that

| Tme,T (see Exercises 1.14, 116, and L17).




~ The unprimed reference is rectangular, Cartesian, and right-handed

() Are the primed coordinate axes mutually orthogonal?
() Is the primed reference right-handed or left-handed?

123 Given a vector A, and two second order tensors B, and C,, prove that:

B
B
B
B
g
i

W F=B,+C,isa second order tensor.
(b) Hy, = A B, is a third order tensor.

G () B, is a scalar.

\ (d) Hy=AB, is a vector.

= S, where § is a scalar and N, is an arbitrary

124 (@) Given that T,N,N,
tric, second order tensor.

vector, show that 7, is a symme
() Given that 7,4,B,= S, where Sisa scalar and 4, and B,
and arbitrary vectors, Show that ﬂc:-ﬁao_.oaoan:to.
tion Ty A, B,G, =S, where § is a scalar and 4,, B, and G,

ggﬁg-ﬂiw-gao&a

are independent

lr;e_lc.-gt.r-;r-_-o:co.&
=ay g, Ty 808 Aye= %0
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tion is unique,

Show that ¢, is a s,
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Pp 75-82 (Stress)

% P with (outer) unit

to n (normal componen;)

endicular to n (shear compq.




4 E,fv.qel.
Show that the shearing stress at P

r the case of “simple shear,” in other words, the case where the
ing stress components are a single pair of shearing stresses.
n coordinate system such that

DEtm 0
[agl=lir: 0::0
0551040

itude and orientation of the principal stresses.
ctreme shearing stresses and the planes on which they act.
of a solid the stress vectors T(n) and T(n") act on the planes

it normal vectors n and n’, respectively. Show that the
the direction n’ is equal to the component of T(n') in the

ss field 7, = —p§,, where the scalar p=p(x,,x; x3).
iations of equilibrium, in this case, assume the form

—gradp+F=0

,quvél. in unabridged notation, and show that i ,Ev_f

=7, in unabridged notation. Compare with (2.14),

that the sum of the squares of the magnitudes of the

.. B o auninlly vo_.vnu&nc_w_. planes at a point p of
t. In other words, show that

(o) Tle, )+ T(e;)T(e) + Tles) Tes) = 17 =21,

e orthonormal basis system (e, €,,€3).

solid, the components of the stress tensor referred (o

55.—3 8
7 1 |x 107 pascals.

1Xes at point P with respect to the
nes of the principal axes. The

pect to the x,y,z axes by
to the plane.

Exercise 2.19
7 is the shear modulus, £ is the angle of tyig
the polar moment of inertia of the plap,

PRI

find the principal stresses, the principg|
and the planes upon which they ac;,

shaft satisfies the stress equations of
are neglected.

are solutions of (2.29). Give a fy]|

(N— HY+ S*=R?,

rincipal directions
ncipal values are

(251¢)

of elementary beam theory, the stress field

figure is given by ._.QI...BI._.UI.-.E'O.

in the beam
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Exercise 2.18

d to torsion as shown in figure (a). The
section is given by I =/ rr,ydA. It can be
nts in the shaft (see figure (b)) are given
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is the greatest error in this approximation?

Prove that
9r5=213-61,.
: Show ___-.. the square of the shear stress acting on a plane defined by
normal unit vector m is given by S7=nind(0,~ 0, + nind(a,— 0.0+
la_vu where 0,,0,,0, are principal stresses. e,

* Given the principal axis system (X, Y, Z), specif i
s ; ) X,Y,2),s y the eight unit normal
ors which define the octahedral planes. s

that (2.41) is valid for each of the eight octahedral planes. Use
of Exercise 2.31.

te (2.28) into (2.42), and use (2.43). Show that the average value
of all possible shear stresses at a point is related to the
stress by (S?) =3(7/.

the normal stress acting on the octahedral plane is propor-
ess invariant /,, that is, show that

0o=1(0,+0,+03).
) and (2.61), reduce (2.62) to (2.66).
: (2.66), and apply (2.61). Show that (2.67) results.
), and prove the result (2.69).
{o establish the validity of 2.74).

d analysis to establish the validity o

ibrium referred to oblate spheroidy)

parabolic coordinates (£7,¢) 1o
1, 2= 3(n° —§7).

referred to parabolic coord;.

Pp 113-125 (Deformation and Strain)

(dRP - |def = 22, o
R~ | = 2, ay,

day =l 4 oty vdu
dx, = 2dusdR - dusdu
and £, are the Lagrangian and Eulerian strain tensors

v (3.5), (3.16), and the relation u= R

respectively,

“r=e (X~ a,) 10 show that

QIQ#.UIG.?...&!—MI .cl.«»
e 3, (3:30)

da,

¢ to Exercises 3.1 and 3.11, show that n\ln»wal»
ax,

0 is & tensor of order two. Do not use the quotient rule

= 0,, where L, is the L. i i
y " ¢ Lagrangian strain tensor and
D tensor G = (3x, /da)(dx, /da).

, Where £, is the Eulerian strain tensor and gy is
= (0a, /dx,)(da, / dx,).

that da,= dx, —(0u;/dx))dx; = (5, ~ E,~
tensor (3.28) and where A, = ;[(du,/dx))
e Eulerian rotation tensor.

and physical interpretation of the
ith reference to the figure and to
tation of the Eulerian strain

Exercise 3.11

about the X, axis as shown in the figure




»w,.sux?r&r.rs&assnoﬁ.wrg 6)

Use (3.15) and (3.18) 10 show the validity of (3.33a), that is, show that

cos @1 = Hle - = 2Ly,
BA 2 .uv sing ., U+ M1+ My

(3.33)

with reference to (3.29) and Exercise 3.11, show that in the Eulerian repro-

lh-ag.

—~ cos ') =cos = 3a =sing,,= IR o e
(7 +$u)~sintum 7= M{9)(1 = M%)

4 _&’__I_&..__

M
|dR,|

, and so on,

ow that the invariants of the Eulerian strain tensor are given by

&, =E\ |+ Ep+Eyy=E +E+E,

E E E E. z. .
mnl m: M._N 1 MNN 23 + mjuu h.,:
21 22 32 muu ~u_... m__
=E\E,+ E,E;+ E,\E,
N: m: m._u

=|E;, E,, Exn|=E\EE,
E;, Ey

normal strain components.
£,, £,, £, of the Lagrangian strain tensor (3.

e Eulerian strain tensor (Exercise 3.15), thal

—48,+ 126,

8+ 4L, +8E,)(1 - 26, +46,—86,)=
ity of the Lagrangian Ew m_._a__w-u_ il
3.16, and 3.17).

here
Strain »W._ 4 m:

e 3.18 and use (3.47) to show that the voly
me

VG =(1-26,+46,-86,)" "7,

- der the rotation (in space) of the vector G, Construct & drawinit
g 10 ? 37, and denote the é between au and L s A‘\Nu.l.d?
X H"‘ petween G, and e, by (7/2)~ 0. Show that for sufficiently
rotations [0y, <1, [0y €1, and for sufficiently small relative elongn-
ges | M 1. we have By duy /3y, Oy, = Dy /day,

4 Consider the rotation (in space) of the vector G, Construct a drawing

¢ to Fig. 3.7, and denote the angle between G, and ¢, by ?\E.l Oy
Ste the angle between G, and e, by (7/2)~ @, Show that for sufficiently
¢ rotations |05,/ <1, |0y <1, and for sufficiently small relative elonga-

(| €1, we have

Ouy
da,’

by =

( by 8, the u:N_mn between G, and e,. Show that for small

o
we have M, = %a,
e Ly =M, =0u,/da,

(o= du, / da,, Lyy=My=0duy/day in the case of small

. Hence, in the case of small strain and

Gy~ G |dAT)|.

#Lyy) +4(Lyy Loy~ L),

the volu i i :
i ts and the volume dilatation at a point of 4
or components are given by




Exercise 331

Find the relative elongation of the lines AC and DB.

Find the change of the initially right angle ADB.

Find £, £, and 2

G, J, and the volume dilatation.

resistance strain gage is an electromechanical device for measuring
longations parallel to a free surface. It is often used in an arrange-

a strain rosette which is bonded to a free surface as shown in the
e strain components L, L,,, L, if:

ge rosette measures the relative elongations

0= =0.003, Log.= —0.003, L, 5o.=0.006.

e rosette measures the relative elongations

device are
hls- = 1.0.

1 Liz and L. -io_.. to a&o:u-noa. o
with the X,-X; axes. Find the angyy, dis Mg

* show that Ry = Ruy = = R = = Ryu.
show that the equation R, = ¢, S, is identically satisfied by

»

Sy= 8= % s Ritm
and show that Sy; = Raszse S12= Ry, and so on.

340 Show that u; =€« + €u; ~ e

show that a given field of (linear) strain 2¢,=u;+u,; determines its
“—R—Eﬁ displacement field only to within an arbitrary infinitesimal rigid

displacement of the solid.
342 (@ Expand (3.77b), that is, show that

Si1= Ry S12= Ry,
S3=Ryp (3.78)

83= R ;.

S3n=Ry13
S33= Ry

tute (3.68) into (3.80), and show that S, =0.

v that equations (3.80) are not independent, that is, show that the

St Siz2t Si33=0
Syt Sp 2+ 853=0
Syt Sx2+ S33,3=0

d by any continuous, differentiable field of (linearized

strain, w=0u/dz=00/0z=0, and therefore ¢, =
aditions of compatibility in this case?

cement relations €, = }(,;+ ;) satisfy tb

wym oy (34 v~

M
sy = 7 Y1

M
Uy — N.M a,ay.

the (linear) strain and rotation fields.
the boundary conditions along a,=0.
e compatibility conditions satisfied?

Exercise 3.46




the validity of (3.90c).

cal polar coordinates. Show that (see 3.91)

2e9=e,Dy+e;D, = LU 1 3,

T T T
r  rsinf 39

ical polar coordinates. By direct substitution, show that the inte-

ﬂ-!.__.@ relations Gb.uv ate mwmmmoa.g the strain-displacement relations
6 91) referred to spherical polar coordinates.

353 Derive the (linearized) strain displacement relations referred to oblate
oidal coordinates (u,v,¢). See Exercise 2.44.

Derive the (linearized) strain displacement relations referred to para-
coordinates (£,71,¢). See Exercise 2.45.

nsider the point symmetric deformation of a sphere (or spherical
acterized by R=r(l1 +A), where A is a constant. The symbols  and
radial coordinates of the same material point before and after
tion, respectively. With reference to Fig. 2.15, show that

u =\r
uy=u,=0
M,=M,=M,=\

L, = Leg=L,,=M1+3})
Ni“hio“h\tﬂo

|>

MO =M =M=

>

1+
A(1+3A
(1+N)?

