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1 Introduction and Overview

In 1960, E.P. Wigner, a joint winner of the 1963 Nobel PrizeRtysics, published a paper titl€xh the Un-
reasonable Effectiveness of Mathematics in the Natura&reei{Wig60]. This paper can be construed as an
examination and affirmation of Galileo’s tenet that “The bad nature is written in the language of mathe-
matics”. To this effect, Wigner presented a large numbeixafgples that demonstrate the effectiveness of
mathematics in accurately describing physical phenom®&vigner viewed these examples as illustrations
of what he calledhe empirical law of epistemologwhich asserts that the mathematical formulation of the
laws of nature is both appropriate and accurate, and thdtensdtics is actually theorrect language for
formulating the laws of nature. At the same time, Wigner peghout that the reasons for the success of
mathematics in the natural sciences are not completelyrstwael; in fact, he went as far as asserting that “
...the enormous usefulness of mathematics in the natuesices is something bordering on the mysterious
and there is no rational explanation for it.”

In 1980, R.W. Hamming, winner of the 1968 ACM Turing Award f@omputer Science, published a
follow-up article, tittedThe Unreasonable Effectiveness of Mathemdtizm80]. In this article, Hamming
provided further examples manifesting the effectivendsaathematics in the natural sciences. Moreover,
he attempted to answer the “implied question” in Wignerschr: “Why is mathematics so unreasonably
effective?” Although Hamming offered several partial extions, at the end he concluded that on balance
this question remains “essentially unanswered”.

Since the time of the publication of Wigner's article, cortguscience has undergone a rapid, wide-
ranging, and far-reaching development. Just as in thealaciences, mathematics has been highly effective
in computer science. In particular, several areas of madlies) including linear algebra, number theory,
probability theory, graph theory, and combinatorics, hiagen instrumental in the development of computer
science. Unlike the natural sciences, however, computense has also benefitted from an extensive and
continuous interaction with logic. As a matter of fact, lobias turned out to be significantly more effective
in computer science than it has been in mathematics. Thigiie ggmarkable, especially since much of the
impetus for the development of logic during the past one reshgears came from mathematics.

*This paper summarizes a symposium, by the same title, whichheld at the 1999 Meeting of the American Association for
the Advancement of Science. The authors wrote the followBection 1 and 7 — Kolaitis, Section 2 — Immerman, Section 3 —
Vianu, Section 4 - Harper, Section 5 - Halpern, and SectiorVardi.

fCornell University. Work partially supported by NSF GraRi496-25901.

Carnegie-Mellon University Work partially supported by NG&rant CCR-9502674 and DARPA Contract F19628-95-C-0050.

University of Massachusetts, Amherst. Work partially sopped by NSF grant CCR-9877078.

TUniversity of California, Santa Cruz. Work partially supped by NSF Grant CCR-9610257.

IRice University. Work partially supported by NSF Grants GGRO0061, CCR-9988322, 11S-9978135, and CCR-9988322.

**University of California, San Diego. Work partially supped by NSF Grant 11S-9802288.



Indeed, let us recall that to a large extent mathematicét lwgs developed in an attempt to confront the
crisis in the foundations of mathematics that emerged atdbe turn of the 20th Century. Between 1900
and 1930, this development was spearheaded by Hilbertg&rm whose main aim was to formalize all of
mathematics and establish that mathematiceiispleteanddecidable Informally, completeness means that
all “true” mathematical statements can be “proved”, whemecidability means that there is a mechanical
rule to determine whether a given mathematical statemeiruis” or “false”. Hilbert firmly believed that
these ambitious goals could be achieved. NonethelesntsliPProgram was dealt devastating blows during
the 1930s. Indeed, the standard first-order axioms of adtitmvere shown to be incomplete by Godel in
his celebrated 1931 paper [G6d31]. Furthermore, A. TyrlkgChurch, and A. Tarski demonstrated the
undecidability of first-order logic. Specifically, the sdtail valid first-order sentences was shown to be
undecidable [Chu36, Tur37], whereas the set of all firseorsentences that are true in arithmetic was
shown to be highly undecidable [Tar35].

Today, mathematical logic is a mature and highly sophisttaesearch area with deep results and a
number of applications in certain areas of mathematicsinddll, however, it is fair to say that the interaction
between logic and mathematics has been rather limited. ficpkar, mathematical logic is not perceived
as one of the mainstream area of mathematics, and the “typnehematician usually knows little about
logic. Along these lines, R.W. Hamming’s judgment [Ham8)jhot uncommon, albeit perhaps severe:
“...we have had an intense study of what is called the foumasitof mathematics ... It is an interesting
field, but the main results of mathematics are impervioushatvis found there.”

In contrast, logic has permeated through computer sciengaglthe past thirty years much more than
it has through mathematics during the past one hundred .ydadeed, at present concepts and methods
of logic occupy a central place in computer science, insdmthat logic has been called “the calculus of
computer science” [MW85]. Our goal in this article is to 8tuate the effectiveness of logic in computer
science by focusing on just a few of the many areas of compgience on which logic has had a definite
and lasting impact. Specifically, the connections betwegitland computational complexity will be high-
lighted in Section 2, the successful use of first-order l@gi@ database query language will be illustrated in
Section 3, the influence of type theory in programming lagguasearch will be addressed in Section 4, the
deployment of epistemic logic to reason about knowledgedtftiragent systems will be covered in Section
5, and the connections between logic and automated desitjicatgon will be presented in Section 6.

2 Descriptive Complexity

A fundamental issue in theoretical computer science is tdmepaitational complexity of problems. How
much time and how much memory space is needed to solve auartgroblem?

Let DTIME[t(n)] be the set of problems that can be solved by algorithms thiédrpe at mostO (¢(n))
steps for inputs of size. The complexity class Polynomial Time (P) is the set of peais that are solvable
in time at most some polynomial in. Formally, P = [J7°, DTIME[nf].

