Palindromic DNA

A DNA sequence is composed of a series of four possible nucleobases, namely Adenine, Guanine, Thymine
and Cytosine; we will refer to each of these bases by their initial. For our purposes, nucleobases have
an associated cyclic “order”: A is followed by G, which in turn is followed by T, which is followed by C,
which is followed by A again. State-of-the-art research in genomics has revealed the startling fact that many
diseases are caused by certain subsequences of bases not forming a palindromic sequence! Your mission as
a leading researcher at ICPC laboratories is to take a DNA string S and a series of subsets Pi,..., P of
indices to characters (nucleobases) in S, and transform S so that each of the restrictions of the resulting
string to Py, ..., P, are palindromic. (The restriction of S to a subset P = {iy,is,...,ix} of indices, where
0<i <ip<...<ip<]|S|,is the string S;,S;, ... S;,.). It is possible to inspect any base of S at will, but
only three transformations can be applied to a base:

1. Leave it unaltered.
2. Increase it by 1 in the cyclic order of nucleobases (e.g. turn C into A).
3. Decrease it by 1 (e.g. turn T into G).

Moreover, owing to limitations of current technology, it is impossible to modify two bases in consecutive
positions of the sequence. Is our goal achievable?

By way of example, consider DNA sequence AGTAT. Number positions starting from 0, and suppose we
have the three subsets P, = {1,4}, P, = {0,1} and P; = {0,2,4}. One solution is to increase the first
character and decrease the last, yielding S’ = GGTAG. The restrictions of S’ to Py, P, and P53 are GG, GG and
GTG, respectively; all of them are palindromic.

One case where no solution is possible is when the string is CATGC, and we require the subsequences
determined by positions {0,3} and {3,4} be palindromic. Here, characters 3, 0 and 4 would all need to
become a T. But this entails modifying consecutive characters 3 and 4, which is not allowed.

Input

The first line of each test case has two integers N and T (1 < N < 10000,1 < T < 6000), the sequence
length and number of subsets to consider. The next line contains the DNA sequence of length N, all of
whose characters are in ACGT. The subsets are described by the following T lines. Each line starts by “L:”,
where L (0 < L < N) is the number of positions in the subset, and is followed by T" distinct integers between
0 and N — 1 in increasing order. Subsets may overlap partially or totally.

A blank line separates different test cases. The input file is terminated by a line containing 0 0.

Output

In a single line per test case, print YES if the task is solvable and NO otherwise.

11

Miguel Campusano

Sample Input

53
AGTAT

w NN
O O =
N~ D

CATGC

w O
> W

Sample Output

YES
NO

12

Assembly line

The last worker in a production line at the factory of Automated Composed Machinery is worried. She
knows that her job hangs in the balance unless her productivity increases. Her work consists of assembling
a set of pieces in a given sequence, but the time spent on assembling pieces ¢ and b and then ¢ may not the
same as that on assembling pieces b and ¢, and then assembling a with the resulting component. Only two
consecutive pieces may be assembled at a time, and once they are assembled they behave as another piece
in terms of the time needed for further assembly.

In order to aid her, you need to find the optimal way to assemble all components. The input to your
program will be a set of symbols representing (types of) pieces, and a so-called assembly table representing
the time it takes to assemble them, as well as the type of the resulting component. For instance, we may
have two symbols {a, b}, and the following table:

a b
_a | 3-b | 5-b
b | 6-a | 2-b

This means, for example, that two pieces of type a and a may assembled in 3 minutes, and the result
is a component of type b, in that the time required to assemble it again with another piece of, say, type
a is 6 minutes, and so on. Note that the table is not symmetric, i.e. assembling b and @ may be more
time-consuming than a and b.

For a sequence of components labelled aba, the two possible solutions are:

e (ab)a = ba = a with time time(ab) + time(ba) = 5 + 6 = 11.
e a(ba) = aa = b with time time(ba) + time(aa) =6 +3 = 9.

So the result for this case would be a piece of type b in 9 minutes (denoted 9-b).

Input

The input consists of several test cases. Each test case begins with a line containing a natural number k
(1 <k <26), followed by a line with k symbols (characters in [a-z]) separated by spaces. The following k
lines contain the assembly table: the i-th line has k pairs of the form time-result, where time is an integer
between 0 and 1000000 inclusive, and result a symbol belonging to the preceding set. The j-th pair in the
i-th line represents the time to compose pieces of types represented by the i-th and j-th symbols, along with
the type of the resulting piece. After the table, a line with an integer n indicates the number of lines that
follow, each line being a string of at most 200 symbols. Each of these lines is a sequence of components that
need to be assembled together in the right order.