~

, lh‘“h‘ﬂ

: w and a=28// are constants (see the figure,
(R,8,Z) are the QP—&S& coordinates of .__o

IB@ after deformation. (Note: this problem s
st.) Show that

=4 +atant,

ﬁ-'.’ '-..-
@ =X = xtanl’, y=xy, ay=x,
Lusly=ly=ly=0, 2L, «unir
NN.-nl—DB—..
E\\=Eyy=Ep=E, =0, 2By = =’ T
2E,=tanl
t_lzulp zul/\ﬂﬂﬂtrs—n -1
t*-vl zm:lo. >&..l-| /\_ +,S=~1
dV —dv,
GmJim], 2 w0
dv,
tan I’
sing,,= =N Pry =y =0,
% ViewnT i)
Xy Exerclse 3.57

<« 1. Show that for this case
2L,,=2E,=T
i Ni*&lc. Q_NI—J.

Pp 198-206 (Solutions of some linear elasticity problems)

a transversely constrained, elastic medium m,cnr that v=0 4y, d
x=0 and x=a are subjected to a uniformly distributeq

L pEm!

0
e Yt A

Po




, elastic medium g
plane whicp 18 of
. Find
)

uch that ysq and
Tgmally at yw g
the resulting fields of .:.na._.-.

n the x directig,
- (See the figure,

Exercise 5.2

53 An elastic solid of unbounded extent hi
a. The cavity contains a gas under pressure
and strain fields in the solid.

as a .%7012_ cavity with radius
Po Find the displacement, stress,

54 A solid, elastic sphere is subjected to a uniform radial

pressure p, on its
surface. Find the displacement, stress, and strain fields in t

he sphere,

5 Find the stress and displacement fields in a very large solid with a
o cal void centered at r=0. The solid is subjected to the radial stress
far from the origin. Assume point symmetry with respect to r=0.
 the stress concentration factor associated with 75,?

i 1 ins herical cavity. The cavity is
bounded elastic medium contains a sp .
e elastic, spherical shell which is bonded to the surrounding

, t ) .1, consider a thin :

reference to the analysss in Section 5.1, con sphericy)
that 5 —a=1<a (see Fig. 5.1). The shell is filled !.E-uuucsaﬂ
"nl?-.!?ﬂﬁ.v«ang Tee and <8En.-vv~cx.5-§w.
at through the thickness ¢ and are given by 7 =7, =pa/21.

vgiggﬂe«.ﬁg-n_ﬁ:_gnw_.:n:ﬁ_ cavity

@. The cavity contains a gas under pressure p,. Find the displace.
pess, and strain fields in the solid. Assume a condition of plane Strain,
ds, assume that the displacement component parallel to the

lic cylinder is subjected to a uniform radial pressure Po On
face. Find the displacement, stress, and strain fields in the

) a condition of plane strain, in other words, assume that the
onent in the direction of the cylinder axis vanishes.

10 the torsion problem of Section 5.3, consider the curve

jere @ is the stress function (see the figure). Then on the
WNdy /dx)=0, or, using (5.43), dy /dx = Tay/ Tex, that is
cu @(x,y)=constant, the stress vector ?:.dt is
e curves are called lines of shearing stress, The
| stress is (see 5.43)

®(x, y) = constant

: = TR i‘g : 0 q‘.\r _ﬂ.
o renist sheu srs o qual t she g et

O = (VI /45)GPe* for the triangular cross section in Fig,

E ‘<s.$ the correctness of equation (5.54).

: k= 0.848, k;=0.196, and k;=0231, if b/am1.5 (See (5.55),
Show that
. and Table 5.1).

show that O =2GPa*l" for the cross section in Fig. 5.8, where I'
(sindp+83in 28+ 128) 5 (b/ay(sin2 +28)+ §(b/a)’ sinp ~ i(b/a)'p
“gulw\h.

TJorsion. With reference to Section 5.3, consider the analytic function
\~.+ fy=i(a/2)z*~ij(a—1). Show that el?\wxx.laxw‘u +\<J|.

Show that the boundary condition (5.35) is m»:u.:om on C, iro-.n Cis
erized by the equation x?+y?—a(x*~6x%?+y*)+a—1=0. Discuss
of this cross section as a function of the v»qwan_n_..n.. _.u_.ni the
for a=0, a= 73, a=3(V2 —1). Find the torsional rigidity.

hat the analytic function

& I 52 1 & 2N ;
: b & A4 A=) =+ iy
nvlm cosa s ...._Mu_:. Anv

roblem of the sector of a circle (see Section 5.3 and the

cos26 W A, ol

o
cosa n=1,35,...

s and displacement field. and determine the torsional rigidiy,
. : analysis of the experimental method describeq
ﬂs:”..?a Poisson’s ratio. What is dv/da for stee| ?nﬂ“

h reference to Section 5.5 and Example 5.5.A, find the disp :
end-loaded cantilever beam with circular cross section, Compare

und displacement fields of the exact solution with ‘En corresponding

tained from the Euler-Bernoulli beam theory, with particular em.
short beams.

ce to Section 5.5, find the stress and displacement field iy
cantilever beam, the cross section of ir_oru consists w— two
+ g and two hyperbolas (1+»)x*— _Q»»I a? (see »Nrn figure),
a2, and show that 7, =(PG/IE)a’—(1+»)x*+y?) o
num shearing stress. Provide a full discussion.




8<:53§§!a3§e§

Qu:l.v*ivl IA_...LA% % Bv
X

d (5.89)

200 g
AN+2G . lg

@ Provide a detailed comparison N
104), and (5.105). Show that “far” from :.o._i.u__ﬁ
cement fields are nearly equal for the three Q.mMm

three solutions (5.103),

the stress, strain, and

 The result in (@) is a consequence of Saint Venant's nrinc:

: s nt’s i
is often mv_u_._nn in the theory of elasticity, ?Bcnnzw &””M_:J_o. .;:

The reader is urged to consult the following references: i

iternberg, “On Saint-Venant’s Principle,” 1 ?
ematics, vol. 11, 1954, pp. uouL&N. ol
“On Saint-Venant’s Principle,” Bulletin
! 3 h
Mathematical Society, vol. 51, 1945, p. muu.w\mmm
“On ml=~..<onn=~.u Principle: Elastic Shells and
al of Applied Mechanics, vol. 21, 1960, pp. 417-422.

r the cantilever beam within the framework of th i
t € e ge 1
ry (see the figure). Note that i

h h
Po Q‘Ax.lwvnc. ﬁo.Ax‘HMvuo

21 00) =5 " yr, (0)dy=0.

—h/2

that 7, = —(820/3xy)=xf(). Find the stress and disp .

523 Consider the cantilever beam within the framework of the i
plane stress theory (see the figure). Note that 7.( .\.«\ N: /2)= ;xwm_
7,(x, —h/2)=0, 7 (x. +h/2)=0, ﬁna.wvlc.. and Sl.b._.aa_i&ic.
Assume that ﬂuhlwne\w\v.unku\_cv.f N\NQV. Find the stress and &mv_moo.

ment fields.

>

Exercise 5.23

problem of the “simply” supported beam under a uniformly
within the framework of the generalized plane stress formula-
gure). Use ®=x%(a+dy+ey’)+y>(c+fy?) and note that
h/2)=0, 7, (x,h/2)=p,,

h/2

+he&&\ui.i.\~§:ﬁw L,y)dy=0

equations of equilibrium
polar coordinates are
B T = Toe
a4 r

Ofpg o7, W
r

for the generalized

+F=0
Tt Fy=0.

{ the stress tensor components
Show tha

o
._..:.wa‘.fF@.e
r dr 2 392
; Hmue
®
H oA L ww_wv
= .%F\%

“ich. Note that in this case O=0(r.0).
the case of generalized plane stress referred to polar coordinates, the
ment equations assume the form

& from these equations, that is, show that

B 0% 205, 106, 20%, 2 0%,

B o o ol 2o

equation and Hooke’s law
Eégg="Tgp— »T, 2Gé4="Ty

ise 5.25 to show that V4D = VA(V2®)=0 whei

¢ with a circular gz.a&ﬁ..n
R to the radial stress 7, =T far from g,
2/r%) and Tw= T[1+(a*/r)). What is the

Tactor associated with Tee”

; 3 ith the aid of a stress function. U
‘Solve the problem of Section 5.2 with se
of ma“Mnﬁ 5.25 through 5.27.

cquations (5.58). Show that (5.59) results if, at (x,y,2)=
‘we require u=uv= w=0, and
u_d _dv_,
e the solutions (5.103) through (5.105) to
solution in Example 5.5.C.
enko beam model (Section 6.3).
noulli Beam model (Section 6.4).

the correctness of (5.44a).

3P \2 (30
p=af (52 +(5) ]
iW=[(a*— b /(a*+ b>)(iz*/2) is the complex tor-
cross section (see Example 5.3.A).

(5.44b)

= —(1/2¢)(z*— icz*>+ ¢%2) is the complex tor-
cross section (see Example 5.3.B).

>0. Show that a



Ugural, “Mechanics of Materials”

8.80 A point in & machine component is subjected to three-
dimensional stress with

0, =150MPa o, =30MPa Ty, =90MPa @

¢ Jongitudinal axis as depicted in Fig. PS94, The
d to an internal pressure p. Determine:
in-plane shearing stress.

as depicted in Fig P8.80. Determine:
(a) The absolute maximum shear stress for o, = 40 MPa.
(b) The absolute maximum shear stress for a; = —40 MPa.

Figure P8.97

Figure P8.76

* Solye Prob. 8.76 for the case in which
=10k @y =0 Ty =5ksi  o.=—I2ksi

¥ : “rhe normal stress oy and shear stress r,, acting on planes "
s depicted in Fig P8.77. L éf-h vﬂa__n_ 1o the weld. Sketch the results on a ank of inner diameter d is .ms:ﬁ..:gg 2.__._
- ented element along a helix forming an angie
i =} - 55 nal axis (Fig. P§97). Calculate the nternal
Sksi Figure PB.80 A, 0= 35, p=500ps s a shear stress T parallel 10 the weld.

10 ksi
8.81 A spherical vessel of radius r and wall thickness 7 is . t=10mm, ¢=70%
S x submerged in water having density y. Calculate the water depth . = 40MPa
¥ Figure P8.77 i at which the circumferential stress in the sphere would be o

8.99 A cylindrical pressure tank of inner diameter dis fabricated
by shaping steel plates of thickness 7, and welding the plates along
helical arcs of angle ¢ with a transverse plane (Fig. P8 99). The end
caps are spherical and have uniform wall thickness f;. The max-
imum internal pressure in the tank is p Calculate:

(a) The normal and absolute maximum shear stresses in the caps.
(b)

Assumption: A safety factor of n, is to be used.