Some important computational problems appear to requine ti@an polynomial time. An interesting
class of such problems is contained in nondeterministignmhial time (NP). A nondeterministic compu-
tation is one that may make arbitrary choices as it worksnyf@f these choices lead to an accept state, then
we say the input is accepted.

The three-colorability problem — testing whether an unctied graph can have its vertices colored with
three colors so that no two adjacent vertices have the saloe-ecas well as hundreds of other well-known
combinatorial problems are NP-complete. (See [GJ79] fauraey of many of these.) This means that
not only are they in NP, but they are the “hardest problemdNih all problems in NP are reducible (in
polynomial time) to each NP-complete problem. At presdm, fastest known algorithm for any of these
problems is exponential. An efficient algorithm for any ofi¢h@se problems would translate to an efficient



algorithm for all of them. The P=?NP question, which asks whether P and NP coincide, is an draohp
our inability to determine what can or cannot be computed é¢ergain amount of computational resource:
time, space, parallel time, etc.

Complexity theory typically considers yes/no problems.isTis the examination of the difficulty of
computing a particular bit of the desired output. Yes/nobpems are properties of the input. The set of
all inputs to which the answer is “yes” have the property irgfion. Rather than asking the complexity of
checking if a certain input has a propeffy in Descriptive Complexity we ask how hard is it to express th
propertyT in some logic. It is plausible that properties that are hatdeheck might be harder to express.
What is surprising is how closely logic mimics computatiaescriptive complexity exactly captures the
important complexity classes.

In Descriptive Complexity we view inputs as finite logicalugttures, e.g., a graph is a logical structure
Aq = ({1,2,...,n}, EY) whose universe is the set of vertices difd is the binary edge relation.

Proviso: We will assume unless otherwise stated that a total ordeélagion on the universe) is avail-
able.

In first-order logic we can express simple properties of apui structures. For example the following
says that there are exactly two edges leaving every vertex.

(V) Byz)(Vw)(y # 2z AN E(z,y) N E(x,z) A (E(z,w) - w=yVw=2z)).

In second-order logic we also have variablgg that range over relations over the universe. These
variables may be quantified. A second-order existentiahtda (SQI) begins with second order existential
guantifiers and is followed by a first-order formula. As anrepée, the following second-order existential
sentence says that the graph in question is three-colortlolees this by asserting that there are three unary
relations, Red (R), Yellow (Y), and Blue (B), defined on thévarse of vertices. It goes on to say that every
vertex has some color and no two adjacent vertices have the salor.

(BR)(3Y)(3B)(v2)[(R(z) V Y (5) V B(@)) A (%) (E(z.y) -
~(R(x) A R(y)) A =(Y(5) AY (4)) A ~(Bx) AB)))]

Descriptive Complexity began with the following theoremrafFagin. Observe that Fagin's Theorem
characterizes the complexity class NP purely by logic, withmention of machines or time,

Theorem 1 ([Fag74]) A set of structure§ is in NP iff there exists a second-order existential formuia,
suchthatT = {A | A= ®}. Formally, NP = SO4.

Define CRAMt(n)] to be the set of properties checkable by concurrent-reat;ureent-write, parallel
random-access machines using polynomially many procegs@arallel timeO(t(n)). FO, the set of first-
order expressible properties, exactly captures the coditplelass CRAM[1], i.e., constant parallel time. It
is possible to increase the power of FO by allowing longecdpsons for longer inputs. Let F@(n)] be
those properties describable by a block of restricted dfienstthat may be iteratet{n) times for inputs of
sizen.

Theorem 2 ([Imm88]) For all constructiblé t(n), FO[t(n)] = CRAM[t(n)].

l«Constructible” means that the function — #(n) can be computed in spa¢én). All but very bizarre functions are con-
structible. Another proviso of this theorem is that f¢n) < log n, the first-order formulas may have access not only to orderin
but to the addition and multiplication relations on thelement universe.




Thus, parallel time corresponds exactly to first-orderaitin, i.e., quantifier-depth. Rather than iterating
blocks of quantifiers, a natural way to increase the powerstf-éirder logic is by allowing inductive defini-
tions. This is formalized via keast-fixed-poinbperator (LFP).

As an example, the reflexive, transitive clositreof the edge relatioy can be defined via the following
inductive definition,

E*(z,y) = 2=y V E(z,y) vV (32)(E*(z,2) A E*(2,)) -
Equivalently, this can be expressed using the least-fixaadtpperator,
E*(z,y) = LFProy(z =y V E(z,y) V (32)(R(z,2) A R(z,y)) .

It is exciting that the natural descriptive class FO(LFP) +stforder logic extended with the power to
define new relations by induction — precisely captures paiyial time.

Theorem 3 ([Imm82, Imm86, Var82]) A problem is in polynomial time iff it is describable in fitstder
logic with the addition of the least-fixed-point operatohigis equivalent to being expressible by a first-
order formula iterated polynomially many times. Formally, P = FO(LFP) = FQnrCW)].

Theorems 1 and 3 cast theZ*NP question in a different light. (In the following we are mgithe fact
that if P were equal to NP, then NP would be closed under camgatéation. It would then follow that every
second-order formula would be equivalent to a second-agistential one.)

Corollary 4 Pis equal toNPiff every second-order expressible property over finitdeoed structures is al-
ready expressible in first-order logic using inductive débns. In symbols,(P=NP) <« FO(LFP) =
SO.

The following theorem considers the arbitrary iterationfiodt-order formulas, which is the same as
iterating them exponentially, and is more general than rmm iteration of first-order formulas. Such
iteration defines thegartial-fixed-point operator. The theorem shows that this allowes dkscription of
exactly all properties computable using a polynomial ani@fispace.

