A

Assembly line

The last worker in a production line at the factory of Automated Composed Machinery is worried. She
knows that her job hangs in the balance unless her productivity increases. Her work consists of assembling
a set of pieces in a given sequence, but the time spent on assembling pieces ¢ and b and then ¢ may not the
same as that on assembling pieces b and ¢, and then assembling a with the resulting component. Only two
consecutive pieces may be assembled at a time, and once they are assembled they behave as another piece
in terms of the time needed for further assembly.

In order to aid her, you need to find the optimal way to assemble all components. The input to your
program will be a set of symbols representing (types of) pieces, and a so-called assembly table representing
the time it takes to assemble them, as well as the type of the resulting component. For instance, we may
have two symbols {a, b}, and the following table:

a b
_a | 3-b | 5-b
b | 6-a | 2-b

This means, for example, that two pieces of type a and a may assembled in 3 minutes, and the result
is a component of type b, in that the time required to assemble it again with another piece of, say, type
a is 6 minutes, and so on. Note that the table is not symmetric, i.e. assembling b and @ may be more
time-consuming than a and b.

For a sequence of components labelled aba, the two possible solutions are:

e (ab)a = ba = a with time time(ab) + time(ba) = 5 + 6 = 11.
e a(ba) = aa = b with time time(ba) + time(aa) =6 +3 = 9.

So the result for this case would be a piece of type b in 9 minutes (denoted 9-b).

Input

The input consists of several test cases. Each test case begins with a line containing a natural number k
(1 <k <26), followed by a line with k symbols (characters in [a-z]) separated by spaces. The following k
lines contain the assembly table: the i-th line has k pairs of the form time-result, where time is an integer
between 0 and 1000000 inclusive, and result a symbol belonging to the preceding set. The j-th pair in the
i-th line represents the time to compose pieces of types represented by the i-th and j-th symbols, along with
the type of the resulting piece. After the table, a line with an integer n indicates the number of lines that
follow, each line being a string of at most 200 symbols. Each of these lines is a sequence of components that
need to be assembled together in the right order.

The input will finish with a line containing 0, which should not be processed.

Output

For each test case, print n lines, each with an integer time and a symbol result in the format time-result.
Each line represents the minimum time and the type of the resulting piece for the corresponding case in the
input. In case of a tie among several possible results with the same minimum time, choose from among those
the piece whose type letter appears first in the line that contained the k symbols at the beginning of the test
case. (For example, if that line was a ¢ b and both ¢ and b can be obtained with minimum cost 5, print 5-c).

There must be an empty line between the output of different test cases.

17

Miguel Campusano

Miguel Campusano
A

Sample Input

2

me
5-e 4-m
3-e 4-m
1

Sample Output

9-b
8-a

7-m

18

B

Stammering Aliens

Dr. Ellie Arroway has established contact with an extraterrestrial civilization. However, all efforts to decode
their messages have failed so far because, as luck would have it, they have stumbled upon a race of stuttering
aliens! Her team has found out that, in every long enough message, the most important words appear
repeated a certain number of times as a sequence of consecutive characters, even in the middle of other
words. Furthermore, sometimes they use contractions in an obscure manner. For example, if they need to
say bab twice, they might just send the message babab, which has been abbreviated because the second b of
the first word can be reused as the first b of the second one.

Thus, the message contains possibly overlapping repetitions of the same words over and over again. As
a result, Ellie turns to you, S.R. Hadden, for help in identifying the gist of the message.

Given an integer m, and a string s, representing the message, your task is to find the longest substring of
s that appears at least m times. For example, in the message baaaababababbababbab, the length-5 word babab
is contained 3 times, namely at positions 5, 7 and 12 (where indices start at zero). No substring appearing
3 or more times is longer (see the first example from the sample input). On the other hand, no substring
appears 11 times or more (see example 2).

In case there are several solutions, the substring with the rightmost occurrence is preferred (see example
3).

Input

The input contains several test cases. Each test case consists of a line with an integer m (m > 1), the
minimum number of repetitions, followed by a line containing a string s of length between m and 40 000,
[T}

inclusive. All characters in s are lowercase characters from “a” to “z”. The last test case is denoted by
m = 0 and must not be processed.

Output

Print one line of output for each test case. If there is no solution, output none; otherwise, print two
integers in a line, separated by a space. The first integer denotes the maximum length of a substring
appearing at least m times; the second integer gives the rightmost starting position of this substring.

Sample Input

3
baaaababababbababbab
11
baaaababababbababbab
3

cccccece

0

Sample Output

5 12
none
4 2

25

Miguel Campusano

Miguel Campusano
B

| c |
— LCM Pair Sum —

One of your friends desperately needs your help. He is working with a
secret agency and doing some encoding stuffs. As the mission is confidential
he does not tell you much about that, he just want you to help him with a
special property of a number. This property can be expressed as a function
f(n) for a positive integer n. It is defined as:

fmy= Y (+9q
1<p<g<n
lem(p,q)=n

In other words, he needs the sum of all possible pairs whose least common
multiple is n. (The least common multiple (LCM) of two numbers p and ¢
is the lowest positive integer which can be perfectly divided by both p and
q). For example, there are 5 different pairs having their LCM equal to 6
as (1, 6), (2, 6), (2, 3), (3, 6), (6, 6). So f(6) is calculated as f(6) =
(14+6)+(24+6)+(2+3)+(B3+6)+(6+6)=7+8+5+9+12=41.