Given: r=25ft, 1=1}in, y=6241b/ft",
o =4200pst, n =15

| Redo Prob. 8.76 for the given state of stress
o =S0MPa g, =10MPa 1 = —40MPa
\0: =25MPa

Figure P8.94

8.82 A compressed-air tank of uniform thickness ¢ = S-mm is
subjected 1o an internal pressure of p = 1.4MPa (Fig. P8.82).
Determine the maximum axial and circumferential stresses.

Prob. 8.94 for a vessel (sec Fig. P8 94) with the
ven numerical values:

s The normal and absolute maximum shear stresses in the
| =12m, r=12mm,

cylinder.

The normal stress o, and shear Siress 1y, acting on planes
perpendicular and parallel to the weld. Sketch the resultson &
properly oriented element.

¢=40°, p=2MPa

(c)

el boiler of inner diameter d and thickness 7is welded
m that makes an angle ¢ with respec! the axial

| The boiler is subjected 10 an internal pressure ;= 10mm,

e = 15mm,

Given: d=2r=24m,
p=14MPa

¢=30°

stress y, perpendicular to the weld and shear
1 to the weld. Sketch the results on & properly

on a three-dimensi L element in Fig. P8.79.
values of o for which the absolute maximum shear

Aoy

shear stress in the boiler
15mm, ¢=60°, p=S800KPa

=

and wall thickness ¢
angle ¢ with the
allowable normal

scal vessel of 16-m inner dismere
By Joii Eowl{il:ss:x.__.a”.[
igéiﬁﬁ_g!s_iﬂﬂ_ N
B00KP3. ].

i

(D) At quaster beight

(€) At mud-beight.
3
Given: p=400APs, A=20m. r=3m =15 KNm n and 5_..?
§ia 3 2 %
Requirement: The allowable stres in the cylinder walls isfmited ; o sabes T o i r.l”
et po=2k8 own = 30ky 3 ey,
Given: s

w 150MPa

B

\ Figure P8.83

8.84 Solve Prob. 883, assuming that the gas pressure 1S

P = 100kPa.

8.85 Determine the required thickness  of a cylindnical vessel

A6 1t in diameter under a pressure of p = 150psi.
- A matenil strength of 25ksi.
Assmption: A safety factor of my = 1.5 will be used

Figure P8.87
Calculate the bolt diameter d and the vessel thickness ;

Given:  The allowable stresses for the bolts and sphere wyy
100 and S0 MPa, respectively. b

8.88 A penstock,apipe forconveying w
9.81 kN/m") to a turbine, operates at

has 4 0.9-m diameter and a wall t
minimum required value of ¢ for a

Assumption. A safety factor of 1,

8,89 RedoProb, 888 for the case in which the allowable sy
80MPa b

8.90 A closed cylindncal tank fabne 1 10-mm-thick plee
is subjected to an internal pressure of MPa. Determine

(a) The maximum diameter if the maximum shear stres 4
limited to 30 MPa.

(b) The limiting value of tensile stress for the diameter foud
part (a).

w..no,_ A closed cylindrical vessel cof
m in diameter and subjected 10
Calculate: 3 w5

(@) The wall thickness 1 if the allow:
e e maximum allowable shear siressd

‘The corresponding maximum principal stress.

(Fig. P.92), The allowable tesile srenséh ¢
steel. Determine the maximum valoe o

.;.c
r=f p=d, p=320R

Figure P8.100
B.107 A thick-walled. closed-ended cylinder of inner radius &
20nd outer radius b is subjected 10 an internal pressure p; only
.a;-a_vd'iwll-ili%
*ltllll‘tll!gnl;n-w:_lnlni
]

Given: w=08m, b=12m oy =100
T = 6OMPa e o
¥

Figure P8.101

Athick-walled cylindrical Gnk of inner ry g,
‘thlg>kg.§~§4?=“.ll
ultimate streogth i tension oy, modulis of gl ._r.l

Poisson’s matio v. Determine the maximum ragjy ,._a_: P
o the tank,if i subjected 10 an internal prssure , Pl
Fig. PS.10L. et
Given: @ =05m, b=1m. p =10MPy

a, = 170MPa. E=70GPa, v=103

‘8104 A cylindrical thick-walled pipe havip

and outer radius b is subjected 10 an inte

(Fig. P8.101). Determine:

(a) The ratio of the wall thickness 1o the inner Tadi
internal pressure is one-half of the maxim -
S

2 inner
"adiyy
mal Presug y.

um E_-“.”

(b) The increase in inner radius of the p
21, pi = 12ksi, £=30 x 10°psi, and y ~ eﬂ.

if ge

: SSES 0 the cylindey
n Y
(€)  Theaxial stress and the maximum shear Stress in the cylinger

Given: a=25mm, b =75mm,

Pi = 35MPy




Shames. “Introduccion a la mecanica de solidos”
Pp 130-134 (Relaciones multidimensionales esfuerzo-
deformacion

(mpOrtAnTEs - mwomrmg AS

un punto de un cuerpo es

erzo €N
6.1(8.21 BN tensor e L0 2000 O
2000 5.000 —2.000 Ib/ pulg?
0 —2.000 0
el modulo de Poisson e
isten en el punto ! 0.2y
LQué deformaciones €XIE Sl pulg 22 3 ,
el modulo de <ﬂ=ﬁ-&=_e de cizalladura de __:_x :._ 1b _E_J ¥ un g
n m 2 cule el tensor
p% 1b _un_n calc elormpy,
de 353 1 rzos siguiente: oo

de esfuel
que corresponde al estado 1000 —5.000 0
4, = | ~5.000 500 500 1b/ pulg.2
g 0 500 — 2.000,
de Poisson de 0,3 y un médulo de Young de
ﬂm_ax_ﬂmm__wvﬂﬂ_n:...“ ”.WM——_.__N el tensor deformacion que corresponde g ¢
tado de esfuerzos siguiente:
A0 0 1.000 — 2.000
: 7, =| 1.000 500 —3.000| Ib/pulg?
7 - 2,000 —3.000 1.000
6.4(6.2] Para determinar el factor de la concentracién de esfuerzos K
S roducida por un agujero eliptico en una placa (Figura 612
e BT e lh Seccion 24), se utiliza il
ida a biaxial ver la S .4), se u un model
de bakelita cuyo comportamiento se analiza fotoelasticamente, este mélo-
do sera discutido posteriormente, durante una parte del ensayo se obtuw
que el esfuerzo r,, en el vértice A de la elipse era igual a 2,000 Ib; pulg?
Caleule el tensor deformacion correspondiente, si E =5 x 10° b/ pulg*
yr=02
%
- 6.5(6.2| Un eje cilindrico hueco de pared delgada (Figura 6.13) esth
etido a la accion de un momento torsor de 500 Ib-pie y de una fuers
| de 1.0001bs. Calcule las deformaciones ¢,,, ¢,, v ¢,, en ¢l pi
e la superficie del tubo si para el material » = 0,3 y E =30 x 10° It

¢l plano xy es tangente a la superficie. Desprecie el efecto det
ca.

6.616.2] En la Figura 6.14 se ilustrn un tanque de pared n._n!u.-u—_.“-.
ra almacenamiento de aire, que so mantiene u una presion E-:aﬂ...-_-:
de 500 Ib/pulg?. El espesor de la pared os 0,26 pulg, [Qué <-_nm_ g
las deformaciones axial y traaversal sobre la superficie exterior del ..-“.-a i
y en una seccion ada do los extremos? (Qué cambio oxperimen
didmetro del tanque en una weccion intermedin?

6.7 (6.2] Durante el andlisis de los esfuerzos en un codo (ver I 3!“..
ra 6.15) se encuentra, mediante la utilizacion de extensometros :..::_ha e
discutirdn con algun detalle), que las deformaciones en el punto A de
superficie son

€, = 0,00342

€ 0,00342

r-
El plano xy es tangente a la superficie del codo en el _:_=..n. A, ﬂwﬂw e-:a"_nu
208 normales r,,, r,, ¥ ., existen en A? y =02 y E =25 X 10 pulg?.

4Qué valor tienen las deformaciones v,, y vu?

6.8 (6.2] En la Figura 6.16 se muestra un tubo delgado doblado asww.__mw
gulo recto. El didmetro exterior del tubo D es 2pulg, y su espesor €8 &/
pulg. Al aplicar en el extremo libre una fuerza de 100 Ibs. un eu-m:.&:_n%_.o.
que mide las deformaciones normales que se presentan en una super _n_M
(posteriormente se discutirdn en mas detalle), ubicado en el punto >. est.
orientado en la direccion x e indica que la deformacion ¢, que s€ indu-
jo vale 0,00346. Un do ext ro ubicado en A pero orientado en
la direccion z indica que ¢,, = 0,00137. Si se desprecia el efecto de la %wn.
si6n at férica, ;qué ntes tiene el tensor esfuerzo 7, en A? El
moédulo de Poisson es 0,25 y E =20 % 109 Ib/pulg?. También calcule ¢,

1001b

y

Extensd

Figura 6.16

6.9 6.2] (Como se relacionan los esfuerzos en coordenadas cilindricas
: T.s Y 7. con las deformaciones ¢, ¢, €2 €0, €y ¥

s Taey Tar Trn 2 a8
Lt S 1 isotropico de comportamiento elastico lineal?