The input will finish with a line containing 0, which should not be processed.

Output

For each test case, print n lines, each with an integer time and a symbol result in the format time-result.
Each line represents the minimum time and the type of the resulting piece for the corresponding case in the
input. In case of a tie among several possible results with the same minimum time, choose from among those
the piece whose type letter appears first in the line that contained the k symbols at the beginning of the test
case. (For example, if that line was a ¢ b and both ¢ and b can be obtained with minimum cost 5, print 5-c).

There must be an empty line between the output of different test cases.

17

Miguel Campusano

Sample Input

2

me
5-e 4-m
3-e 4-m
1

Sample Output

9-b
8-a

7-m

18

Jumping monkey

You are a hunter chasing a monkey in the forest, trying to shoot it down with your all-powerful automatic
machine gun. The monkey is hiding somewhere behind the branches of one of the trees, out of your sight.
You can aim at one of the trees and shoot; your bullets are capable of going through the branches and killing
the monkey instantly if it happens to be in that tree. If it isn’t, the monkey takes advantage of the time
it takes you to reload and takes a leap into a neighbouring tree without you noticing. It never stays in the
same place after a shot. You would like to find out whether there is an strategy that allows you to capture
the monkey for sure, irrespective of its initial location and subsequent jumps. If so, you need to determine
the shortest sequence of shots guaranteeing this.

A

Figure 2

As an example, consider the situation in which there are only two neighboring trees in the forest (left
hand side of Figure 2). It is then possible to make sure you capture the monkey by shooting twice at the
same tree. Your first shot succeeds if the monkey happened to be there in the first place. Otherwise, the
monkey was behind the other tree and it will necessarily have moved when you shoot for the second time.

However, depending on the shape of the forest it may not possible for you to ensure victory. One example
of this is if there are three trees, all connected to one another (right hand side of Figure 2). No matter where
you aim at, there are always two possible locations for the monkey at any given moment. (Note that here
we are concerned with the worst-case scenario where the monkey may consistently guess your next target
tree).

Input

The input consists of several test cases, separated by single blank lines. Each test case begins with a line
containing two integers n and m (1 < n < 21); n is the number of trees in the forest, and m is the number
of adjacency relations between trees. Each of the following m lines contains two distinct integers between 0
and n — 1 (inclusive), the identifiers of the trees in an adjacent pair. The order of both trees within a pair
carries no meaning, and no pair appears more than once. You may further assume that no tree is adjacent
to itself, and there is always a path between any two trees in the forest.

The test cases will finish with a line containing only two zeros (also preceded with a blank line).

Output

Print a line for each test case. The line should contain the single word Impossible if the task is
impossible. Otherwise, it must contain the shortest sequence of shots with the required property, in the
format L: V1 V5 ... Vy, where L is the length of the sequence, and V7, V5, ...,V are space-separated integers
containing the identifiers of the trees to shoot at in the right order. If several shortest sequences exist, print
the lexicographically smallest one. (A sequence is smaller than another in lexicographic order if the first
element on which they differ is smaller in the first one).

13

Miguel Campusano

Sample Input

N = O W
O N+~ W

= N O Wb
w w e~ W

Sample Output

2: 00
Impossible
4: 1331

14

F
Haunted Graveyard

Tonight is Halloween and Scared John and his friends have decided to do something fun to celebrate the
occasion: crossing the graveyard. Although Scared John does not find this fun at all, he finally agreed to
join them in their adventure. Once at the entrance, the friends have begun to cross the graveyard one by
one, and now it is the time for Scared John. He still remembers the tales his grandmother told him when
he was a child. She told him that, on Halloween night, “haunted holes” appear in the graveyard. These are
not usual holes, but they transport people who fall inside to some point in the graveyard, possibly far away.
But the scariest feature of these holes is that they allow one to travel in time as well as in space; i.e., if you
fall inside a “haunted hole”, you appear somewhere in the graveyard a certain time before (or after) you
entered the hole, in a parallel universe otherwise identical to ours.

The graveyard is organized as a grid of W x H cells, with the entrance in the cell at position (0,0) and
the exit at (W — 1, H — 1). Despite the darkness, Scared John can always recognize the exit, and he will
leave as soon as he reaches it, determined never to set foot anywhere in the graveyard again. On his way to
the exit, he can walk from one cell to an adjacent one, and he can only head to the North, East, South or
West. In each cell there can be either one gravestone, one “haunted hole”, or grass:

e If the cell contains a gravestone, you cannot walk over it, because gravestones are too high to climb.

e If the cell contains a “haunted hole” and you walk over it, you will appear somewhere in the graveyard
at a possibly different moment in time. The time difference depends on the particular “haunted hole”
you fell into, and can be positive, negative or zero.

e Otherwise, the cell has only grass, and you can walk freely over it.

