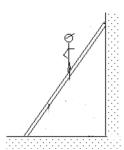
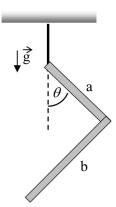
Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Fisica FI1002-5 Sistemas Newtonianos

Auxiliar Unidad 4A: Sólidos Rígidos-Estática

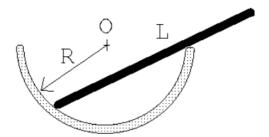
Profesor: Rene Garreaud Auxiliares: Mauricio Carcamo, Ariel Figueroa, Carlos Mardones


P1. Dado los vectores:

$$\overrightarrow{A} = 3\hat{x} + 4\hat{y} + \hat{z} \text{ [kg]}$$


$$\overrightarrow{B} = -\hat{x} + \hat{y} + 2\hat{z} \text{ [m]}$$

Encontrar $\overrightarrow{C} = \overrightarrow{A} X \overrightarrow{B}$ e indicar sus unidades.


 ${f P2.}$ Una escalera de masa m y largo L se encuentra apoyada contra una pared lisa (osea, no hay roce entre la escalera y la pared), formando un ángulo α con ella. Una persona de masa M se encuentra sobre la escalera. ¿Cuál es el mínimo coeficiente de roce estático que debe existir entre el suelo y la escalera para que la escalera no resbale, independientemente de la altura a la que se encuentra la persona?

P3. Considere una escuadra formada por dos barras uniformes de igual densidad de masa ρ , y de largos a y b respectivamente, unidas de modo que forman un ángulo recto y que cuelga con un hilo desde el cielo. Las longitudes de la escuadra satisfacen la relación $b^2 = a^2 + 2ab$ Determine **a)** el ángulo θ que forma la estructura con la vertical cuando se encuentra en equilibrio. **b)** la energía potencial gravitatoria del sistema en función del ángulo θ y grafíquela. Comente respecto del valor de la energía potencial gravitatoria para el caso en que la estructura se encuentra en equilibrio.

 ${f P4.}$ Encuentre la posición de equilibrio de una varilla de largo L colocada dentro de un pocillo. Considere al pocillo como una semiesfera de radio R y asuma que entre éste y la varilla no hay roce.