¢,, para un material

ili tido a una presion
2 2] Para un cilindro de pared gruesa somet res
Wn““_uo_hm:,_mcw interior p, (ver la Figura 6.17), la teoria de la elasticidad
predice que los esfuerzos radial y trasversal son:

Trr = QNEIPQNA_ pos mv

Toe = Tn»\?nu? h mv

;Queé 1 ;4 Se presentan en r = 2pies para un ci-
ebum nnmcwns WM%MM wum.wr ,n..— uvwo.z. b =3 pies? Tome E =30x 5.. Ib/pulg?,
\ couﬂw_%v 500 1b/pulg.?. Suponga que Jos extremos estan libres y por
vy =0, = 8

tanto 7., = 0.
131

Figrn 817
@11 ({6.3] Demuestre que €0 las Ecu
612163 Pars un material con simetria ortotropica sy
(6.3

tiens corresponden & L
34200 0
214000
763000
¢ 000 40 o '"pulg
0 00020
e 00 3
(Que tensor esfuerzo corresponde al tensor \ siguiente?
6 2 I
€ T 3 4

2= radho interor

b - a0 exteno!

ps (6,15

10w

Mol

M 4 2

esfuerzo defor

Tax = C(€,,)"2

jia de deformacion almacena una barra de

dicho material (ver la
cuando se somete a una fuerza de te

nsion uniforme de %0

Pl para cada uno de los miembros que &
Una fuerza de 1.000 Ibs. Utilice los 4%

iQue energin de deformacion almacena el sistema? En sus calculos des:
precie el peso de los miembros. 2

Figura 619

6.15 |6.4] Repita el problem
nal de 2.000 [bs. que
esta dirigida

anterior considerando una fuerza
la seccion que separa los dos mal

6.16 |6.4] Una fuerza distribuida
expresa en pulgada

actua s mostrada en la Figura 6.20. S
idimensional de esfuerzos,

n se almacena si
miemby

mostrada en la Figura 6.21
zando el principio de conservaci
to vertical que experimentan a ca
area de la seccion trasversal de
6.18 [6.4] Un cilindro de pared delgada (Figura 6.22) se
accién de un torque T de 5.000 Ib-pie. El espesor de la pared
el diametro y la longitud corresponden a 2pulg. y 10 pulg.,
te. ;Qué energia de deformacion almacena el cilindro? (Qué i
torsion # relativo entre los extremos se produce? G = 15 x 108
(Ayuda el trabajo realizado por el torque es | T9.)

me E =30 x 10% Ib/pulg? v » =085
n de la ener
de

6.19 |6.4] Si el angulo de torsion para el cilindro del problen
rior es 17, ;qué energia de deformacion se ha almacenado y q
se ha aplicado?

i
cilindro de pared delgada (ver la Figura ?w\.

n de un torque uniformemente distri
pie pie. El didmetro interior del cilindra es de 4 pulg., k K
pared es de 0,1pulg. Si G =15 X 10° Ib/pulgs nﬂ—o&m«.—l rgia al
nada por deformacion e g 2
6.21[6.4] Si en el extremo A del cilindro lema anter
también una fuerza axial de 1.000 lbs, Calcule
producida por el torque v la fuerza. Tome B
6.22 |6.4] Un torque distribuido T(y) actua
delgada (ver la Figura 6.24) cuyo diametro inte
de la pared es 0,1 pulg. v su longitud es 10 pies. S©
calcule la energia de deformacion almacenada por €
Ib/ pulg.*
6.23 [6.4] ;Cudl es la energia de deformacién por
en un punto de un material eldstico lineal sometido
zos siguiente:

al
1.000 —500 2,000
~500 2000 —400 | b pulg?
2.000 —~ 400 — 1.000.

Tome E =30 10¢ Ib, pulg? y G =15 X 10° Ib, pulg*.



8 0008~ 0,002 0,001
! 3 3 G = 15 x 10* Ib/pulg?, el moduly ge
£ module

Problema 229 se propuso la obtencién de

Ias
' estado plano a partir de un elem, Souy,
ciones de equilibrio para el 2% w.!o desde la direccion 2, m....c Yemy.

nl_-..IEiP. ara o
jante al iastrlt serzon, d que las de equiliig g
"_.Jr!lll:.!!

1 0te  OTu  Tee— Tw
;i ke

e,
ot rrr o

s utilice la Figura 2.47. Utilizando la Figura 6.26 ey
Para el andlisis uti tos i3 que prod fuerzas en la &aaonn.._.u..
3. e e denadas cilindricas .

PROBLEMAS
11.1[11.2] Las componentes del esfuerzo referidas 5
gonales paralelas al sistema xyz en un punto son
Tax = LOOO b,/ pulg? 1, = T
T,y = —6001b/pulg? 1, —7, —
T =0 T = Toy = — 400 1b/ pulgs

iQué valor tiene el esfuerzo normal en la direccion € tal que

€ = 0,11i + 0,35j + 0,93k

11.2[11.2] .m_ estado de nm?m_.m_.u Tis) Tyyh Top Drisbpronks
forme a través de un cuerpo. ;Qué implica esto para mw..:m:.w.m.u-

actuan sobre superficies paralelas en puntos diferentes? Supo,
distribucién corresponde a

Tee = L0O001b, pulg.? Ty =Ty =0
Ty = — 1.0001b/pulg? 7. = 7., = 5001b/pulg?
T.: = 1.000 1b/pulg2 Tye = Tuy = =500 by pulg?

4Qué valor tiene el esfuerzo normal que actia sobre el plano ABCD del pa.
»t ralelepipedo de la Figura 11.29? i

11.3 [11.2] Obtenga las E
ecuacion general de trasformacion.

2001b/ pulg 2
0

v €8 upj.
ralelos que
Nga que |y

(d) del Ejemplo 25 a partir de la

11.4 [11.2] Un cilindro de pared delgada (Figura 11.30) estd sometido
a la accién de una fuerza de tension P de 1.000 Ibs. El didmetro exterior del
1 cilindro mide 3 pulg. y el espesor de la pared mide } pulg. ;Qué valor tie-
nen los esfuerzos normal y cortante que actuan en el punto A de la seccion
del cilindro que se forma al cortarlo con un plano cuya orientacion es a =
E 40°, tal como se ilustra en el diagrama?

11.5 [11.2] Si el angulo a que orienta al plano EF en el Problema 114

puede variarse, ;qué valor debe tener para que el esfuerzo cortante adquie-
ra su valor maximo en A? En este caso y sitio, ;qué valor tienen los es:
fuerzos normal y cortante?

i red del-
6[11.2] En la Figura 11.31 se representa un tanque de pare

M—nm _Siomﬁo a la accién de una presion de 500 1b/pulg? por oaesho ﬁ
: érica. El didmetro exterior del tanque es 2pies y el espesor i3

. .c.m pared es } pulg. ;Qué valor tienen los E?nMil-S
Gan sobre la superficie C ubicada sobre s

con respecto al eje del tanque, tal como n_.o.ga %

 de los extremos? Desprecie el esfuerzo de ¢

te por la presion de 500 1b, pulg? sobre It

. e

2o cortante sobre la superficie HEC en la direccion H O es
aal 2 uerzo cortante que actua sobre la superficie HDCA en la direc-
n HC, justifique su respuesta. Calcule el valor de estos esfuerzos cortans
tes v compare los resultados.

z
& 2]
= I\
AR
//’A F "I N
G // 1 \§
" 8] y
M 309> L3 I /c
8
~ s
AL = aTE
Figura 11.31 Figura 11.32

11.9 [11.2] El flujo de un fluido se describe mediante el campo de ve-
locidad siguiente:

V= 0,16x%i + 0,10y2j + (0,3y — 0,522)k pie, seg
Durante el estudio de la mecanica de fluidos se demostrara que el esfuerzo

en un punto en ciertos fluidos se relaciona con el campo de velocidad me-
diante las relaciones siguientes (ley de viscosidad de Stokes):

R e e

dx
oA 305 )
: o - 303 )
e e (v ok ,

dy  dx v
Wy 0K
t = = (5 + 57)
0¥, 0V,
¥y
tA 9 ! u.....hv
~ en donde p es la denominada presion hidrostatica y u es el coeficiente de
| viscosidad. ;Qué valor tiene el esfuerzo normal que actua en el punto (1,

0, 2) sobre una superficie cuya normal es

e €, = 0,80i + 0,60j

Exprese su respuesta en términos de p ¥ u.
ha utilizado un sistema de referencia carte
%Nen_._“- .wo superficies ortogonales en un punto. mau el
utilizarse cualquier sist de d cury

do coordenadas cilindricas en un punto e
‘ ; erficies ortogonale

)

Tyr = Tay

§ .v en I Figura 11.33. Suponiendo que los “he
corresponden &

0o 2000 1.000 1b/ pulg?

5.000 0 — 3.000 v
_3.000 1.000 0
esfuerzos en el punto r =6, # = 30°
en este punto?

bEES )
| estado de " Qué
e
z

Figura 11.33

11.11[11.2] En la Figura 11.34 se muestra una placa cargada unifor
memente en sus extremos por una fuerza normal de intensidad S Ib/ pulgt.
:-«. un pequenio agujero de radio a en el centro de la placa. Sin el agujer
el unico esfuerzo no nulo de acuerdo con el sistema de referencia 1yz e

Ty=15

Cuando existe el agujero a

mostrarse que en coordena
ponden a

u-:.:. nm la teoria de la elasticidad puede de-
das cilindricas los esfuerzos no nulos corres-

o= 2 - 8) 4 (14 48 52 cont]
= {4+ 2) + (14 32 cos 2]

£ S 2 s
gt = :M.? + NWm = uW..v sen 26
Rh—-ﬂﬂ ”__»M_nﬂn_ Se presenta en el agujero. Demuestre que su direee®
Pequeiio (inosenss] LU 5 valor es 3S. Luego, la presencia de ut uu
1o hay x’m” €) triplica el valor del esfuerzo que existe en ¢l
! Fn—..-s..o. Este es un ejemplo de concentracion del l\g\.
- €nto en el esfuerzo producido por la existencia
te, como en otros casos, de un chavetero, U



11.12[11.2] En la situacion del Problema 11.11, qué valor tiene el es:
fuerzo cortante r, que actua en el punto r=2pies y 0 =30° (ver la Figura
11.35) sobre una superficie que forma un angulo de 45° con los ejes x ¥ ¥?
Tome S =5001b, pulg? ¥ a=0,3pie.
11.13[11.2] Los esfuerzos en un punto P ¥y referidos al sistema xy2
son
0 200 300
T, =200 500 0
300 0 600
S 7px ¥ Txy referidos a los ejes x 'y 'z’ que co-

(Qué valor tienen los esfuerzo: .
Irededor del eje x, tal

rresponden a una rotacion de 30°, del sistema xyz a
como se ilustra en la Figura 11.36?

ANRRIRRARE IR

Figura 11.35 Figura 11.36

11.14 [11.2] El tensor esfuerzo en un punto referido a un sistema xyz
es

100 0 0
e 00 0
0 0 300

4Qué tensor esfuerzo corresponde a un sistema de ejes obtenido medi
la rotacién de 45°, del sistema xyz alrededor del eje 2z, en sentido rh“nm“

cuando se mira hacia el punto?