Theorem 5 ([Imm81, Imm82, Var82]) A problem is in polynomial space iff it is describable in filgic
with the addition of the partial-fixed-point operator. Tlgsequivalent to being expressible by a first-order
formula iterated exponentially. FormallypSPACE = FO(PFP = FO[2"O“)].

A refinement of Theorem 5 shows that the precise amount ofespaed can be characterized via the
number of distinct variables in the relevant first-ordemfiota, i.e., the number of descriptive variables
captures space, far=1,2,..., DSPACEn*] = VAR[k + 1], [Imm91].

Combinatorial games due to Ehrenfeucht and Fraissé heem bsed to prove many inexpressibility
results. These bounds provide useful insights but they deewarate relevant complexity classes because
they are proved without the ordering relation [Ehr61, Frad®4m99]. No such lower bounds were known
for separating the classes corresponding to P and PSPAGEeball and Vianu showed why, thus proving
another fundamental relationship between logic and coxitpleln the following, FQwo<) means first-
order logic without a given ordering relation.

Theorem 6 ([AV91]) The following conditions are equivalent:

1. FOwo<)(LFP) = FOwo<)(PFP



2. FOLFP) = FO(PFP
3.P — PSPACE

Descriptive complexity reveals a simple but elegant vieveaiputation. Natural complexity classes
and measures such as polynomial time, nondeterministignpodial time, parallel time, and space have
natural descriptive characterizations. Thus, logic hatsn effective tool for answering some of the basic
questions in complexity?

3 Logic as a Database Query Language

The database area is an important area of computer scienceroed with storing, querying and updating
large amounts of data. Logic and databases have been ialjnrainnected since the birth of database
systems in the early 1970’s. Their relationship is an urifjedl success story. Indeed, first-order logic
(FO) lies at the core of modern database systems, and théastquery languages such &suctured
Query Languag€SQL) andQuery-By-ExampléQBE) are syntactic variants of FO. More powerful query
languages are based on extensions of FO with recursion, rend:miniscent of the well-known fixpoint
queries studied in finite-model theory (see Section 2). Tipgalct of logic on databases is one of the most
striking examples of the effectiveness of logic in compusigence.

This section discusses the question of why FO has turneddrg 50 successful as a query language.
We will focus on three main reasons:

e FO has syntactic variants that are easy to use. These areassmbic building blocks in practical
languages like SQL and QBE.

e FO can be efficiently implemented usirgjational algebra which provides a set of simple operations
on relations expressing all FO queries. Relational algelsrased in the context of databases was
introduced by Ted Codd in [Cod70]. It is related to Tarski'gli@dric Algebras [HMT71]. The
algebra turns out to yield a crucial advantage when largeuaitscof data are concerned. Indeed, the
realization by Codd that the algebra can be used to effigiémgblement FO queries gave the initial
impetus to the birth of relational database systems

e FO queries have the potential for “perfect scaling” to ladgéabases. If massive parallelism is avail-
able, FO queries can principle be evaluated iconstant timeindependent of the database size.

A relational database can be viewed as a finite relationattsire. Its signature is much like a relational
FO signature, with the minor difference that relations ameirtcoordinates have names. The name of a
coordinate is called aattribute, and the set of attributes of a relatidhis denotedutt(R). For example, a
“beer drinker's” database might consist of the followin¢at®ns:

frequents| drinker bar serves| bar beer
Joe King's King's Bass
Joe Molly’s King's Bud
Sue Molly’s Molly’'s Bass

The main use of a database is to query its data, e.g., find thieeds who frequent only bars serving
Bass. Itturns out that each query expressible in FO can bebmown into a sequence of simple subqueries.

%This section is based in part on the article [Imm95]. See tisobooks [EF95, Imm99] for much more information about
descriptive complexity.
3Codd received the ACM Turing Award for his work leading to thevelopment of relational systems.



Each subquery produces an intermediate result, that magdethy subsequent subqueries. A subquery is
of the form:
R := 3% (L1 N... N\ Lyg),

whereL; is a literal P(y) or —=P(i), P is in the input or is on the left-hand side of a previous subgire
the sequence, anfllis not in the input and does not occur previously in the segeieihe meaning of such
a subquery is to assign #®the result of the FO queryz (L, A ... A L) on the structure resulting from the
evaluation of the previous subqueries in the sequence. Ubdgugries provide appealing building blocks for
FO queries. This is illustrated by the language QBE, in whiauery is formulated as just described. For
example, consider the following query on the “beer drirkedatabase:

Find the drinkers who frequent some bar serving Bass.
This can be expressed by a single query of the above form:

(t) answer:= 3b (frequent$d, b) A serves$d, Basg).
In QBE, the query is formulated in a visually appealing wayadiews:

answer| drinker . frequents| drinker bar  serves| bar beer
| d | d b |b  Bass

Similar building blocks are used in SQL, the standard quanglage for relational database systems.

Let us consider again the quefy). The naive implementation would have us check, for eactkdrin
d and bar, whetherfrequents(d,b) A serves(d, Bass) holds. The number of checks is then the product
of the number of drinkers and the number of bars in the datgbakich can be roughly.? in the size
of the database. This turns out to be infeasible for veryelatgtabases. A better approach, and the one
used in practice, makes use of relational algebra. Befaeudsing how this works, we informally review
the algebra’s operators. There are two set operato(snion) and— (difference). Theselectionoperator,
denotedr.,,.4( R) extracts fromR the tuples satisfying a conditiarondinvolving (in)equalities of attribute
values and constants. For examplgeer gasd Serves produces the tuples iservesfor which the beer
is Bass The projection operator, denoted x (R), projects the tuples of relatioR on a subsefX of its
attributes. Thegoin operator, denoted b X @, consists of all tupleg over att(R) U att(Q) such that
Tan(r) (t) € Randm,,g)(t) € Q. Alast unary operator allows t@namean attribute of a relation without
changing its contents.

