MA1001-1 Introducción al Cálculo, Semestre Primavera

Profesor: Michal Kowalczyk Auxiliar: Nicolás Tapia Rivas

Resumen Semanas 14 y 15

Derivadas

■ Diremos que f es derivable o diferenciable en x_0 cuando existe el límite descrito por:

$$L = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

En tal caso, L se denominará la derivada de f en x_0 y se denotará por $f'(x_0)$.

- La interpretación principal de $f'(x_0)$ es representar la pendiente de la recta tangente a la curva y = f(x) en x_0 .
- La derivada solo se estudiará en aquellos puntos donde sea posible estudiar el límite. Es decir, en los puntos del dominio de f que estén rodeados de otros puntos del dominio. Estos puntos se llaman los puntos interiores de Dom(f) y cumplen con:

$$\exists \delta > 0$$
, tal que $(x_0 - \delta, x_0 + \delta) \subset \text{Dom}(f)$

- La función f' tal que asigna a cada $x \in Dom(f)$ el valor f'(x) (su derivada) se llama función derivada de f.
- Álgebra de derivadas: Si f y g son diferenciables en x₀, entonces las siguientes funciones también son diferenciables y su derivada en términos de f y g corresponden a:
 - $\bullet \ (f \pm g)' = f' \pm g'$
 - $(\alpha f)' = \alpha f', \ \alpha \in \mathbb{R}$
 - $\bullet (fg)' = f'g + fg'$

$$\bullet \ \left(\frac{f}{g}\right)' = \frac{f'g - fg'}{g^2}, \ g \neq 0$$

■ Una función f es diferenciable en x_0 ssi existen m y $E: [-\delta, \delta] \setminus \{0\} \to \mathbb{R}$ (con $\delta > 0$ y $E(h) \to 0$ cuando $h \to 0$) tales que:

$$f(x_0 + h) = f(x_0) + mh + hE(h), \ \forall h \in [-\delta, \delta] \setminus \{0\}$$

O equivalentemente, $\forall x \in [x_0 - \delta, x_0 + \delta] \setminus \{x_0\}$:

$$f(x) = f(x_0) + m(x - x_0) + (x - x_0)E(x - x_0)$$

Se puede demostrar que $m=f'(x_0)$, por lo tanto la expresión:

$$y = f(x_0) + f'(x_0)(x - x_0)$$

Representa la aproximación de primer orden de f en torno a x_0 . Esto se puede interpretar como sigue: la recta tangente a f por x_0 es la recta que mejor aproxima a la función cuando estamos suficientemente cerca de x_0 , donde el error de la aproximación «hE(h)» no solo tiende a cero cuando $h \to 0$, sino que el error relativo «E(h)» también tiende a cero, por lo que el error se hace muy pequeño en las cercanías de x_0 .

• Es directo de la aproximación de primer orden que si f es derivable en x_0 , entonces f es continua es x_0 . Es decir, que se cumple:

$$\lim_{x \to x_0} f(x) = f(x_0)$$

■ Regla de la cadena: Sea f diferenciable en x_0 y g diferenciable en $f(x_0)$. Entonces $g \circ f$ es diferenciable en x_0 y su derivada es:

$$(g \circ f)'(x) = g'(f(x_0)) \cdot f'(x_0)$$

■ Derivada de la función inversa: Sea f una función biyectiva. Para su función inversa se tiene:

$$(f^{-1})'(x_0) = \frac{1}{f'(f^{-1}(x_0))}$$

- Derivación implícita: Existen ecuaciones que relacionan las variables x e y de tal manera que definen alguna función y = f(x) en algún intervalo de valores de x, pero en que no es posible despejar $\langle y \rangle$. Se dice que la ecuación en cuestión define en forma implícita a tal función. Sabiendo que existe tal función y = f(x) en torno a $P(x_0, y_0)$, podemos encontrar la derivada en P derivando directamente ambos lados de la ecuación recordando que y es una función que debe ser derivada. El término $\langle y' \rangle$ puede ser entonces despejado en términos de x_0 e y_0 , de modo que deben conocerse ambas coordenadas para determinar su valor.
- Derivación logarítmica: Se define el operador logarítmico \(\mathcal{L} \) como:

$$\mathcal{L}(f) = \frac{f'}{f}$$

Se tienen las siguientes propiedades:

- $\mathcal{L}(fg) = \mathcal{L}(f) + \mathcal{L}(g)$
- $\mathcal{L}(f/g) = \mathcal{L}(f) \mathcal{L}(g)$
- $\mathcal{L}(f^{\alpha}) = \alpha \mathcal{L}(f)$

Además se tiene directamente que $f'=f\cdot\mathcal{L}(f)$. El operador solo es útil cuando la expresión es dominada por multiplicaciones, divisiones y potencias.