1115 [11.3] Utilizando la Figura 11.11, obtenga las Ecuaci
a partir de la ley de Newton y de la reciprocidad del uu?a-“_ﬂwwmwhﬁw”:v

11.16 (11.3] Dados los esfuerzos siguientes,
T.x = 500 1b/ pulg?
T,, = — 1.000 b/ pulg2
% s Tay = 200 F\v:_-..n
: .mm,u.s el esfuerzo normal que actua sobre una superficie

i

de a un eje perpendicular o

erzo cortante que actua sobre fo,

7

de
4 1, =0 -

1,, = 1.0001b/p ES Far = =600 1, Pulgs

! bre las 5
Jos esfuerzos que ‘nn:::.. sobre superfig
Lqué .a_s_u.._ﬂ.u..(. A venidos al girar 30° el sistema de rhcles dte
nadas vaqan_ eje z en sentido antihorario cuando se mira en |g &..z_-.
hacia el origen” eccion ,
1.18(11.3] A un2 placa de 1 pulg. de espesor (Figura 11.37) |,
_“m?nﬂn!ans Jas fuerzas F, y F; cuyos valores son 500 y 2,000 |
ivamente. ;Qué valor tienen los esfuerzos normales a los ply
gonales” ;Que valor tiene el .mm?»nno cortante correspondiente n:o. .__.
tema de coordenadas Cuyos ejes forman con :.m, divedinne ro:aﬁ_, T
vertical un angulo de 30° de sentido anti-horario? al y
erza F actia uniformemente sobre los ladog

11.19 (11.3] Una fuerza
v_-,nun,i_:.nn?n- Ja Figura 11.38) en tal forma que sobre un vsgmu._.n

dos opuestos hay tension mientras que sobre los otros existe compresis
;Sobre qué superficies de la placa (vistas como lineas en el &.n_..“:as?
T 4ctua esfuerzo normal? (Qué valor tiene el esfuerzo cortante que ma) ny
bre dichos planos? que acta g
11.20 [11.3] Un cilindro de pared delgada esta s i o

la accion de los momentos T, como se ilustra en la ﬁ.w:nmﬂ_u o:wum.oﬂ._e_ por
lor tienen los esfuerzos que actuan en el punto H de la mmni.@:‘_eo& o
E, alejada de los extremos, si se supone que los esfuerzos no va mﬂ-ﬁi
espesor t? wo__.o valor tienen los esfuerzos que actuan en el pu _.S-sﬁs._ ol
-nmnan_ F, alejada de los extremos e inclinada 45° con nuu%gﬂa al a_u :
x2? Tome T =50 lb-pie, uwuo.n pulg. y D =3 pulg. plana

2

Y|

esfuerzo en un punto es

€
b

|7

2!

[REN]

Fi

dtrttt

IRERERRRRRR!

X

DRI e

PR - £
IR -o».!;o.%_—ggzﬁ!nsgzgi o]
. . en los extremos, una fuerza axial de 100 1bs |
122103 Se demostrd que ¢,, +1,, € un invariante en un punto
s decir, ol girar xy ¥ convertirse en 1y’ %e abtiene ¢l mismo valor para la
suma de los esfuerzos normales ¢, + 1,, . Demuestre que la cantidad si-
guiente también es invariante con respecto a la rotacion del sistema de re-
ferencia en el caso del estado de esfuerzo plano:

L8 18 ™)

noarignte tensorial para el caso del esta

Este es el denominado sezundo
do de esfuero plano
11.23(11.3] Se sabe que el esfuerzo r,, en un punto vale 500 1b,
pulg? y a 60" del eje x el esfuerzo r,, vale 1000 b/ pulg?. Si 714y =
1.000 Ib, pulg?, (qué valor tienen los esfuerzos r,, ¥ 7.7
11.24 [11.3] Dado el estado de esfuerzo siguiente
T,. = — 1000 1b, pulg?
L 7 500 b pulg?
., = 8001b, pulg?
4qué valor tienen los esfuerzos principales? (Cuales son los ejes principa-
les”

11.25 [11.3] Caleule el minimo esfuerzo normal, en sentido algebrai-

co, en un punto en donde r,, =500 1b, pulg?, 7, = ~5001b, pulg?, ¥

4y = 1000 b, pulg?. 4Qué direccion tiene la normal al plano sobre el que
» actua este esfuerzo?

11.26 | 11.3] Los esfuerzos principales en un punto son 1.000 y 500 1h/
pulg?. (Qué valor tienen los esfuerzos que actaan en la direccion de unos
ejes que forman un angulo de 30°, en sentido horario, con los ejes prin-
cipales”
11.27 | 11.3] Un cilindro de pared delgada tiene un extremo fijo, mien-
tras que en el otro actua un torque T de 50 Ib-pie (ver la Figura 11.40). Si
y = 450 1b, pie’ para el tubo y si los esfuerzos no varian con la distancia
radial medida desde el eje del cilindro y son simétricos con respecto a di-

cho eje, (qué valor tiene el normal en sentido algeb
neo-nnon!ud:nn: a.E,nEcawﬂztnaw«-.aE.

11.28 [11.3] Para la situacion del Problema 11.25, calcule el valor ex-
tremo del esfuerzo cortante y determine la direccién de los ejes correspon-
dientes a dicho esfuerzo.

ey
|
:

del esfuerzo corggy, =
€ o o

cilindrico de pared delgada (f;
fatéFna manométrica de o ik g
rque 7' de 200 1b-pie. Si el Enazuz_-.. ) o
el es 0,1 pulg., 2Qué valor tieng o] o.cX!
to alejado de los extremos? (Qué valor $tuergy
Cimo en un sitio alejado de los extremos? (g, lene g
o de compresion proviene directamente de |a uamwi: i
mf.g-ns a los otros esfuerzos, por tanto puede an._ n e s.:ﬁ.
! ‘n esta forma el estado de esfuerzo, en un sitio u_aES.a.. e
~ tremos, en un problema bi imensional ) Jado g _ezn,
11.81[11.3] Si el esfuerzo normal permisible en el Prop
40,000 Ib pulg?, ga qué presion mixima puede someterse ¢ |-
torque vale 2,000 Ib-pie?
11.32(11.3] En la Figura 11.42 se muestra una viga cy,
¢. La viga tiene un radio interior a y radio exterior b. Un un_w“m% Espesy

113
¢l tangye ._u

M se aplican a los extremos de la viga en la forma indi Mmomeny
la elasticidad predice la distribucion del esfuerzo m"M%__Mhh_mu.. La .8:._“..
AM (aib?
T = JNTIL:__.W +6tIn 4+ atln2)
r
_AM( a?bt b,
o= :A L0l bint tatin ro )

T =0

en donde k= (b? —a*)? —4a?b?(In 2

e { (b/a))?. E:

n‘_.ﬂ-ﬁo_. .w_.na_nn. para el esfuerzo *:\mc-_:.m _nmx“_._shw_m__na_w o Sy

i erifique si la solucion sati las d s clreulli b

.vu__.-mzﬂm -_wmn_n“n_..na normal en r =3 pulg. y # = 30°? Tome a = 2 pul ;
. M= -pie y t = ‘Qué e Mickieahly

Slrs s E-uiw& y t=0,2pulg. ;Qué valor tienen los esfuerzos .n_oai

11.33 [11.; i i

o ‘__:_- w“-n_ﬂ..m-:no-."u- <m:..2__. distribuida longitudinalmente act

e &-a:—_h_ M (ver la Figura 11.43). La fuerza total 3«2._!__.“

i 08_...”. -n__ es P, rw. placa queda sometida a un estado de

e n._ﬂ e la elasticidad predice los valores siguientes pa-
el esfuerzo expresadas en coordenadas cilindricss

T, =

_2Pcos@
n r
Toe = 0

Tre =Ty, =0

P qué debe 3
la solucién? excluirse la linea de aplicacio o
. nr, -..m.o.; valor tienen los 2?25.% =:u.a. _w nnhuﬂ no_o..w ch:ﬁ.._:
1 .,2 Demuy
uv?ﬁw:oﬂ”"wﬂ%v:nov“.: los planos normales a los &
debe ) € decir, los ejes principales, el esfu

es defini
erzo €O

adizo esta sometida a la accion

ad de 50 1b, pie, como se ilustra en 18 Figr
esfuerzos principales en 4, qué estd U0

uperior en la seccion intermedia de VE*

Considere el elemento A.)



3
7 Figura 11.45 ¢
1137 [11.4] Dibuje el circulo de Mohr para el estado de esfuerzo si-

g
e

T.a = —5001b/ pulg*
T,, = 5001b, pulg?
& 7., = 0lb/ pulg?
W-_&iﬁrx. extremo tiene el esfuerzo cortante y qué direccion tiene la nor-
al plano sobre el que actia este esfuerzo?

~ 11.38 [11.4] Dibuje el circulo de Mohr para el caso en que 7o =0, 75y =
Oy, =500 1b, pulg?. (Qué valor tienen los esfuerzos principales y qué
 ejes den a estos esfuerzos?
1139 [11.4] Dado el estado de esfuerzo siguiente,
 T.. = 5001b/pulg? T, = —8001b/pulg? T, = ~3001b, pulg*

Localice sobre el circulo de Mohr los esfuerzos que actian sobre un E-a,e_,.
que forma un dngulo de 30° en sentido horario con el eje x.

© 11.40 [11.4] Para los esfuerzos
e .. = 2.0001b/ pulg?
T,, = — 1.0001b/ pulg*

1,, = —5001b/pulg?

esfuerzos correspondientes a los ejes que se obtienen al nrﬁ-.
horario, el sistema xy un angulo de 45°. Calcule los esfue;
Utilice el circulo de Mohr como auxiliar en los céleulos

no nulos sigui que actuan

—

T.. = —3.0001b/ pulg?
T,, = 4.0001b/ pulg?
7., = 2.000 Ib/pulg?
un eje que forma un angul
€ iene el esfuerzo

'y

v. %-25. o oun Pints,
b/pulg! 1, « _‘985\
’ owu -?._a!.-.. ol
ol esfuora
“ayuda, il
de esfuerzo de |
e alradsdor dol e 2, prusbe qus e,

Figura 11.40

rzon principales corresponden al estado de

11377
guiente ,-»-._o de esfuerzo,

Olb/pulg? 7, = —600lb/pule

o prineipales si uno de ellos es 2188 1b/pulg?.
. Se sabe que de los esfuerzs principales el es-
. .L.l! s!r..:.ﬂ.qt_e\.l.-‘: e ]

e§
dtlﬁng use—e\vﬂ_n.u
00 0

de

1.5) Dado el estado de esfi
cipales y la direccion del esfi i

Ton = =800 Ib/pulg? 7., = 3001b/pulg?
7,y = 500 Ib/pulg? Tu=0
Ty = W01b/pulg? 7., = 5001b/pulg?

por los esfuerzos normales).
del esfuerzo es el determinante

es una constante y A T3
un tensor de segundo _.2“."__1:8« “
si A, ¥ By, son tensores de s .‘
AMS sor de segundo orden C,, que -o.s“ﬁehmx
_elementos correspondientes de A, y B, .

rige la trasformacion de log ::si&

: g 3” expresa en notacion matricial la ecuacijy ¢
los tensores de segundo orden? ¥

Pruebe que las ecuaciones basicas de la elasticidad
.w.,a ropicos se escriben notacién indicial como:

a7,
B +B =0

€y = %a& = IM.:;&:
1 (du , du

2 Aﬁ.. *5)

==




Pp 378-383 (Analisis de la deformacion en un punto)

‘desplazamiento siguiente
2] + (=2 4 xK] % 1072 pies

ejes.

