Auxiliar 9 - Algoritmos Probabilistas

CC4102/CC53A - Diseño y Análisis de Algoritmos Profesor: Gonzalo Navarro Auxiliar: Miguel Romero

30 de Octubre del 2014

1. Un conjunto independiente de un grafo G = (V, E), con |V| = n y |E| = m es un subconjunto V' de V sin aristas de E entre elementos de V'. El problema de encontrar un conjunto independiente de cierto tamaño es NP-completo.

Considere que V', de tamaño r, se escoge al azar de V. Sea X la cantidad de aristas de E que conectan nodos de V' (X es una variable aleatoria).

- (a) Considere una arista de E en particular. Calcule la probabilidad de que esta arista conecte dos nodos de V'. Calcule la esperanza de X, E(X).
- (b) Diseñe un algoritmo tipo Monte Carlo que encuentre un conjunto independiente de tamaño $\epsilon n/\sqrt{m}$ con probabilidad $1-\epsilon^2$, para cualquier $0<\epsilon<1$. Para ello use la desigualdad de Markov: Para cualquier a>0, $Pr(X\geq a)\leq E(X)/a$.
- (c) Diseñe un algoritmo tipo Las Vegas que encuentre un conjunto independiente de tamaño $\epsilon n/\sqrt{m}$ y analícelo.
- 2. Se tienen m conjuntos S_1, \ldots, S_m de t elementos cada uno. Los conjuntos no son disjuntos, y el total de elementos distintos es $n \leq mt$. Se desea colorear los elementos de rojo o azul, de modo que ningún S_i quede monocromático (todos los puntos rojos o todos azules).
 - (a) Suponiendo que $m \leq 2^{t-2}$, diseñe un algoritmo de tipo Monte Carlo que obtenga un coloreo válido con probabilidad 1/2, en tiempo O(n).
 - (b) Convierta el algoritmo en uno de tipo las Vegas y analice su costo esperado y de peor caso.
- 3. Dadas matrices A, B, C de $n \times n$, queremos verificar acaso $A \cdot B = C$ eficientemente. Considere el siguiente algoritmo probabilista: Construimos un vector $\bar{r} \in \{0,1\}^n$, donde cada coordenada es un bit escogido al azar y de manera uniforme. Si $A \cdot (B \cdot \bar{r}) = C \cdot \bar{r}$, retornamos SI; en caso contrario, retornamos NO. Analice el costo del algoritmo y demuestre que la probabilidad de error es a lo más 1/2. Discuta como obtener una probabilidad de error $1/2^k$, para $k \ge 1$.