Auxiliar 10 - Algoritmos Aproximados

CC4102/CC53A - Diseño y Análisis de Algoritmos Profesor: Gonzalo Navarro Auxiliar: Miguel Romero

21 de Noviembre del 2014

- 1. Sea G = (V, E) un grafo no dirigido. Para todo $k \ge 1$, definimos el grafo $G^{(k)} = (V^{(k)}, E^{(k)})$, donde $V^{(k)}$ es el conjunto de tuplas de tamaño k de nodos de V y el arco $\{(v_1, \ldots, v_k), (w_1, \ldots, w_k)\}$ pertence a $E^{(k)}$ si y sólo si para todo $1 \le i \le k$, $\{v_i, w_i\} \in E$ o $v_i = w_i$.
 - (a) Demuestre que si t es el tamaño máximo de un clique en G, entonces t^k es el tamaño máximo de un clique en $G^{(k)}$.
 - (b) Demuestre que si existe una α -aproximación para el problema de clique máximo, para algún $\alpha > 1$, entonces existe un esquema de aproximación polinomial.
- 2. Alí Babá entra a la cueva de los 40 ladrones con una mochila de capacidad W, y encuentra n objetos que ocupan w_1, \ldots, w_n y que tienen valores v_1, \ldots, v_n . Se desea maximizar la suma de los valores de los objetos que se llevan en la mochila. El problema es NP-completo por lo que tiene que encontrar una solución razonable antes que lleguen los ladrones.
 - (a) Considere ordenar los elementos por valor decreciente de v_i/w_i , e introducirlo en la mochila en ese orden hasta que no quepan más. Muestre que esta estrategia no es una r(n)-aproximación para ninguna función r(n).
 - (b) Sean v_1, \ldots, v_k los valores de los objetos que quedan en la mochila en la estrategia anterior y sea v_{k+1} el valor del primer objeto que ya no entra en la mochila. Muestre que el algoritmo óptimo no puede llevarse un valor total igual o superior a $v_1 + \cdots + v_k + v_{k+1}$.
 - (c) Considere una variante de la estrategia en el punto 1 donde, si lleva metidos en la mochila los elementos $1, \ldots, k$, y el k+1 ya no entra, escoge lo mejor (más valioso) entre llevarse los objetos $1, \ldots, k$ y y llevarse el objeto k+1. Muestre que esta estrategia es una 2-aproximación.
- 3. El problema MAX-CUT pide encontrar un corte de tamaño máximo en un grafo G=(V,E). Un corte en G es una partición de los nodos (S,\bar{S}) y el tamaño de un corte, denotado $|(S,\bar{S})|$ es la cantidad de arcos que van de S a \bar{S} . Este problema es NP-completo. Considere la estrategia en donde partimos con el corte (V,\emptyset) y en cada paso, si existe un nodo v tal que cambiarlo de lado de la partición incrementa el tamaño del corte, entonces cambiamos v al otro lado de la partición. Si no existe tal nodo nos detenemos y entregamos el corte actual. Analice el costo de este algoritmo y muestre que es una 2-aproximación.