Derivadas de orden superior

■ Para $n \in \mathbb{N}$ se define $f^{(n)}(x_0)$, la derivada de orden n de f en x_0 , como el valor del siguiente límite cuando existe:

$$f^{(n)}(x_0) = \lim_{x \to x_0} \frac{f^{(n-1)}(x) - f^{(n-1)}(x_0)}{x - x_0}$$

Donde « $f^{(0)}(x_0)$ » es la función f original.

 \blacksquare Cuando el límite anterior existe, decimos que f es n veces derivable en x_0 . Si $f^{(n)}(x_0)$ existe, se tendrá:

$$\lim_{x \to x_0} f^{(k)}(x) = f^{(k)}(x_0), \ \forall k \in \{0, 1, \dots, n-1\}$$

• Fórmula de Leibnitz: Sean f y g n veces derivables en x_0 . Entonces

$$(fg)^{(n)}(x_0) = \sum_{k=0}^{n} \binom{n}{k} f^{(k)}(x_0) g^{(n-k)}(x_0)$$

Por lo tanto, si conocemos las derivadas n-ésimas de f y g, podemos conocer la derivada n-ésima de su producto.

Polinomio de Taylor: Para f una función n veces derivable en x₀, se tiene el polinomio de Taylor de f en torno a x₀ y de orden n dado por:

$$p(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \ldots + a_n(x - x_0)^n$$

Donde $a_k = \frac{f^{(k)}(x_0)}{k!}$

 ■ El polinomio de Taylor de orden 1 corresponde a la recta tangente, y si p es el polinomio de Taylor de orden n de f en torno a x₀, entonces p' es el polinomio de Taylor de orden n − 1 de f' en torno a x₀.

Regla de l'Hôpital

Sean f y g derivables con $g'(x) \neq 0$ y $B = \{\pm \infty, x_0, x_0^{\pm}\}.$

• Si $\lim_{x \to B} f(x) = \lim_{x \to B} g(x) = 0$ entonces:

$$\lim_{x\to B}\frac{f'(x)}{g'(x)}=L\Rightarrow \lim_{x\to B}\frac{f(x)}{g(x)}=L$$

• Si $\lim_{x \to B} f(x) = \lim_{x \to B} g(x) = \pm \infty$ entonces:

$$\lim_{x \to B} \frac{f'(x)}{g'(x)} = L \Rightarrow \lim_{x \to B} \frac{f(x)}{g(x)} = L$$

 La regla puede ser usada tantas veces como se quiera, siempre y cuando se cumplan las hipótesis necesarias.

Funciones Hiperbólicas:

 \blacksquare Se define el $seno\ hiperbólico$ y el $coseno\ hiperbólico$ como:

$$senh(x) = \frac{e^x - e^{-x}}{2}$$
 $cosh(x) = \frac{e^x + e^{-x}}{2}$

• Se satiface la identidad $\cosh^2(x) - \sinh^2(x) = 1$

 La tangente, cotangente, secante y cosecante hiperbólico se definen igual que sus análogos trigonométricos.

Cálculo de algunas derivadas típicas:

•
$$f(x) = c = \text{cte} \Rightarrow f'(x) = 0$$

$$f(x) = x^{\alpha}, \ \alpha \in \mathbb{R} \Rightarrow f'(x) = \alpha x^{\alpha - 1}$$

$$f(x) = e^x \Rightarrow f'(x) = e^x$$

•
$$f(x) = \ln(x) \Rightarrow f'(x) = \frac{1}{x}$$

$$f(x) = \operatorname{sen}(x) \Rightarrow f'(x) = \cos(x)$$

$$f(x) = \cos(x) \Rightarrow f'(x) = -\sin(x)$$

•
$$f(x) = \operatorname{senh}(x) \Rightarrow f'(x) = \cosh(x)$$

•
$$f(x) = \cosh(x) \Rightarrow f'(x) = \operatorname{senh}(x)$$

•
$$f(x) = a^x \Rightarrow f'(x) = a^x \ln(a)$$

•
$$f(x) = \log_a(x) \Rightarrow f'(x) = \frac{1}{x} \frac{1}{\ln(a)}$$

•
$$f(x) = \arcsin(x) \Rightarrow f'(x) = \frac{1}{\sqrt{1-x^2}}$$

$$f(x) = \arccos(x) \Rightarrow f'(x) = \frac{-1}{\sqrt{1 - x^2}}$$

•
$$f(x) = \arctan(x) \Rightarrow f'(x) = \frac{1}{1+x^2}$$