Your friend knows you are good at solving this kind of problems, so he
asked you to lend a hand. He also does not want to disturb you much, so to
assist you he has factorized the number. He thinks it may help you.

INPUT

The first line of input will contain the number of test cases T' (T < 500).
After that there will be T test cases. Each of the test cases will start with
a positive number C' (C' < 15) denoting the number of prime factors of n.
Then there will be C' lines each containing two numbers P; and a; denoting
the prime factor and its power (P; is a prime between 2 and 1000) and
(1 <a; <50). All the primes for an input case will be distinct.

ouTPUT

For each of the test cases produce one line of output denoting the case
number and f(n) modulo 1000000007. See the output for sample input for
exact formatting.

INPUT EXAMPLE OUTPUT EXAMPLE
3 Case 1: 41

2 Case 2: 117

21 Case 3: 16

31

2

2 2

31

1

51

Miguel Campusano

Miguel Campusano
C

The “Countdown” TV show has a part that consists of
obtaining a number by combining six different num-
bers using the basic mathematical operations: addi-
tion, subtraction, product and division. The basic
rules for the game are:

— Countdown —

The contestant selects six of twenty-four shuffled tiles. The tiles are arranged into two
groups: four "large numbers" (25, 50, 75 and 100) and the remainder "small numbers",
which comprise two each of the numbers 1 to 10. Hence the tiles have the values {1, 2, 3,
4,5,6,7,8,9, 10, 25, 50, 75, 100}.

The contestant chooses how many large numbers are in the selection; anywhere from none.
The contestants then have thirty seconds to get a number as close to the target as possible
by combining the six selected numbers using addition, subtraction, multiplication and
division.

Not all numbers need to be used.

A number can be used as many times as it appears.

Fractions are not allowed, only positive integers may be used at any stage of the calculation.

Example:

Contestant requests two large numbers and four small numbers.

Selection is: 75502 3 8 7

Randomly generated target is: 812

Contestant declares result: 813

Contestant gives details: 75 + 50 = 125; 125 - 8 = 117; 117 x 7 = 819; 3 x 2 = 6; 819 -
6 = 813

Expert notes: 50 + 8 = 58; 7 x 2 = 14; 14 x 58 = 812

Your task is to write a program that calculates the best sequence of operations that lead to
the target number T'. If there is no way to get T', give the closest solution.

INPUT

The input consists of several cases, one per line. The first line indicates the number of cases C
to process (1 < C < 50). Each of the following C' lines contains six natural numbers from the
set {1,2,3,4,5,6,7,8,9, 10, 25, 50, 75, 100} and another natural number 7" (1 < 7' < 999)
that indicates the target.

ouTPUT
The output for each case will be a set of lines with the following format:

First line: Target: number T’

n lines: sequence of operations, the format is operands operator operand, = result
Last line: Best approx: number obtained

Blank line

Miguel Campusano

Miguel Campusano
D

L] C L]

See example for a better understanding. If there is more than one best approximation, all
of them will be considered valid. The sequence of operations should be valid, you should never
use a value before you obtain it. It is OK to print more operations than needed as long as they
are valid. Note that all the numbers and operators must be separated by at least one space.

INPUT EXAMPLE OouTPUT EXAMPLE
3 Target: 25

1 75 100 5 3 25 25 Best approx: 25

100 100 100 100 100 75 345

131 10 100 75 345 Target: 345

100 + 100 = 200

75 + 100 = 175

200 * 175 = 35000
35000 - 100 = 34900
34900 / 100 = 349
Best approx: 349

Target: 345
100 - 10 = 90
3 *x 90 = 270

270 + 75 = 345
Best approx: 345

Miguel Campusano

Miguel Campusano
D

E

Routing

You work as an engineer for the Inane Collaboration for Performance Computing, where you are in charge
of designing an intercommunication network for their computers. The network is arranged as a rectangular
array of 2n — 1 rows, each having 2"~ ! switches. A switch is a device with two input wires, X and Y, and
two output wires, X’ and Y”. If the switch is off, data from input X will be relayed to output X', and data
from Y to Y. If it is on, X will be connected to Y’ and Y to X’. Additionally, there are 2" computers in
the topmost and bottommost rows, and messages need to be sent between pairs of them. Notice that data
from two different sources cannot share a wire but, of course, both pieces of data can be routed through the
same switch on different inputs.