Expressions constructed using relational algebra operatee called relational algebra queries. The
query (1) is expressed using relational algebra as follows:

(i) ﬂ—drinker(gbeer:l?ass(frequents X 867"7)6’8)).

A result of crucial importance is th&O and relational algebra express precisely the same ggerie

The key to the efficient implementation of relational algetueries is twofold. First, individual algebra
operations can be efficiently implemented using data strastcalledndexes providing fast access to data.
A simple example of such a structure is a binary search tréghnallows locating the tuples with a given
attribute value in timéog(n), wheren is the number of tuples. Second, algebra queries can beiiedpl
using a set ofewriting rules The query() above can be rewritten to the equivalent but more efficiembfo

Tdrinkerlrequents™ mhar(opeer BasdServes))-

The use of indexes and rewriting rules allows to evaluateath®/e query at cost roughly log(n) in the
size of the database, which is much better thnindeed, for large databases this can make the difference
between infeasibility and feasibility.



The FO queries turn out to be extremely well-behaved witheestoscaling Given sufficient resources,
response time caim principle be kept constant as the database becomes larger. The kéy terttarkable
property is parallel processing. Admittedly,lot of processors are needed to achieve this ideal behaviour
: polynomial in the size of the database. This is unlikely édféasible in practice any time soon. The key
point, however, is that FO query evaluation adriitear scaling; the speed-up is proportional to the number
of parallel processors used.

Once again, relational algebra plays a crucial role in thalf implementation of FO. Indeed, the
algebra operations aset orientedand thus highlight the intrinsic parallelism in FO queriesr example,
consider the projectiom x (R). The key observation is that one can project the tupleB independently
of each other. Given one processor for each tupl®,jihe projection can be computed in constant time,
independent of the number of tuples. As a second examplsid=rthe joinR X (). This can be computed
by joining all pairs of tuples fromR and(, independently of each other. Thus, if one processor idablai
for each pair, the join can be computed in constant time gaddent on the number of tuplesihand().

Since each algebra operation can be evaluated in constafliebtime, each algebra query can also be
evaluated in constant time. The constant depends only ogubl/ and is independent of the size of the
database. Of course, more and more processors are needheddatabase grows.

In practice, the massive parallelism required to achiewifepescaling is not available. Nevertheless,
there are algorithms that can take optimal advantage ofengget of processors. It is also worth noting that
the processors implementing the algebra need not be pdwasfihey are only required to perform very
specific, simple operations on tuples. In fact, it is suffiti® have processors that can implement the basic
Boolean circuit operations. This fact is formalized by autedue to Immerman [Imm87] stating that FO
is included inACy, the class of problems solvable by circuits of constant ldepid polynomial size, with
unbounded fan-in.

In conclusion, logic has proven to be a spectacularly dffe¢ool in the database area. FO provides the
basis for the standard query languages, because of its Base and efficient implementation via relational
algebra. FO can achieve linear scaling, given parallelgssing resources. Thus, its full potential as a query
language remains yet to be realized.

A good introduction to the database area may be found in [SKSghile [UII88] provides a more
in-depth presentation. The first text on database theoril&g3], followed more recently by [AHV95].
The latter text also described database query languagesd&O, including fixpoint logics. An excellent
survey of relational database theory is provided in [Kan9lje relationship between finite-model theory
and databases is discussed in [Via].

4 Type Theory in Programming Language Research

Inthe 1980’s and 1990’s the study of programming languagesrevolutionized by a remarkable confluence
of ideas from mathematical and philosophical logic and thtical computer science. Type theory emerged
as a unifying conceptual framework for the design, analysis implementation of programming languages.
Type theory helps to clarify subtle concepts such as dataaalion, polymorphism, and inheritance. It
provides a foundation for developing logics of program b&drathat are essential for reasoning about
programs. It suggests new techniques for implementing dersghat improve the efficiency and integrity
of generated code.

Type theory is the study of type systems. Reynolds defingpasystento be a “syntactic discipline
for enforcing levels of abstraction” [Rey85]. A type systésna form of context-sensitive grammar that
imposes restrictions on the formation of programs to enthaka large class of errors, those that arise from
misinterpretation of values, cannot occur. Examples ohsrecors are: applying a function on the integers
to a boolean argument; treating an integer as a pointer tdeagfiaicture or a region of executable code;



Types T ::= int|[bool | 1=

Expressions e ::= x|n|ejoey|true|false|e=ey|ifethene elsee,
funf(z: m): mi S€|€1(€2)
Values v = z|n|true|false|funf(z: m):mise

The operatow ranges over the arithmetic operations —, and x.

The variablen ranges over numerals for the natural numbers.

The variablesf andz are bound in the expressidrun f(z: 1) : =i Se.

Figure 1: Abstract Syntax of MinML

C'kxz:T(x)
I'te:int I'key:int
I'tn:int I'kejoey:int
I'-true:bool I'+-fal se:bool
I'te;:int T'kes:int I'e:bool TI'ke:7 DDhey:T
I' - e1=es : bool I'Fifethene el seey: T
I, fim—mn,zmbe:m I'kFer:m—=1 T'hey:m
PEfunf(x:m):mise: 11— PFe(ey) : 7

Figure 2: Type System of MinML

over-writing a program’s memory without regard to its puspoor validity; violating the assumptions of a
procedure by calling it with too few arguments or argumerithe wrong type.

A type system is typically defined by an inductive definitidradyping judgementf the formI' - e : 7.
Heree is an expressiony is its type, and™ assigns types to the global variables that may occur within
The typing judgement is defined to be the least three-pldatiae closed under a given collection typing
rulesthat determine whether or not an expression is well-typed.

The abstract syntax of an illustrative fragment of the MLgaage is given in Figure 1. Its type system
is given in Figure 2. Note that the language constructs apeggd according to their type. Each type
comes with expressions to denote its values together wignadipns for manipulating those values in a
computation.

