
Now is the time

For all good men

To come to the aid

Of their party

QUICKSORT IS OPTIMAL

Robert Sedgewick
Jon Bentley

MOTIVATION

MOORE'S LAW: Processing Power Doubles every 18 months
but also:

 memory capacity doubles every 18 months
 problem size expands to fill memory

Sedgewick's Corollary: Need Faster Sorts every 18 months!
(annoying to wait longer, even to sort twice as much, on new machine)
 old: N lg N
 new: (2N lg 2N)/2 = N lg N + N

Other compelling reasons to study sorting
 cope with new languages, machines, and applications
 rebuild obsolete libraries
 intellectual challenge of basic research

Simple fundamental algorithms: the ultimate portable software

void quicksort(Item a[], int l, int r)
{ int i = l-1, j = r; Item v = a[r];
 if (r <= l) return;
 for (;;)
 {
 while (a[++i] < v) ;
 while (v < a[--j]) if (j == l) break;
 if (i >= j) break;
 exch(a[i], a[j]);
 }
 exch(a[i], a[r]);
 quicksort(a, l, i-1);
 quicksort(a, i+1, r);
}

Quicksort

Detail (?): How to handle keys equal to the partitioning element

METHOD A: Put equal keys all on one side?

NO: quadratic for n=1 (all keys equal)

METHOD B: Scan over equal keys? (linear for n=1)

NO: quadratic for n=2

METHOD C: Stop both pointers on equal keys?

YES: NlgN guarantee for small n, no overhead if no equal keys

4 9 4 4 1 4 4 4 9 4 4 1 4
1 4 4 4 1 4 4 4 9 4 9 4 4

1 4 1 1 4 4 4 1 4 1 1 4 4
1 1 1 1 4 4 4 1 4 1 4 4 4

Partitioning with equal keys

4 4 4 4 4 4 4 4 4 4 4 4 4
4 4 4 4 4 4 4 4 4 4 4 4 4

How to handle keys equal to the partitioning element?

METHOD C: Stop both pointers on equal keys?

YES: NlgN guarantee for small n, no overhead if no equal keys

METHOD D (3-way partitioning): Put all equal keys into position?

yes, BUT: early implementations cumbersome and/or expensive

4 9 4 4 1 4 4 4 9 4 4 1 4
1 4 4 4 1 4 4 4 9 4 9 4 4

Partitioning with equal keys

How to handle keys equal to the partitioning element?

4 9 4 4 1 4 4 4 9 4 4 1 4
1 1 4 4 4 4 4 4 4 4 4 9 9

Quicksort common wisdom (last millennium}

1. Method of choice in practice

 tiny inner loop, with locality of reference

 NlogN worst-case “guarantee” (randomized)

 but use a radix sort for small number of key values

2. Equal keys can be handled (with care)

 NlogN worst-case guarantee, using proper implementation

3. Three-way partitioning adds too much overhead

 “Dutch National Flag” problem

4. Average case analysis with equal keys is intractable

 keys equal to partitioning element end up in both subfiles

Changes in Quicksort common wisdom

1. Equal keys abound in practice.

 never can anticipate how clients will use library

 linear time required for huge files with few key values

2. 3-way partitioning is the method of choice.

 greatly expands applicability, with little overhead

 easy to adapt to multikey sort

 no need for separate radix sort

3. Average case analysis already done!

 Burge, 1975

 Sedgewick, 1978

 Allen, Munro, Melhorn, 1978

Bentley-McIlroy 3-way partitioning

equal less greater equal

 move from left to find an element that is not less
 move from right to find an element that is not greater
 stop if pointers have crossed
 exchange
 if left element equal, exchange to left end
 if right element equal, exchange to right end

Partitioning invariant

Swap equals to center after partition

 less equal greater

KEY FEATURES
always uses N-1 (three-way) compares
no extra overhead if no equal keys
only one “extra” exchange per equal key

void quicksort(Item a[], int l, int r)
{ int i = l-1, j = r, p = l-1, q = r; Item v = a[r];
 if (r <= l) return;
 for (;;)
 {
 while (a[++i] < v) ;
 while (v < a[--j]) if (j == l) break;
 if (i >= j) break;
 exch(a[i], a[j]);
 if (a[i] == v) { p++; exch(a[p], a[i]); }
 if (v == a[j]) { q--; exch(a[j], a[q]); }
 }
 exch(a[i], a[r]); j = i-1; i = i+1;
 for (k = l; k < p; k++, j--) exch(a[k], a[j]);
 for (k = r-1; k > q; k--, i++) exch(a[i], a[k]);
 quicksort(a, l, j);
 quicksort(a, i, r);
}

Quicksort with 3-way partitioning

Information-theoretic lower bound

Definition: An

€

(x1,x2,...,xn)-file has

€

N = x1 + x2 + ... + xn keys,

 n distinct key values, with

€

xi ≡ number of occurences of the i-th smallest key

€

pi ≡ xi N

THEOREM. Any sorting method uses at least

€

NH−N compares (where

€

H = − pk lgpk1≤k≤n∑ is the entropy)

to sort an

€

(x1,x2,...,xn)-file, on the average.

Information-theoretic lower-bound proof

€

C > lg N!
x1!x2!...xn!