You have come to the conclusion that the network that best suits your purposes has the Bene$ topology.
A 1-Benes network is just a switch. For n > 1, a n-Bene§ network can be constructed recursively as follows:

e In the first (top) row there are 2" ! switches such that switch j (0 < j < 2"~1!) has data inputs from
computers 25 and 25 + 1 (we label the computers in the topmost and bottommost rows with integers
between 0 and 2" — 1, inclusive, from left to right).

e Then a perfect shuffle permutation is applied to the output wires between the first and the second rows
of switches, meaning that output number j in a row is connected to input number ;' in the next row,
where j' is obtained by rotating the n-bit pattern representing j in binary one bit to the right (again,
inputs and outputs are numbered from left to right).

o If n > 2, the next rows of switches, up to (and including) the last-but-one, form two (n — 1)-Benes
subnetworks, one on the left side and the other on the right side.

e Finally, the inverse shuffle permutation is applied to the outputs and a last row of switches is added.

01 23 45 67 01 23 45 67
A1

XX
[]
01 23 45 67 01 23 45 67
(a) Topology (b) Switch states for se-

cond sample input

Figure 4: 3-Benes network

For example, Figure ?? shows the Benes network for n = 3 (squares represent switches; computers in the
top and bottom rows are not drawn, but assigned with integers from 0 to 7). Figure ?? shows a possible state
of the switches; squares where two of the lines cross are switches that have been turned on. You may verify
that this state allows us to simultaneously establish communication paths from computers 0,1,2,3,4,5,6,7
at the bottom to 3,7,4,0,2,6,1,5 at the top, respectively.

21

Miguel Campusano

Miguel Campusano
E

You are given a set of pairs (a,b) of computers to connect simultaneously (where a is a computer in the
bottom row and b a computer in the top row) by means of wire-disjoint paths, and you are to find how to
select the state of all switches so that this can be accomplished.

Input

The first line of each test case is an integer n (1 < n < 13), meaning that you have 2™ pairs of computers
to connect, as described above. A line with n = 0 marks the end of the input and should not be processed.

Each line with n > 0 will be followed by another line containing 2™ integers. The i-th integer (0 < i < 2™)
will be the computer in the topmost row that the i-th computer in the bottommost row needs to communicate
with.

Output

The output for each case should have 2n—1 lines, each containing a binary string of length 2"~ indicating,
for each switch, whether it must be turned on (1) or off (0).

The input given will always have at least one solution. In case of several solutions, return the lexico-
graphically smallest one. That is, the string in the top row must be lexicographically smallest; in case of a
tie, the string in the second row must be lexicographically smallest, and so on.

Outputs for different test cases should be separated by a blank line.

Sample Input

2

3210

3
37402615
0

Sample Output

00
11
11

0011
0000
0110
1111
1101

22

ACM ICPC2008 — South American Regionals 1

F
Almost Shortest Path

Source file name: almost.c, almost.cpp or almost. java

Finding the shortest path that goes from a starting point to a destination point given a set of
points and route lengths connecting them is an already well known problem, and it’s even part
of our daily lives, as shortest path programs are widely available nowadays.

Most people usually like very much these applications as they make their lives easier. Well,
maybe not that much easier.

Now that almost everyone can have access to GPS navigation devices able to calculate shortest
paths, most routes that form the shortest path are getting slower because of heavy traffic. As
most people try to follow the same path, it’s not worth it anymore to follow these directions.

With this in his mind, your boss asks you to develop a new application that only he will have
access to, thus saving him time whenever he has a meeting or any urgent event. He asks you
that the program must answer not the shortest path, but the almost shortest path. He defines
the almost shortest path as the shortest path that goes from a starting point to a destination
point such that no route between two consecutive points belongs to any shortest path from the
starting point to the destination.

For example, suppose the figure below represents the map given, with circles representing
location points, and lines representing direct, one-way routes with lengths indicated. The
starting point is marked as S and the destination point is marked as D. The bold lines belong
to a shortest path (in this case there are two shortest paths, each with total length 4). Thus,
the almost shortest path would be the one indicated by dashed lines (total length 5), as no
route between two consecutive points belongs to any shortest path. Notice that there could
exist more than one possible answer, for instance if the route with length 3 had length 1. There
could exist no possible answer as well.

Input

The input contains several test cases. The first line of a test case contains two integers N
(2 < N <500) and M (1 < M < 10%), separated by a single space, indicating respectively
the number of points in the map and the number of existing one-way routes connecting two
points directly. Each point is identified by an integer between 0 and N — 1. The second line
contains two integers S and D, separated by a single space, indicating respectively the starting
and the destination points (S # D; 0 < S, D < N). Each one of the following M lines contains
three integers U, V and P (U # V; 0 < U,V < N; 1 < P < 10?), separated by single spaces,
indicating the existence of a one-way route from U to V with distance P. There is at most one

Miguel Campusano

Miguel Campusano
F

ACM ICPC2008 — South American Regionals 2

route from a given point U to a given point V', but notice that the existence of a route from
U to V does not imply there is a route from V to U, and, if such road exists, it can have a
different length. The end of input is indicated by a line containing only two zeros separated by
a single space.

The input must be read from standard input.

Output

For each test case in the input, your program must print a single line, containing -1 if it is not
possible to match the requirements, or an integer representing the length of the almost shortest
path found.

The output must be written to standard output.

Sample input Output for the sample input
79 5
06 -1
011 6
021

032

043

1562

2 6 4

362

46 4

561

4 6

02

011

121

131

321

203

302

6 8

01

011

022

033

253

342

411

511

301

00