The rules governing the function type constructor exhibitrariguing similarity to the introduction and
elimination rules for implication in Gentzen'’s system ofural deduction. This similarity is not accidental:
according to theropositions-as-types principf€F58, CHS72, How80] there is an isomorphism between
propositions and types with the property that the naturdudgon proofs of a proposition correspond to the
elements of its associated type. This principle extendsaditll range of logical connectives and quantifiers,
including those of second- and higher-order logic.

An operational semanticdefines how to execute programs. It is useful to define theatipeal se-
mantics of a language as a transition relation betweensstdtan abstract machine, with certain states
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6’106’2l—)61106’2 1)1062*—)1)106’2 Nniong —mn
e — €} ey > €l ,
e1=ey — e =e¢ vi=ey — v1=€ ni=ngy — true i m=mny
21=€3 21 =€ 1=€2 1=€; 1= fal'se if ny # ny
e — €} ey > €l (v="funf(z:7m):7ise)
e1(e2) = ej(e2) wilez) — vi(ey) v(v1) = v,/ f,xle

The notatior{v, vy / f, z]e stands for the result of substitutierfor free occurrences of andv, for free
occurrences of. in the expression.

Figure 3: Operational Semantics of MinML

designated as final states. For the illustrative languadgeignfre 2 the states of the abstract machine are
closed expressions; the final states are the fully-evaluaxpressions. The transition relation is given in
Figure 3 using Plotkin’s technique sfructured operational semanti¢Rlo81]. These rules constitute an
inductive definition of the call-by-value evaluation strgy, in which function arguments are evaluated prior
to application, and for which function expressions areyfelfaluated.

One role of a type system is to preclude execution erroringrisom misinterpretation of values.

Theorem 1. [Type Soundness] K ¢ : 7, then eithere is fully evaluated or there exists such that- ¢’ : 7
ande — €'

A type erroris an expressior such thate is not a value, yet there is nd such thate — ¢’. In practice
type errors correspond to illegal instructions or memomnyltg the type soundness theorem ensures that
well-typed programs never incur such errors.

The structure of more realistic programming languages eaddscribed using very similar techniques.
According to the type-theoretic viewpoint programmingdaage “features” correspond to types. The fol-
lowing chart summarizes some of the main correspondences:

Concept Type Values Operations
booleans bool true, false conditional

integers i nt integer numerals integer arithmetic
floating point  fl oat f.p. numerals f.p. arithmetic
tuples T1 X 79 ordered pairs component projection
disjointunion 7 +m» tagged values case analysis
procedures 71 — 7o procedure definition procedure call
recursive types put.t heap pointers traversal
polymorphism  Vi.r templates, generics  instantiation

data abstraction Jt.7 packages, modules  opening a package
mutable storage ¢r ef storage cells update, retrieve
tagging any tagged values dynamic dispatch

Organizing programming languages by their type structae & number of benefits. We mention a
few salient ones here. First, language concepts are pessembdularly, avoiding confusion or conflation



of distinct concepts. Traditional concepts such as “cglidference” parameter passing emerge instead as
functions that take values of reference type. Second, tiypetare can be exploited to reason about program
behavior. For example, the techniqudagical relations which interprets types as relations between values,
may be used to characterize interchangeability of progragmfients. Third, it becomes possible (as outlined
above) to give a precise statement and proof of safety pliepaaf a programming language. Moreover, the
type annotations on programs form a certificate of safety ¢ha be checked prior to execution of the
program. Fourth, types may be exploited by a compiler to owerrun-time efficiency and to provide a
“self-check” on the integrity of the compiler itself [TM6].

5 Reasoning about Knowledge

The formal study of epistemic logic was initiated in the 198@d led to Hintikka’s seminal boddnowledge
and Belief[Hin62]. The 1960s saw a flourishing of interest in the arethaphilosophy community. More
recently, reasoning about knowledge has been shown to jHay eole in such diverse fields as distributed
computing, game theory, and Al. The key concern is the cdiorebetween knowledge and action. What
does a robot need to know in order to open a safe? What do pexased to know about other processes in
order to coordinate an action? What do agents need to knout alfter agents to carry on a conversation?
The formal model used by the philosophers provide the basiarf appropriate analysis of these questions.

We briefly review the model here, just to show how it can be ugdtk syntax is straightforward. We
start with a set® of primitive propositionswhere a primitive propositiop € ® represents a basic fact of
interest like “it is raining in Spain” and a sét, ..., n} of agents. We then close off under conjunction and
negation, as in propositional logic, and modal operaféys. . . , K,,, E, andC, whereK;y is read “agent
1 kKnowsp”, Ey is read “everyone knowg” and C¢ is read ‘o is common knowledge. Thus, a statement
such asK; Kop A =Ky K1 Kop says “agent 1 knows agent 2 knowsbut agent 2 does not know that 1
knows that 2 knowg”. More colloquially: “I know that you know it, but you don’triow that | know that
you know it.”

The semantics for this logic, like that of other modal logissbased orpossible worlds The idea is
that, given her current information, an agent may not be tibtell which of a number of possible worlds
describes the actual state of affairs. We say that the dgmisa facty if ¢ is true in all the worlds she
considers possible. We formalize this intuition uskugpke structures A Kripke structuré M for n agents
is a tuple(W, Ky, ..., Ky, ), whereW is a set of possible worldg(; is a binary relation ori¥/ —that
is, a set of pairdw, w') € W x W, andr associates with each world a truth assignment to the puieniti
propositions (that isy(w)(p) € {true, false} for each primitive propositiop € ® and worldw € W).
Intuitively, (v, w) € K; if, in world v, agenti considers worldv possible.