He is terrified, so he wants to cross the graveyard as quickly as possible. And that is the reason why he
has phoned you, a renowned programmer. He wants you to write a program that, given the description of
the graveyard, computes the minimum time needed to go from the entrance to the exit. Scared John accepts
using “haunted holes” if they permit him to cross the graveyard quicker, but he is frightened to death of the
possibility of getting lost and being able to travel back in time indefinitely using the holes, so your program
must report these situations.

> Y .

1 RIP RIP

N

0

1 2 3

Figure 3: Sample graveyard

15

Figure 77 illustrates a possible graveyard (the second test case from the sample input). In this case
there are two gravestones in cells (2,1) and (3,1), and a “haunted hole” from cell (3,0) to cell (2,2) with a
difference in time of 0 seconds. The minimum time to cross the graveyard is 4 seconds, corresponding to the
path:

(0, 0) _)East (17 0) _>East (2’ 0) _)East (37 O) _>h0l€ (2’ 2) _)East (37 2)

1 sec 1 sec 1 sec 0 sec 1 sec

If you do not use the “haunted hole”, you need at least 5 seconds.

Input

The input consists of several test cases. Each test case begins with a line containing two integers W
and H (1 < W, H < 30). These integers represent the width W and height H of the graveyard. The next
line contains an integer G (G > 0), the number of gravestones in the graveyard, and is followed by G lines
containing the positions of the gravestones. Each position is given by two integers X and ¥ (0 < X < W
and 0 <Y < H).

The next line contains an integer F (E > 0), the number of “haunted holes”, and is followed by E
lines. Each of these contains five integers X1,Y1, X2 Y2, T. (X1,Y1) is the position of the “haunted hole”
(0 < X1 <Wand0 <Yl < H). (X2,Y2) is the destination of the “haunted hole” (0 < X2 < W
and 0 < Y2 < H). Note that the origin and the destination of a “haunted hole” can be identical. T
(=10000 < T < 10000) is the difference in seconds between the moment somebody enters the “haunted
hole” and the moment he appears in the destination position; a positive number indicates that he reaches
the destination after entering the hole. You can safely assume that there are no two “haunted holes” with
the same origin, and the destination cell of a “haunted hole” does not contain a gravestone. Furthermore,
there are neither gravestones nor “haunted holes” at positions (0,0) and (W-1,H-1).

The input will finish with a line containing 0 0, which should not be processed.

Output

For each test case, if it is possible for Scared John to travel back in time indefinitely, output Never.
Otherwise, print the minimum time in seconds that it takes him to cross the graveyard from the entrance to
the exit if it is reachable, and Impossible if not.

Sample Input

w

3

0220

ONEFP, O P WEF, WNNDNPOEFLNN
-

16

Sample Output

Impossible
4
Never

17

ACM ICPC2008 — South American Regionals 1

Problem A
Almost Shortest Path

Source file name: almost.c, almost.cpp or almost. java

Finding the shortest path that goes from a starting point to a destination point given a set of
points and route lengths connecting them is an already well known problem, and it’s even part
of our daily lives, as shortest path programs are widely available nowadays.

Most people usually like very much these applications as they make their lives easier. Well,
maybe not that much easier.

Now that almost everyone can have access to GPS navigation devices able to calculate shortest
paths, most routes that form the shortest path are getting slower because of heavy traffic. As
most people try to follow the same path, it’s not worth it anymore to follow these directions.

With this in his mind, your boss asks you to develop a new application that only he will have
access to, thus saving him time whenever he has a meeting or any urgent event. He asks you
that the program must answer not the shortest path, but the almost shortest path. He defines
the almost shortest path as the shortest path that goes from a starting point to a destination
point such that no route between two consecutive points belongs to any shortest path from the
starting point to the destination.

For example, suppose the figure below represents the map given, with circles representing
location points, and lines representing direct, one-way routes with lengths indicated. The
starting point is marked as S and the destination point is marked as D. The bold lines belong
to a shortest path (in this case there are two shortest paths, each with total length 4). Thus,
the almost shortest path would be the one indicated by dashed lines (total length 5), as no
route between two consecutive points belongs to any shortest path. Notice that there could
exist more than one possible answer, for instance if the route with length 3 had length 1. There
could exist no possible answer as well.