= 0,02 0,01 0,0
€, = [.001-002003
: 0,0 0,030,

= 0,61 40,8, € = 0,41 - 0.3) + 0366k
—'ggo- siguientes referidas al t‘i “

!

sobre sus aristas. A

/ CD se separan 0,1 pies, m +

AR ERRRRRRE)
Figura 12.16

espesor original de la placa es 0,1
en el vol ;queé valor tienen
alos ejes x'y 'z’ que nm:u-n un

125 (12:2] P

con el de refe

ruebe que los ejes principales del esfuerzo
de la defc i6n en un ial que h—u—n«

vod

ejes

7, = 4000 5000 —2000 | Ib pulg?

3.000  4.000 0}
A 0 —2.000 —7.000

 €=0,6i+08j

ﬂv
fluye en un molde para adquirir la con!
locidad en algin instante ¢ en una region

Ly =+ i @ 2 2k % 1072

de la velocidad de defo:
se obtienen girando el

en el punto (0, 1, ) en la direceig
ema (a) utilizando la relacién m_....\-w”

de .ro?:u.&? siguiente en up Punto,

gpﬁ&: normal en una direccion igualmente jscl.
los ejes x, v ¥y 2? ;Qué valor tiene la deformacion g,

1
q

corresponden a

03y

0 8.6 que puede suponerse que ¢
wﬁnw uniformemente toda la fuerza :

nmomn_o-mnﬁnaawn:_naﬂzn.
 las deformaciones siguientes: Hustrag

€.x =— 0,0003
€,, = — 0,0005
€, =0,0001

eformaciones referidas a los ejes x'y’ que correspoy,
30° del sistema inicial alrededor del eje z y cop
fo se mira en la direccion del eje hacia el origen?

.5_.%”

73 £
los ejes y las defor

ientes al estado de deformacion del “Problema 129,

las def i en el cilindro de pared

presion interior, es conveniente utilizar
S Hertes alel

acion normal en la direccion radial
o normal en la direccion trasversal

drmacion cortante entre los dry rdg del elemento
Punto en el tubo ubicado en § = 30° se conoce que
€, = —0,002
' €s0 = 0,003
€0 =0,001

4qué valor tienen las deformaciones € ¥ ¢y, €n el punto?

EJ.:?S m-”s wu punto de cuerpo en estado de deformacion plano las

€:x = 0,005 €, =—0,002¢,, = 0,001

4Qué valor y direccion tienen las deformaciones principales? Dibuje el
lo de Mohr correspondiente y verifique sus resultados.

14 [12.3] Las deformaciones en un punto de un cuerpo en estado de
n plano son:

€ =0,002 €,=0 ¢€,=—0,003

valor tienen las def i di a un si

un angulo de 30°, en sentido horario, con los ejes xy? Utili
o de Mohr verifique sus respuestas. g
Una roseta rectangular (Figura 12.19) mide las deform. »WM
entes sobre la superficie de un cuerpo: l

2, 'Extensometro 1 = 0,002

£ Extensometro 2 = — 0,001
Extensémetro 3 = — 0,001




0,03

laciones deformacion-desplazam| S
de _- ecuacion i t._s

)
9_“ +54)

F_.z deformacion-despla
btenga nuevas ecuaciones ca

les. En otros términos, son las ecuaciones de EB%M
”F%E» |

12.4] ;Cudntas ecuaciones se representan en la uaiae.
S6lo seis de ellas son independientes. Obtenga las Ecuaciones

partir de la Ecuacion (12.22).




Barber, “Elasticity”
Pp 23-24 (introduction)

paOBLEMB
1. Show that
D
() ;'—:—: =fy; snd () R= @,

where = | s the distance from the origin, Hence find O11/0z; in index
notation. Confirm your result by finding 01 /0x in z,y, z notation,

2, Prave that the partial derivatives DS Jox* 07 [ |Dxdy; 9 f |y* of the sealiar
funetion f(z,y) transform into the rotated cobrdinate system 2/, i by rules

similar to equations (1,16-1.17).
4, Show that the direction cosines defined in (1,19) satisfy the identity
Liglix = by .

Hence or otherwise, show that the product o401, is invariant under cotrdinate
transformation,

4, By restricting the indices i,7 ete, to the values 1,2 only, show that the
two-dimensional stress transformation relations (1.16-1.17) can be obtained
from (1.22) using the two-dimensional direction cosines (1.20).

5. Use the index notation to develop concise expressions for the three stress
invariants Iy, Iz, Iy and the equivalent tensile stress o,

6. Choosing a local codrdinate system zy, 2y, 2y aligned with the three princi-
pal axes, determine the tractions on the octahedral plane defined by the unit
vector

()

3 Ahree p‘m‘)‘] axes, if the principal g,
with all of the resultant shear g";:

by equation (1.31).

2 = 2 < 1 about t},
b to a small rotation w= A e 2
bc:’dthe igin is zero, find expressions for the ¢y,
as functions of z,v, z.

7. A rigid body is su
axis, If the
displacement cOmpoNents Uz, ty, tiz

8. Use the index notation to develop a general expression for the derivatiy,

"
0z,

in terms of strains and rotations.

9. Use the three-dimensional vector transformation rule (1.19) and the indey
notation to prove that the strain components (1.51) transform according to
the equation

€l; = lipljq€pq -
Hence show that the dilatation e,; is invariant under coordinate transforma-
tion.

10. Find an index notation expression for the compliance tensor s; ;5 of equa-

:;n (1.55) for the isotropic elastic material in terms of the elastic constants
.

11. Show that equations (1.58-1.60, 1.64) can be written in the concise form

ey = 1390 Voiiomm
S .

Pp 32-33 (Plane Stress and Plane Strain)

5 » dilatation e must satisfy th,
: are no body forces, the
1. Show that, if there
Ve=0.
Show that, if there are no body forces, the rotation w must satisfy the
y & '

condition V2w =0.

equations in the absence of rotation

mpatibility :
i of a potential functiop

f satisfying the c {
Bemanm o e f displacement in terms

is to define the components o
1 through the relations

oy Pt Oy

= - Uy = = +
il e LT .
Use the stress-strain relations to derive expressions for the stress compo-

nents in terms of . e ; .
Hence show that the stresses will satisfy the equilibrium equations in the

absence of body forces if and only if

V2 = constant .

4. Plastic deformation during a manufacturing process generates a state of
residual stress in the large body z> 0. If the residual stresses are functions of
nly and the surface z =0 is not loaded, show that the stress components
2r, 02> must be zero everywhere.

considering the equilibrium of a small element of material similar to that

ﬁg\ue 1.2,9 derive the three equations of equilibrium in cylindrical
rd 81,0,z

polar coordi , the strain-displ

it relations for the

v T rof

an increase in temperature T causes unre
ed by the strains

Py =€ =e, =0,

Ghow that this is possible only if 7' is a linear function of z,y, 2 and that
otherwise stresses must be induced in the body, regardless of the boundary

conditions.

& If there are no body forces, show that the equations of equilibrium and
compatibility imply that

azﬂlj o
Az Oz;0z;

(1+wv)

9. Using the strain-displacement relation (1.51), show that an alternative
statement of the compatibility condition is that the tensor

f)le.] Dep B 0%ey azejk bk

OxyOx;  O0x;0x; Ox;0r) 0x,01) 3

Cijkl =

Pp 43-44 (Equilibrium and Compatibility)

pROBLEMS
The plane strain solution for the stresses in the rectangular block 0 <z <
k p<y<h, —c<z < ¢ with a given loading is
5
3Fzy = 3EM: —v°) ety _ 3vFay
s

Find the tractions on the surfaces of the block and illustrate the results on a
sketch of the block. : : :

We wish to use this solution to solve the corresponding problem in wlgch
the surfaces z = £c are traction-free. Determine an approximate corrective
solution for this problem by offloading the unwanted force and moment resul-
tants using the elementary bending theory. Find the maximum error in the
stress o, in the corrected solution and compare it with the maximum tensile
stress in the plane strain solution.

9, For a solid in a state of plane stress, show that if there are body forces pz, py
per unit volume in the direction of the axes =,y respectively, the compatibility
equation can be expressed in the form

ap. ap.
2 z y
V(0zc + 0yy) = —(1 +v) ( o +3_y :

Hence deduce that the stress distribution for any particular case is inde-
pendent of the material constants and the body forces, provided the latter are
constant.

3.(1) Show that the compatibility equation (2.8) is satisfied by unrestrained
;m expansion (e, = e,, =aT), e;, =0), provided that the temperature,
118 4 two-dimensional harmonic function — i.e.



%ﬁ-ﬁ-gco.
&M y ubﬂwuﬂnmrkﬁmwhidn you should
ﬂ’.hh-:ll:”vlllbﬂndmdinnthinbodywith,wy_w
two-dimensional temperature distribution and no boundary tractions,
(l)&u'thﬁmhuhllym line on such a body will be distorteq
tb“b'hsahlnythntincumtum'sproportionnl to the 10cal fgy
flux across it.

4. Find the inverse relations to equations (3.18) — i.e. the substitutions thay
should be made for the elastic constants E,v in a plane strain solution jf y,
want to recover the solution of the corresponding plane stress problem,

5. Show that in a state of plane stress without body forces, the in-play

displacements must satisfy the equations
1+v_0;?ﬁ&_.2 l+u£_6u, Ou,
vau'+(l—u)8:(8z+8y)—o' i 2 4 dy E+6—y>=0‘

6. Show that in a state of plane strain without body forces,
g___(l—h)&. de _ (1-2) dw.
dr 1-v ) &y ' oy 1-v ) 0z

a material is ineompx:mible (¢=0.5), a state of hydrostatic stress 0,,=
3 E’oducs no strain. One way to write the corresponding stress-strain

Tij = 2pei; — qb;;
' n&mnmd.lwmc pressure which will generally vary with
; n of incompressibility requires that the dilatation

e=erk=0..

plain strain conditions, th
- , the stress components and th®
must satisfy the equations

and 0z; +0,, = —9q,

Pp 51-53 (Stress Function Formulation)

w of gravitation states that two heavy particles of mass my,m2
will experience a mutual attractive force
ymime
=~ &
R is the distance between the particles and ~ is the gravitational con-
t, Use an energy argument and superposition to show that the force acting
m,p.mcleofmassmo can be written

P=

=-ymyVV,

where
S p(& n, €)d€dndC
V@2 = ///n G- +@-n2+E-0°'

(2 represents the volume of the universe and p is the density of material in
the universe, which will generally be a function of position (&,7,¢).