We can defing M, w) = ¢, read ‘p is true in worldw in structureM”, by induction on the structure of
formulas:

M,w) = Epiff (M,w) = Kjpfori=1,...,n

“Kripke structures are named after Saul Kripke, who intredlithem in their current form in [Kri63], although the idea of
possible worlds was in the air in the philosophy communitshim 1950s.
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(M,w) = Cyiff (M,w) = E*fpfork =1,2,3,..., whereE* is defined inductively by taking’' ¢ : =
Ep andEF 'y .= EEF .

Note how the semantics df;y captures the intuition that agehknows ¢ exactly if ¢ is true at all the
worlds he considers possible. Cleafyy is true iff K,y is true for each agent Finally, Cy is true iff
everyone knows, everyone knows that everyone knows, and so on.

What is the appropriate structure for analyzing a compdidatulti-agent system? It turns out that
a natural model for multi-agent systems can be viewed as pk&rstructure. (The phrase “system” is
intended to be interpreted rather loosely here. Playerspolker game, agents conducting a bargaining
session, robots interacting to clean a house, and procesae®mputing system can all be viewed as multi-
agent systems.) Assume that, at all times, each of the aigetfis system can be viewed as being in some
local state. Intuitively, the local state encapsulates all thevest information to which the agent has access.
In addition, there is aenvironmentwhose state encodes relevant aspects of the system thaitgrart of
the agents’ local states. For example, if we are modelindghatrthat navigates in some office building, we
might encode the robot’s sensor input as part of the robotallstate. If the robot is uncertain about its
position, we would encode this position in the environmeates Aglobal stateof a system withm agents
is an(n + 1)-tuple of the form(s,, s1, ..., s,), Wheres, is the state of the environment ardis the local
state of agent.

A system is not a static entity; it changes over timerufd is a complete description of what happens
over time in one possible execution of the system. For defieits, we take time to range over the natural
numbers. Thus, formally, a run is a function from the nataainbers to global states. Given a mn(0)
describes the initial global state of the systemrjn(1) describes the next global state, and so on. We
refer to a pair(r, m) consisting of a run- and timem as apoint. If r(m) = (se, s1,...,s,), we define
ri(m) = s;,i = 1,...,n; thus,r;(m) is agent’s local state at the poirtr, m).

The points in a system can be viewed as the states in a Kripketwste. Moreover, we can define a
natural relationC;: agenti thinks (', m') is possible a{r, m) if r;(m) = r,(m'); that is, the agent has
the same local state at both points. Intuitively, the lotallesencodes whatever the agent remembers about
the run. Aninterpreted systerd consists of a paifR, ), whereR is a system and associates with each
point in R a truth assignment to the primitive propositions in somerapiately chosen seb of primitive
propositions. We can now define truth of epistemic formulas point in an interpreted system just as we
did for a Kripke structure. That is, an interpreted systEman be viewed as a set of possible worlds, with
the points acting as the worlddn particular, we have

(Z,r,m) = K;pif (Z,r',m") |= ¢ forall (+',m’) such that;(m) = ri(m’).

As an example of how this framework can be used in analyzistridiited protocols, consider the
coordinated attack probleprfrom the distributed systems folklore [Gra78]. It abstsaa problem of data
recovery management that arises when using standard plstinc database management cal@nmit
protocols The following presentation is taken from [HM90]:

Two divisions of an army are camped on two hilltops overlogka common valley. In the
valley awaits the enemy. It is clear that if both divisiontaek the enemy simultaneously they
will win the battle, whereas if only one division attacks illye defeated. The generals do not
initially have plans for launching an attack on the enemy #n@ commanding general of the
first division wishes to coordinate a simultaneous attatlsgane time the next day). Neither
general will decide to attack unless he is sure that the otfikeattack with him. The generals

5In an interpreted system we can also deal with temporal faagyuhat talk about what happens at some point in the future,
although that is unnecessary for the issues discussedsisahtion. See Section 6 for more discussion of temporat.logi
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can only communicate by means of a messenger. Normallkastihe messenger one hour to
get from one encampment to the other. However, it is postlitalehe will get lost in the dark
or, worse yet, be captured by the enemy. Fortunately, orpénicular night, everything goes
smoothly. How long will it take them to coordinate an attack?

Suppose the messenger sent by Gendralakes it to GeneraB with a message saying “Let’s attack
at dawn”. Will GeneralB attack? Of course not, since Generatloes not know thaB got the message,
and thus may not attack. So Genefakends the messenger back with an acknowledgment. Suppose th
messenger makes it. Will Genetdlattack? No, because now GeneBatloes not know that General got
the message, so Generalthinks Generald may think thatB didn’'t get the original message, and thus not
attack. Sa4 sends the messenger back with an acknowledgment. But cesathiis is not enough either.

In terms of knowledge, each time the messenger makes atjrémsdepth of the generals’ knowl-
edge increases by one. Suppose we let the primitive praposit stand for “A message saying ‘Attack
at dawn’ was sent by Generadl.” When GeneralB gets the messagéds zm holds. WhenA gets B's
acknowledgmentK 4 K gm holds. The next acknowledgment brings usifg@ K 4 K gm. Although more
acknowledgments keep increasing the depth of knowledge,ribt hard to show that by following this
protocol, the generals never attain common knowledge kteagttack is to be held at dawn.

What happens if the generals use a different protocol? Towes dot help either. As long as there is a
possibility that the messenger may get captured or lost, ¢benmon knowledge is not attained, even if the
messenger in fact does deliver his messages. It would takeousr afield here to completely formalize
these results (see [HM90] for details), but we can give amodgscription. We say aystemR displays
unbounded message delafysoughly speaking, whenever there is a nug R such that processreceives
a message at time in r, then for allm’ > m, there is another run’ that is identical to- up to timem
except that procesisreceives no messages at time and no process receives a message between times
andm/'.