Input

The input contains several test cases. The first line of a test case contains two integers N
(2 < N <500) and M (1 < M < 10%), separated by a single space, indicating respectively
the number of points in the map and the number of existing one-way routes connecting two
points directly. Each point is identified by an integer between 0 and N — 1. The second line
contains two integers S and D, separated by a single space, indicating respectively the starting
and the destination points (S # D; 0 < S, D < N). Each one of the following M lines contains
three integers U, V and P (U # V; 0 < U,V < N; 1 < P < 10?), separated by single spaces,
indicating the existence of a one-way route from U to V with distance P. There is at most one

ACM ICPC2008 — South American Regionals 2

route from a given point U to a given point V', but notice that the existence of a route from
U to V does not imply there is a route from V to U, and, if such road exists, it can have a
different length. The end of input is indicated by a line containing only two zeros separated by
a single space.

The input must be read from standard input.

Output

For each test case in the input, your program must print a single line, containing -1 if it is not
possible to match the requirements, or an integer representing the length of the almost shortest
path found.

The output must be written to standard output.

Sample input Output for the sample input
79 5
06 -1
011 6
021

032

043

1562

2 6 4

362

46 4

561

4 6

02

011

121

131

321

203

302

6 8

01

011

022

033

253

342

411

511

301

00

ACM ICPC2009 — Latin American Regionals 8

Problem E
Electric Bill

File code name: electric

It’s year 2100. Electricity has become very expensive. Recently, your electricity company
raised the power rates once more. The table below shows the new rates (consumption is always
a positive integer):

Range Price
(Crazy-Watt-hour) (Americus)
1~ 100 2
101 ~ 10000 3
10001 ~ 1000000 5

> 1000000 7

This means that, when calculating the amount to pay, the first 100 CWh have a price of 2
Americus each; the next 9900 CWh (between 101 and 10000) have a price of 3 Americus each
and so on.

For instance, if you consume 10123 CWh you will have to pay 2 x 100+3x9900+5 x 123 = 30515
Americus.

The evil mathematicians from the company have found a way to gain even more money. Instead
of telling you how much energy you have consumed and how much you have to pay, they will
show you two numbers related to yourself and to a random neighbor:

A: the total amount to pay if your consumptions were billed together; and

B: the absolute value of the difference between the amounts of your bills.

If you can’t figure out how much you have to pay, you must pay another 100 Americus for
such a “service”. You are very economical, and therefore you are sure you cannot possibly
consume more than any of your neighbors. So, being smart, you know you can compute
how much you have to pay. For example, suppose the company informed you the following
two numbers: A = 1100 and B = 300. Then you and your neighbor’s consumptions had to
be 150 CWh and 250 CWh respectively. The total consumption is 400 CWh and then A is
2x 10043 x 300 = 1100. You have to pay 2 x 10043 x 50 = 350 Americus, while your neighbor
must pay 2 x 100 + 3 x 150 = 650 Americus, so B is |350 — 650| = 300.

Not willing to pay the additional fee, you decided to write a computer program to find out how
much you have to pay.

Input

The input contains several test cases. Each test case is composed of a single line, containing
two integers A and B, separated by a single space, representing the numbers shown to you

ACM ICPC2009 — Latin American Regionals 9

(1 < A, B < 10°). You may assume there is always a unique solution, that is, there exists
exactly one pair of consumptions that produces those numbers.

The last test case is followed by a line containing two zeros separated by a single space.

Output

For each test case in the input, your program must print a single line containing one integer,
representing the amount you have to pay.

Sample input Output for the sample input
1100 300 350

35515 27615 2900

00

Problem F
Ordering Tasks

Input: standard input
Output: standard output
Time Limit: 1 second
Memory Limit: 32 MB

John has n tasks to do. Unfortunately, the tasks are not independent and the execution of one task
is only possible if other tasks have already been executed.

Input

The input will consist of several instances of the problem. Each instance begins with a line
containing two integers, 1 <= n <= 100 and m. n is the number of tasks (numbered from 1 to n)
and m is the number of direct precedence relations between tasks. After this, there will be m
lines with two integers i and j, representing the fact that task i must be executed before task j. An
instance with n = m = 0 will finish the input.

Output

For each instance, print a line with n integers representing the tasks in a possible order
of execution.

Sample Input

O EFENRFWU
oUW WN B

Sample Output

14253

(The Joint Effort Contest, Problem setter: Rodrigo Malta Schmidt)