Could a similar method have been used if Newton's law had been of the
more general form

ymyma
F= T
If so, what would have been the corresponding expression for V7 If not, why

not?

9. An ionized liquid in an electric field experiences a body force p. Show
that the liquid can be in equilibrium only if p is a conservative vector field.
Hint: Remember that a stationary liquid must be everywhere in a state of
hydrostatic stress.

3. An antiplane state of stress is one for which the only non-zero stress com-
ponents are 0,0, and these are independent of z. Show that two of the
three equilibrium equations are then satisfied identically if there is no body
force. Use a technique similar to that of §4.3 to develop a representation of
the non-zero stress components in terms of a scalar function, such that the
remaining equilibrium equation is satisfied identically.

4.1fa body of fairly general axisymmetric shape is loaded in torsion, the only
non-zero stress components in cylindrical polar coordinates are gr, 09, and
required to satisfy the equilibrium equation

dogr 200y 0= L
Friae * 5 =S

similar to that of §4.3 to develop a representation of these
1 terms of a scalar function, such that the equilibrium
: gl

! pmypt V¥
dises i wquation I w, b are both harmonic (ie, v2, "
ge0). bihare

) Develoj ons for the stress components in terms of w, 1y, baseq X
g:)l use of 3 as an Airy stress function. 0

& 0 subject t
Show that a solution suitable for the half-plane y > 0 nomy
gt)flﬂ tractions only (le. Oxy =() on y=0) can be obtained by writing a

w=—=

dy
and hence that under these conditions the normal stress o, near the surfg
=0 is equal to the applied traction .
(iv) Do you think this is a rigorous proof? Can you think of any exceptions? If
s0, at what point in your proof of section (iii) can you find a lack of generality?

6. The constitutive law for an orthotropic elastic material in plane stress can
be written

€pr = $1103z + 8120y § €yy = $1202x + 8220y | €zy = S440zy,

where 811, 812, 822, $44 are elastic constants.
- Using the Airy stress function ¢ to represent the stress components, find
nation that must be satisfied by ¢.

that if the two-dimensional function w(z,y) is harmonic (V2w =0),

o= (2" +v*)w

for an isotropic incompressible elastic material can be
Tij = T0i; + 2pey;
7= Tk

3

tatic stress field. Some soils can be approx
0 al whose modulus varies linearly with

a potenthl function solution for the stresses in such a body. Show

?-, m functions ¢, 7 must satisfy the relations

9o
2 AL, FOSEGT Y g
Vé9p=0; o= 2M62

and hence obtain expressions for the stress components in terms of the single

nic function ¢.
1f the half-space is loaded by a normal pressure

0s(@,9,0) = —P(T,¥) 5 022(2,9,0) = 0z (@, 4.0) =0,

show that the corresponding normal surface displacement u. (7, ¥, 0)is line'fu'ly
pmponional to the local pressure p(z,y) and find the constant of proportion-

ality®.
9. Show that Dundurs’ constant B — 0 for plane strain in the limit where

v =0.5 and /2 —0 — ie. material 1 is incompressible and has a much
lower shear modulus® than material 2. What is the value of a in this limit?

10. Solve Problem 3.7 for the case where there is no body force, using the
Airy stress function ¢ to represent the stress components. Hence show that
the governing equation is V4$=0, as in the case of compressible materials.



Pp 74-76 (Problems in Rectangular Coordinates)

3

<L, is built-in at the end 2 =0 and loadeq ,

» being itable stress function 5

= =-b traction-free. Find a suital il
g stress components for this problem,
conditions on x=L.

9. The beam —b<y<b,—L<x< L is simply supported at the ends o=+, ang
Joaded by a shear traction oxy = Sz/L on the lower edge, y=—b, the uppq,
edge being traction-free. Find a suitable stress function and the correspondpg
stress components for this problem, using the weak boundary conditions o

==L,

3. The beam —b<y<b, 0<z<L,is built-in at the end z = L and loadeq
by a linearly-varying compressive normal traction p(z) =Sz/L on the upper
edge, y = b, the remaining edges, z = 0, y = —b being traction-free. Finq
a suitable stress function and the corresponding stress components for this
problem, using the weak boundary conditions on x=0.

4. The beam —b<y<b,—L <z <L is simply supported at the ends z=+[
and loaded by a compressive normal traction

p(x) = Scos (%)

on the upper edge, y=b, the lower edge being traction-free. Find a suitable
function and the corresponding stress components for this problem.

e beam —b<y<b, 0<z <L, is built-in at the end z =L and loaded by
ssive normal traction

p(x) = Ssin (;%)

, y="b, the remaining edges, 2 =0, y=—b being traction-fre
n of the stress function (5.97) and an appropriate polyﬂo"‘j‘]

SsinAz ; opy =

the plate and hence estimate the dept'!
in 0y, has fallen to 10% of 5-

S on the upper edge, y=0, the remaining "dx}; b

using the weak bQu“(hry %

mponents for this problem, using the weak boundary E

Hint: You might find it easier initially to consider the case of the layer
0<y<h with y="h traction-free, and then let h — oo.

peam —a<T<a, —b<y<bis loaded by a uniform compressive traction
1.5 central region —a/2 <z <a/2 of both of the edges y= +b, as shown
” . 5.5. The remaining edges are traction-free. Use a Fourier series with
riate symmetries to obtain a solution for the stress field, using the

'ﬂ:‘k condition on 0z, on the edges = = +a and the strong form of all the
remaining boundary conditions.

p
ERRRIURRRR’

—afp—T—a—T— % —o*-— a/y b
0

EEEELEEEE]
P

Figure 5.5

8. Use a Fourier series to solve the problem of Figure 5.4(a) in §5.2.3. Choose
the terms in the series so as to satisfy the condition o.-(+a,y) =0 in the
strong sense.

If you are solving this problem in Maple or Mathematica, compare the
solution with that of §5.2.3 by making a contour plot of the difference between
the truncated Fourier series stress function and the polynomial stress function

Y OT % i JE S L Y WU ) 2,3
@ 40b3(5zy y® — 15b%z%y — 5a’y” + 2b%y°) .
Examine the effect of taking different numbers of terms in the series.

9. The large plate y>0 is loaded at its remote boundaries so as to produce a
state of uniform tensile stress

azz=s 3 azyzayy:())

Y =0 being traction-free. We now wish to determine the pertur-
imple state of stress that will be produced if the traction-free
slight waviness, defined by the line

(i) Start with the stress function

2
6= 4+ 1) cos(ra)
and determine f(y) if the function is to be biharmonic.
(ii) The perturbation will be localized near y =0, so select only thog,
in f(y) that decay as y— oo0. terny
(iii) Find the stress components and use the stress transformation equati
to determine the tractions on the wavy boundary. Notice that the ilﬁnf
nation of the wavy surface to the plane y =0 will be everywhere sm:ﬁl.k
Ae< 1 and hence the trigonometric functions involving this angle Canb]eI
approximated using sin(z)~z, cos(z)~1,z<1.
(iv) Choose the free constants in f(y) to satisfy the traction-free houndsy,
condition on the wavy surface. 7
(v) Determine the maximum tensile stress and hence the stress concentratioy
factor as a function of Ae.

Pp 121-122 (Problems in polar coordinates)

i ; 'piﬂb with a small central hole of radius a is subjected to in-plane
LA laig® compression Ozx = Tyy = —8, 02y =0 at the remote boundaries.
Find the stress field in the plate if the surface of the hole is traction-free.

2, A large rectangular plate is loaded in such a way as to generate the unper-

rurbed stress field

2 2 . =%
02z =Cy" ; oy =—Cz i Ozy=0.

contains a small traction-free circular hole of radius a centred on

late
ik Find the perturbation in the stress field due to the hole.

the origin.
3, Figure 8.3 shows a thin uniform circular disk, which rotates at constant
SW ( about the diametral axis y =0, all the surfaces being traction-free.
Determine the complete stress field in the disk.

¥ Traction-free

Figure 8.3: Thin disk rotating about a diametral axis.

4. A series of experiments is conducted in which a thin plate is subjected
to biaxial tension/compression, o1, 02, the plane surface of the plate being
traction-free (i.e. 03 =0).

Unbeknown to the experimenter, the material contains microscopic de-
feets which can be idealized as a sparse distribution of small holes through
tl.xe thickness of the plate. Show graphically the relation which will hold at
w between the tractions o, o2 applied to the defective plate, if the Tresca
(maximum shear stress) criterion applies for the undamaged material.

5- The circular disk 0 < r < a is subjected to uniform compressive tractions
the two arcs —7/4<6<7/4 and 3m/4 <6< 5m/4, the remainder
r=a being traction-free. Expand these tractions as a Fourier
tence develop a series solution for the stress field. Use Maple
produce a contour plot of the Von Mises stress o, using
0 terms.

¢ a in a large elastic plate is loaded only by a self
o normal pressure p(#) that varies around the ciren Uy
*the hole. By expanding p(6) as a Fourier series in ¢ ?nd using Table §
that the hoop stress 7pe at the edge of the hole is given by

ave(a,8) = 29— p(6) ,

Dy

where T
,7:51;/0 p(6)d8

is the mean value of p(f).



Slaughter, “The Linearized theory of elasticity”
Pp 91-95 (Mathematical Preliminaries, Cylindrical
and Spherical Coordinates)

By following, determine whether or not the given expres-
» I‘"‘“"?\:I::l'imnciml notation expression. If it is valid, identify the
(o e and the dummy index pairs, determine the number of

equations represented and how many terms each expanded
equation will have, and give the expanded equations (or, if they are
100 lengthy, at least demonstrate that you know what they are).

(b) Ams = m(Cs = d,)
(d) t, = a,-,-n,-

(a) Gms = bm(cr — dr)
(¢) ti= 05"y

(€) 0ij = 2ueis + Aerxdis
(g) €rs = he(ds = hokrr)

(f) ziz;=r1>
(h) bije; =3

2,2 Show each of the following, where &;; is the Kronecker delta, ¢;; are
the direction cosines, and e,;x is the permutation symbol.

(a) dis0jkOkpdpi = 3
(¢) Lrilij = bij

(b) dijeij =0
(d) eqrsdqds =0
2.3 Prove the following relations between the permutation symbol e;;x

and the Kronecker delta d;; (Hint: recall that det[4]” = det[A] and
det(A] det[B] = det([A](B]), and use successive contractions).

di1 b2 Oi3 dip 0ig O
(l) €ijk = det le 6,'2 Jja (b) €ijkEpqr = det 5,‘, 6]' 5_-,'.-
Ok1 Ok2 Oka Okp Okq Okr

(€) eijkeior = 8;q0kr — 6;,0kq
(e) €ijk€ijk = 6

(@) essressr = 26kr

24 Prove the following relations between the permutation symbol e,
d the determinant of the 3 x 3 matrix [A] with elements Ayj.