Theorem 2: [HM90] In any run of a system that displays unbounded message délagn never be
common knowledge that a message has been delivered.

This says that no matter how many messages arrive, we cattaiot @@mmon knowledge of message
delivery. But what does this have to do with coordinatedci&f?aThe fact that the generals have no initial
plans for attack means that in the absence of message geliiey will not attack. Since it can never
become common knowledge that a message has been delivedeshessage delivery is a prerequisite for
attack, it is not hard to show that it can never become commomwledge among the generals that they are
attacking. More precisely, leittackbe a primitive proposition that is true precisely at pointsene both
generals attack.

Corollary 3: In any run of a system that displays unbounded message déaym never be common
knowledge among the generals that they are attacking;G.&:{tack) never holds.

We still do not seem to have dealt with our original problemhapis the connection between common
knowledge of an attack and coordinated attack? As the fatigwheorem shows, it is quite deep. Common
knowledge is a prerequisite for coordination in aygtem for coordinated attacthat is, in any system that
is the set of runs of a protocol for coordinated attack.

Theorem 4: [HM90] In any system for coordinated attack, when the generalglatidis common knowl-
edge among the generals that they are attacking. Thdsisifan interpreted system for coordinated attack,
then at every pointr, m) of Z, we have

(Z,7r,m) |= attack = C(attack).
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Putting together Corollary 3 and Theorem 4, we get the falhgywcorollary.

Corollary 5: In any system for coordinated attack that displays unbodndessage delays, the generals
never attack.

This negative result shows the power of the approach as aswedamderstanding the essence of coor-
dination. There are positive results showing how this apginocan be used to verify, analyze, and reason
about distributed protocols. Of course, this brief disaus$ias only scratched the surface of the topic. For
more details and further references, the interested resmbedd consult Fagin, Halpern, Moses, and Vardi's
book [FHMV95].

6 Automated Verification of Semiconductor Designs

The recent growth in computer power and connectivity hasged the face of science and engineering, and
is changing the way business is being conducted. This reenlis driven by the unrelenting advances in
semiconductor manufacturing technology. Nevertheldss|tS. semiconductor community faces a serious
challenge: chip designers are finding it increasingly diftito keep up with the advances in semiconductor
manufacturing. As a result, they are unable to exploit thrermious capacity that this technology provides.
The International Technology Roadmap for Semicondulteuggests that the semiconductor industry will
require productivity gains greater than the historical 2086year to keep up with the increasing complexity
of semiconductor designs. This is referred to as the “dgsigductivity crisis”. As designs grow more com-
plex, it becomes easier to introduce flaws into the designisTtiesigners use various validation techniques
to verify the correctness of the design. Unfortunatelystéheechniques themselves grow more expensive and
difficult with design complexity. As the validation procdsas begun to consume more than half the project
design resources, the semiconductor industry has begufeioto this problem as the “validation crisis”.

Formal verificationis a process in which mathematical techniques are used tamea the correctness
of a design with respect to some specified behavior. Algarithformal-verification tools, based anodel-
checking technologyCES86, LP85, QS81, VW86] have enjoyed a substantial angiggouse over the last
few years, showing an ability to discover subtle flaws thatulefrom extremely improbable events. While
until recently these tools were viewed as of academic isterly, they are now routinely used in industrial
applications, resulting in decreased time to market anckased product integrity [Kur97].

The first step in formal verification is to come up witH@mal specificatiorof the design, consisting
of a description of the desired behavior. One of the more lyidsed specification languages for designs
is temporal logic[Pnu77]. Inlinear temporal logics, time is treated as if each moment in timeahasique
possible future. Thus, linear temporal formulas are irmetgd over linear sequences, and we regard them
as describing the behavior of a single computation of a syste

In the linear temporal logic LTL, formulas are constructeshfi a setProp of atomic propositions using
the usual Boolean connectives as well as the unary temponalective X (“next”), F' (“eventually”), G
(“always”), and the binary temporal connectile (“until”). For example, the LTL formulaG (request—

F gran), which refers to the atomic propositionsquesandgrant is true in a computation precisely when
every state in the computation in whichquesholds is followed by some state in the future in whifant
holds. The LTL formulaG(request— (requestU grand) is true in a computation precisely if, whenever
requesholds in a state of the computation, it holds until a state imctvgrantholds is reached.

LTL is interpreted ovecomputationswhich can be viewed as infinite sequences of truth assigtamen
to the atomic propositions; i.e., a computation is a fumctio: N — 2£7°P that assigns truth values to the
elements ofProp at each time instant (natural number). For a computatiand a point € N, the notation
7,1 =  indicates that a formulg holds at the point of the computationr. For exampler,i |= X iff

Shttp://public.itrs.net/files/1999_Sl ARoadmap/ Home. ht m
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7,1+ 1 |= ¢, and andr, i = pU4 iff for somej > i, we haver, j = ¢ and for all k,i < k < j, we have
m, k = ¢. We say thatr satisfiesa formulay, denotedr = ¢, iff 7,0 |= . The connective$’ andG can
be defined in terms of the connective F is defined asrue Uy, andGyp is defined as-F'—.

Designs can be described in a variety of formal descriptmmélisms. Regardless of the formalism
used, dinite-state desigican be abstractly viewed adabeled transition system.e., as a structure of the
form M = (W, Wy, R, V'), whereW is the finite set of states that the system can b&inC W is the set
of initial states of the systen® C W? is a transition relation that indicates the allowable statasitions of
the system, andf : W — 277 assigns truth values to the atomic propositions in each sfahe system.
(A labeled transition system is essentially a Kripke stieef) A pathin M thatstarts atu is a possible
infinite behavior of the system startingati.e., it is an infinite sequena®), u; . .. of states inW such that
ug = u, andu; R u;41 forall i > 0.The sequenc® (ug), V(uq) ... is acomputationof M thatstarts atu.