= lgN!− lgx1!− lgx2!−...− lgxn!

€

C > NlgN − N − x1 lgx1 − x2lgx2 − ...− xn lgxn

€

= (x1 + ... + xn)lgN − N − x1 lgx1 − x2lgx2 − ...− xn lgxn
= NH− N

By Stirling’s approximation,

Avg. number of compares is minimized when tree is balanced

Number of leaves must exceed number of possible files

€

N
x1 x2...xn











 =

N!
x1!x2!...xn!

 1<2?
 2<3? 1<3?
 1<2<3 1<3? 2<1<3 2<3?
 1<3<2 3<1<2 2<3<1 3<2<1

DECISION TREE describes all possible sequences of comparisons

€

C(1,n) = N − 1 + 1
N

xj(C(1, j− 1) + C(j + 1,n))
1≤j≤n
∑

Analysis of Quicksort with equal keys

€

NC(1,n) = N(N − 1) + xjC(1,j− 1) + xj
1≤j≤n
∑ C(j + 1,n)

1≤j≤n
∑

€

(x1 + ... + xn)D(1,n) = x1
2 − x1 + 2x1(x2 + ... + xn) + xjD(1,j− 1)

2≤j≤n
∑

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

1. Define

€

C(x1,...,xn) ≡ C(1,n) to be the mean # compares to sort the file

3. Subtract same equation for

€

x2,..., xn and let

€

D(1,n) ≡ C(1,n) − C(2,n)

2. Multiply both sides by

€

N = x1 + ... + xn

4. Subtract same equation for

€

x1,...,xn−1

€

D(1,n) = D(1,n − 1) +
2x1xn

x1 + ... + xn

Analysis of Quicksort with equal keys (cont.)

€

(x1 + ... + xn)D(1,n) − (x1 + ... + xn−1)D(1,n− 1) = 2x1xn + xnD(1,n − 1)

5. Simplify, divide both sides by

€

N = x1 + ... + xn

6. Telescope (twice)

THEOREM. Quicksort (with 3-way partitioning, randomized) uses

€

N − n + 2QN compares (where

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑ , with

€

pi = xi N)

to sort an

€

(x1,..., xn) −file, on the average .

€

C(1,n) = N − n +
2xkxj

xk + ... + xj1≤k<j≤n
∑

€

Q = 1
n

1≤k<n
∑ 1

j− k + 1
k<j≤n
∑ = ln n + O(1)

Basic properties of quicksort “entropy”

Example: all frequencies equal (

€

pi = 1 n)

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑

Conjecture: Q maximized when all keys equal?

NO:

€

Q = .4444... for

€

x1 = x2 = x3 = N / 3

€

Q = .4453... for

€

x1 = x3 = .34N, x2 = .32N

with

€

pi = xi N

€

Q = pk
1≤k<n
∑

pj

pk + ... + pjk<j≤n
∑

Upper bound on quicksort “entropy”

1. Separate double sum

€

Q =
pkpj

pk + ... + pj1≤k<j≤n
∑

2. Substitute

€

qij = (pi + ... + pj) pi (note:

€

1 = qii ≤ qi(i+1) ≤ ... ≤ qin < 1 pi)

3. Bound with integral

€

Q = pk
1≤k<n
∑

qkj − qk(j−1)

qkjk<j≤n
∑

€

Q = pk
1≤k<n
∑ 1

xqkk

qkn∫ dx < pk lnqkn < pk(− ln pk) = Hln2
1≤k≤n
∑

1≤k<n
∑

Quicksort is optimal

The average number of compares per element C/N is always
 within a constant factor of the entropy H

 lower bound:

€

C > NH−N (information theory)
 upper bound:

€

C < 2ln2NH + N (Burge analysis, Melhorn bound)

No comparison-based algorithm can do better.

Conjecture: With sampling,

€

C / N → H as sample size increases.

Extensions and applications
Optimality of Quicksort

underscores intrinsic value of algorithm
resolves basic theoretical question

Analysis shows Quicksort to be sorting method of choice for
 randomly ordered keys, abstract compare
 small number of key values

Extension 1: Adapt for varying key length`
 Multikey Quicksort
 SORTING method of choice: (Q/H)NlgN byte accesses
Extension 2: Adapt algorithm to searching
 Ternary search trees (TSTs)
 SEARCHING method of choice: (Q/H)lgN byte accesses

Both conclusions validated by
Flajolet, Clèment, Valeé analysis
practical experience

References

Allen and Munro, Self-organizing search trees, JACM, 1978

Hoare, Quicksort, Computer Journal, April 1962

Clampett, Randomized binary searching with trees, CACM, March 1964

Knuth, The Art of Computer Programming, vol. 3, Addison-Wesley, 1975

Sedgewick, Quicksort with equal keys, SICOMP, June 1977

Wegner, Quicksort for equal keys, IEEE Trans. on Computers, April 1985

Bentley and McIlroy, Engineering a sort function,

 Software Practice and Experience, Jan. 1993

Bentley and Sedgewick, Sorting/searching strings, SODA, January 1997

 and Dr. Dobbs Journal, April and November, 1998

Clement, Flajolet, and Vallee, Analysis of Tries, Algorithmica, 1999