= €ijkAiAjmAkn
%e‘fkelmnAﬂAijlm

onormal basis {&;} and three arbitrary vectors u = u;&;,
w;&;, show that

(b) uxv-w = e puvwi

A =Bydy - Ay +28583, U=—281+34.

2 (a) Find the dyadic representation, in the orthonormal basig @),
of the vector v =AU
tensor transformation rule to find the matrices Ay,
(b) K? ::l [v})' of the scalar components of A, u, and v in.l,,
' basis {€} that is obtained by rotating {&,} through
2 30° clockwise angle about the &;-direction, as shown beloy,

- mal basis {&]}.

2 N

1

" A

CTa 4

&, 8 & '

(c) Show that [v]’ = [A)[u]’. B
(d) Give the dyadic representations of A, u, and v in the orthonor- 4
|

arbitrary vectors u, v, and w, show that

ux(vxw)=(w-uv—(v-u)w.

vector v and an arbitrary unit vector fi, show

(v~f;)i1+i4x(vxp)

ons of (v i)f and i x (v x f1).
lvllo_'l':hatu'A-u=0fora.l.lve¢':"‘s

bitrary second-order tenso™

K § and arbitrary second-order tensors
11 Given arbitrary vectors u and v
(a) (A.B)T =BT-A"
(b) (A-u):(B-v)=u- (AT-B)-v
(c) (A-B)"' =B~ -A"!
@ (AT) ' = (A1) =AT
2.12 If, in an orthonormal basis {&;}, A;; are the scalar components of a
" skew-symmetric second-order tensor A, then the vector b with scalar
components given by

1
b, = §ecjkAkj

is called the azial vector of A.
(a) Show that the scalar components of A are given in terms of the
scalar components of b by Ay, = egpib;.

(b) Give the matrix of scalar components of A in terms of the scalar
components of b.

(c) Show that, for an arbitrary vector ¢, A-c=b x c.
2.13 Show that, in an orthonormal basis {€, }, the determinant of a second-

order tensor A is equal to the determinant of its matrix of scalar
components [A], that is, that

A lAwx@a v (aw

S (uxv) -w

= det[A] ,
where u, v, and w are arbitrary vectors.
214 Given, in an orthonormal basis, that
Na (i, fia, iz, A) = Aijaft; — Mjifis — 1)

and A;; = Aj;, show that the conditions N /81 = 0 lead to the

Ak = Mk -




tensor A

b thay
A —IAA’+TIAA - IIIx1 =0,
where I, IIa, and 1] are the principal invariants of A.

2.17 Consider a nonsingular second-order tensor A and let B _ ,.
Showthnttheprindpdinvaﬁantsochanbeexpremedint;n:;

the principal invariants of A by
IIs Ia 1
y el nan el
¥ g ang, s b T

[Hint: recall that det(B — AI) = A — Ig\? + IIg\ - IT
il U f
det(aC) = o® det C and note that (B — AI) = A~1(I — M) p

2.18 For the function F = ay;z;z;, where a;; are constants, derive expres-

sions for
aF 2

) il B
oz, ®) 0x,0z,

iven an arbitrary scalar field ¢, an arbitrar; tor fi
e y vector field v, and the

“Y(V’() = V4(V¢) (b) V(v:-x)=v+x-(Vv)
xv)=0 (d) V- (V2v) = V3(V.v)
V-V (V) v (f) Vx(Viv)=VY(Vxv)
V¢ +xV2( (h) V3(v-x)=2V v +x- V¥
V(V-v) - V2y

e by two arbitrary vectors a and b, sho¥

b +2(V?b) + 2Va - (Vb)T .

1 the origin. Show each of the follo™
te system, as in Example 24/

V- (R"x) = (n+3R"
= n(n+3)R"

Hamchwtahﬁc,qm

D asmy ﬁ.mﬂddhsok"’&g,wheuahneomtm.ﬂh
wmmm,mdéninhasphetwﬂcoordluub-n

:meﬂmmtheorigin. Determine the gradient Vh, the

Wv.h,andthecuﬂVxhofthiammrﬂeld.

Recall that, in a Cartesian coordinate system, the curl of a vector
feld v = vié is given in terms of its scalar components by Vxv=
€4k Bk and the curl of a second-order tensor S = Sy;&;@; is given in
of its scalar components by V x 8 = €k 5rji éxé,. Determine
the curl of & third-order tensor T = T};x€;€;€ in terms of its scalar

wmponents.

2.24 Given, in a (Cartesian coordinate system, a second-order tensor field
£ = £i;€:&;, derive a dyadic notation expression for V x (V x €) in
terms of the scalar components of €. Assuming that e is symmetric,
determine explicitly the six independent scalar equations, in a Carte-
sian coordinate system, that are represented by the tensor notation
equation V x (V x €) = 0.

2,25 It was shown in Example 2.5 that V x (V¢) = 0, where ¢ is an
arbitrary scalar field. Prove that V x (VT) = 0 for an arbitrary
tensor field T of any order. [Hint: use the definition (2.4.36) with
T — VT, show that a- (VT) = V(a- T) since a is a constant, and
establish the proof by a process of induction.|
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Pp 250-254 (Linearized Elasticity Problems)

Problems

6.1 A circular cylindrical material sample of radius a and height } i
placed into a servo-hydraulic testing machine as shown below, The
two surfaces of the testing machine that come into contact with the
»gample at A and B are called platens. These platens are made of 5
~ very stiff alloy that may be assumed to be rigid. The platen at B
held stationary and an active control circuit is integrated into the
draulic actuator so that the vertical motion of the platen at A can
ibed. Suppose that the platen at A is first adjusted until it
contact with the sample, and then an additional downward
of the platen is prescribed. Define a coordinate system and
statement of the boundary conditions for the sample,

ple is ideally bonded to the platens at A and B

Note: do not attempt to solve the corresponding boundary value

problem-

42 Consider the infinitely long cylindrical body, with semicircular cross
ection, illustrated below. In Cartesian coordinates, the body occu-
pies the region X7 +X3 < a?, X, >0, —00 < X3 < 0. In cylindrical
wadﬁmes,itoccupieatheregionrﬁa,OSOSw, —00 < z < 00.
A uniform vertical traction of magnitude g acts on the semicircular
surface of the body and the base is fixed to a rigid support.

X2
I

> statement of the boundary conditions for this
Cartesian coordinate system.
statement of the boundary conditions for this

lve the corresponding boundary value



pgR

=2,

‘where p is the mass density and g is the gravitational g
at the surface of the sphere. Assuming the surface of the g "

s the.dicpl t field in the sphere 8

6.4 Consider a spherical body, with Lamé constants A and 4, ¢,
embedded within it a tric spherical inclusion. Tnitia)] B
the radius of the inclusion is a, the spherical body is strm-&eey’ .
outer radius is b. Suppose some event occurs that triggers 5 ter i
mation in the inclusion that causes its radius to increase by ,ak:sfm'
amount xa. (This is not what the change in radius of the inc| -
quld be if it were isolated, but the actual change in radiys o‘;mn
inclusion while it is embedded in the spherical body.) Det,em,:he
change in the outer radius of the spherical body caused by g:';
sion of the inclusion.

Whep

spherical inclusion

ius b with a concentric, rigid spher-
as shown below. An external hydrostati
 applied to the surface of the body.

ent and stress fields in the body.
spherical inclusion in an infinit®
ure (ie., as b — 00), h¥
for the rigid inclusion is

» composite sphere composed of a solid spherical core of
a, with Lamé constants yy and Aj, and an outer spherical

“ of outer radius b, with Lamé constants p, and A;. The core
S shell are concentric and a spherical coordinate system is defined
with the origin at their center. Assume that the core and shell are
{deally bonded at their interface at R = a, which means that the
displacement field u is continuous across the interface.

e Ey T

() Recall the generalization of Newton’s third law, which says that
traction vector exerted by the shell on the core is the negative
traction vector exerted by the core on the shell. Note
, at a point on the interface, the unit outward normal
is the negative of the unit outward normal to the
consequences does this have for continuity of the
nts of stress (in spherical coordinates) across the

¢ is subject to an external, hydrostatic pres-
Assuming that the spherical symmetry of
d in the solution, use the semi-inverse
lacement and stress fields in the com-
, given the symmetry assumption, the

~

s ‘.:”‘nﬁltthe_eun::ofmmm
‘swer will involve separate Sxpression? for the core .
¥ wbmmnm%.‘”'hh
" 6.7 A hollow circular cylinder has inner radius a, outer
ok memﬁceofthel_m‘llowcylindensmb'n
nner surface is ideally bonded to a rigid cylindrical core of .
and length L, as shown below. Snpposethatmgxialfom;'ﬁim
hwwmmmahngitscenmiddmds_ =K,

- ©

the resulting (rigid-body) axial displacement of the core

work done by the applied force F, by assuming a dis

ﬁeld in the hollow cylinder of the form u, = uy=0
(r).

ct solution to the problem, or is it a solution oaly

Venant’s principle? Explain.




Pp 327-329 (Torsion of non-circular Cylinders)

the Prandtl stress function for torsion of a hollow i
‘of inner radius a and outer radius b, in terms of thi“scll:el:
; _pndmtwinperunitlengtha.

composite cylinder is composed of a solid inner

s “’; i jius a and shear modulus y;, and an outer sleeve of outer
W b and shear modulus p;. The shaft and sleeve are ideally
ded at their interface and the composite cylinder is subjected to

- in terms of the twist per unit length a.
an expression for the twist per unit length & in terms of

‘a cylinder with the rectangular cross section
n why a function of the form

(a) Show that the Prandtl stress function,
¢=m(r? - b’)(gf—rw”—” - 1) .

may be used to describe the torsion for this cross section ayg
determine the value of the constant m in terms of the twist pe

ength .

g that the maximum shear traction 7y, on the cros
irs at the point (r,0) = (b,0) on the boundary, com-
16 of Tmax in the limit as b — 0 and compare it
m shear traction for torsion of a solid circu-
8 a (the two maximum shear tractions are

constants a, b, and m b
d Prandtl stress function’

u.-{(x..X.)|§+§,l.p},
o= {1 3 50

and k are constants and 0 < k < 1.

e

where 0, b,

(a) Show that the Prandt] stress function,

LS o
¢= m( g ) )
may be used to describe the torsion for this cross section and
determine the value of the constant m in terms of the twist per
‘unit length a.

| Find the torque T as a function of the twist per unit length and
determine the torsion constant J. Hint: the moments of inertia