It is the sequence of truth assignments visited by the pdtaJanguageof M, denotedL (M) consists of
all computations of\/ that start at a state i,,. Note thatZ(M) can be viewed as a language of infinite
words over the alphabet!’™°?. (M) can be viewed as an abstract description of a system, dieggab
possible “traces”. We say that satisfiesan LTL formulay if all computations inL(M) satisfy, that is,

if L(M) C modelgy).

One of the major approaches to automated verification iathiemata-theoretic approaghvhich un-
derlies model checkers such as SPIN [Hol97] and Cadence’SWhé key idea underlying the automata-
theoretic approach is that, given an LTL formuait is possible to construct a finite-state automatbn
on infinite words that accepts precisely all computatioret gatisfyp [VW94]. The type of finite au-
tomata on infinite words we consider is the one defined by BfRiic62]. A Bichi automatoris a tuple
A= (X%,S,S,p, F), whereX is a finite alphabetS is a finite set of statesy;, C S is a set of initial states,
p: S x ¥ — 2%is a nondeterministic transition function, aftdC S is a set of accepting states. ran
of A over an infinite wordw = ajas - - -, is @ sequences; - - -, wheresy € Sy ands; € p(s;—1,a;) for
all4 > 1. Arun sg, s1, . .. is acceptingif there is some accepting state that repeats infinitelynofte., for
somes € F' there are infinitely many's such thats; = s. The infinite wordw is accepteddy A if there is an
accepting run ofd overw. Thelanguageof infinite words accepted byl is denoted’.(A). The following
fact establishes the correspondence between LTL and Biutbmata: Given an LTL formulg, one can
build a Biichi automatont,, = (%, S, Sy, p,, F), whereX = 2779 and|S| < 2°U¢D), such thatl.(4,) is
exactly the set of computations satisfying the formplg/W94].

This correspondence reduces the verification problem touonsta-theoretic problem as follows
[VW86]. Suppose that we are given a systéthand an LTL formulay. We check whethel (M) C
modelgy) as follows: (1) construct the automateain,, that corresponds to theegationof the formulagp,

(2) take thecross producbf the systemV/ and the automatod -, to obtain an automatod ,, ,, such that
L(Awn,,) = L(M) N L(A-,), and (3) check whether the langua§jéA,; ) is nonempty, i.e., whether
A, acceptssomeinput. If it does not, then the design is correct. If it dodgsrt the design is incorrect
and the accepted input is an incorrect computation. Theri@ecbcomputation is presented to the user as
a finite trace, possibly followed by a cycle. Thus, once thmatonA-, is constructed, the verifica-
tion task is reduced to automata-theoretic problems, narimgkersecting automata and testing emptiness
of automata, which have highly efficient solutions [Var96urthermore, using data structures that enable
compact representation of very large state space makessitpe to verify designs of significant complexity
[BCMT92].

The linear-time framework is not limited to using LTL as a sifieation language. There are those who
prefer to use automata on infinite words as a specificatiamdbsm [VW94]; in fact, this is the approach
of COSPAN [Kur94]. In this approach, we are given a desigrrasgnted as a finite transition system
M and a property represented by a Biichi (or a related varem)matonP. The design is correct if

"http: // www cad. eecs. berkel ey. edu/ ~kenncmi | / smv/
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all computations in.(M) are accepted by, i.e., L(M) C L(P). This approach is called tHanguage-
containmentpproach. To verifyM with respect taP, we: (1) construct the automatdtf thatcomplements
P, (2) take the product of the systebt and the automatoR“ to obtain an automatoA ,, p, and (3) check
that the automatom; p is nonempty. As before, the design is correct Aff; p is empty. Thus, the
verification task is again reduced to automata-theoretiblpms, namely intersecting and complementing
automata and testing emptiness of automata.

Over the last few years, automated formal verification toslsh as model checkers, have shown their
ability to provide a thorough analysis of reasonably complesigns [Goe97]. Companies such as AT&T,
Cadence, Fujitsu, HP, IBM, Intel, Motorola, NEC, SGI, Siemeand Sun are using model checkers increas-
ingly on their own designs to reduce time to market and engroduct quality.

7 Concluding Remarks

It should be made clear that we are not the first ones to singlehe effectiveness of logic in computer
science. In fact, already back in 1988 M. Davis wrote an etogjessay on thimfluences of Logic in Com-
puter SciencgDav88], which begins by stating that “When | was a studemgnethe topologists regarded
mathematical logicians as living in outer space. Today threnections between logic and computers are a
matter of engineering practice at every level of computganization.” Davis proceeds then to examine how
certain fundamental concepts from logic have found crucsals in computer science. In particular, Davis
adresses the connections between Boolean logic and digitalits, discusses the influence of logic on
the design of programming languages, and comments on thgorehip between logic programming and
automated theorem-proving. More recently, Davis wrote akbiitled The Universal ComputeiDav00]

in which he presents the fundamental connection betweea &gl computation by tracing the lives and
contributions of Leibniz, Boole, Frege, Cantor, Hilberfd&l, and Turing.

The effectiveness of logic in computer science is not by amams limited to the areas mentioned
in here. As a matter of fact, it spans a wide spectrum of arzan) artificial intelligence to software
engineering. Overall, logic provides computer sciencén\ibth a unifying foundational framework and a
powerful tool for modeling and reasoning about aspects afttation. Computer science is concerned
with phenomena that are usually described as “synthetietabse for the most part they are a human
creation, unlike the phenomena studied in the natural segenThis difference between computer science
and the natural sciences can provide an explanation as tdhehyse of logic in computer science is both
appropriate and successful. Thus, the effectiveness af ingomputer science is perhaps not mysterious
or unreasonable, but still quite remarkable and unusual.

Acknowledgments We are grateful to Susan Landau for suggesting to us the afphis article.
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